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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 3 

INFORMATION CHANNELS COMPOSED 
OF MEMORYLESS COMPONENTS 

KAREL WTNKELBAUER 

Explicit bounds for the maximum length of //-dimensional codes at any admitted level of the 
probability of error are derived, valid for all n, in case that the channels considered are composed 
of a finite number of memoryless components. The special case studied by the author in [2], 
is discussed in this more general frame. 

BASIC NOTATIONS 

Given a finite non-empty set M, the symbol WM means the class of all shift-invariant 
probability measures in the space Ml, where / denotes the set of all integers. A me­
asure m e WM (satisfying the relation m 0 TM

l = m) is defined on the a-algebra Fu 

of Borel sets in M1 which may be generated by the class of "elementary" cylinders 
(a base of the topology) of the form TM[z], i e I, 

[z] = n {C e Mr: C; = z;] for z = (z„ 0 ^ i < n)eM" ; 
O g i < n 

here TM is the shift (defined by (TMQ; = C.+ i)- Define 

WM = {m e WM: m is ergodic w.r. to TM} . 

All the information channels considered here are supposed to have finite alphabets 
A, B (card A ^ 2, card B _ 2), A the output alphabet, B the input alphabet. 
Denoting by xy the element in (A x B)" for x e A", y e B" given by (xy)t = (x;, >',), 
0 :£ / < n, associate with any measure co in WAxB the information rate (conven­
tion: log = log2) 

j(co) = lim (1/n) X co\xy] log ^ . f ^ L , 
xeA-.yeB" Co\x] CO [y\ 

where co4 e WA, coB e WB a re the marginal measures determined by the condi t ions 

a / [ x ] = lco[xy] , co\y] = ^[xy] . 



A point £ e Z = (A x B)1 is called regular if there is a (uniquely determined) me­
asure mceWAxB such that 

mc[z] = lim (1/n) J; XUT^BC) , z e U (A x E)« ; 
n £ = 0 I I 

%E designates the characteristic function of E <= Z. The set of all regular points in Z 
will be denoted by R. Since co(R) = 1, we may define, for COG WAXB, 

q(0, co) = min {t = 0: co{z e R: J(mz) z% t} >, 0} , 0 < 0 = 1 ; 

<I(0, to) = max {/ ^ 0: co{z e R: J(mz) = t} ^ 1 - 0} , 0 < 0 < 1 . 

The latter quantities are the lower and the upper 0-quantiles of the random variable 
(J(m^), C e R) w.r. to co. 

In the entire paper a channel (a discrete information channel, stationary and 
of zero past history; cf. [1]) is defined as a family v = (v,r n e Br) of probability 
measures v, on FA satisfying the relations 

v ( r i M ) = v J > ] f o r n'eTsly], i f 6 l > ] , xeA", y e B", n = 1,2 ... 

Since v^[x] is constant for n e [y], define for E cz A" 

vlE I J7] = I v l * I ^ ] . vlx I 3;] = VKIXI ' *? e W • 
xeE 

If p. e WB then v/x will denote the measure in WAxB satisfying 

Vju[xy] = v[x I y] n\y\ , xe A", y e B", n = 1,2,.... 

The quantile function qv of a channel v (cf. [5]) is defined by 

qv(0) = sup {q(0, Vfi): p G WB} , 0 < 0 < 1 . 

As an auxiliary function we define 

qv(0) = sup {q(0, VIA): /.I e WB} , 0 <, 0 < 1 . 

The quantile functions q, and qv of a memoryless channel v are constant, both 
identically equal to the transmission-rate capacity of the channel (cf. [1]); recall 
that v is memoryless iff 

v l> I y] = n v l x i I >-.•] • 
O § ; < I J 

If 0 < e < J, Y cz B" then a family Q = (Q(y), y e Y) of mutually disjoint sets 
Q(y) cz A" is, by definition, an n-dimensional e-code for a channel v of length lQ = 
= card Yiff v[Q(.y) | y] > 1 — efor ally e Y The maximum length of n-dimens'ional 
e-codes will be denoted by S„(e, v); in symbols: 

S„(e, v) = max {/Q: Q is an n-dimensional s-code for v} . 

The set of all families p = (p(b), b e B) of non-negative real numbers which add 
to one, will be denoted by P (the set of probability vectors on alphabet B). Let np 

170 



be the measure in WB satisfying the condition 

/-*"[>•] = n M > ye B"(pe p) • 
o s ; < n 

If N(b | v) = {/: yt = 6(0 = i < />)} , sp(6) = (p(6) (1 - p(6)) , / 2 , 
rf = max (card A, card B), 

define 
^ ( p ) = 0 [y e B": |.V(6 | y) - n p(6)| = 2s„(6) (nd)1/2} , p e P . 

An /i-dimensional e-code 0 = (Q(y), y e Y) for a channel v is said to be a (p, e)-code 
for p in P iff 7 c £„(p). Define 

S*(e, v, /(") = max {/Q: Q is an n-dimensional (p, e)-code for v] . 

The behaviour of the latter auxiliary quantity will be studied by means of the n-
dimensional information density 

I„(xy; vn>) = (1/n) log (v[x | y]j(vp")A [.v]). 

COMPOSED CHANNEL 

We shall make the following assumptions: k is a natural number, (va, a e :/f) 
for Jf = {1, ..., fe} is a family of memoryless channels, £ = (<;,,..., ck) is a pro­
bability vector satisfying the condition 

t0 = min {ca: « e •#"} > 0 , 

and v is the composed channel defined by 

v„(£) = X £av*.(£) , n e B1, EeFA; 

• = i 

the latter relation will be written as 

v = L O * . 
Together with the given channel v wc shall consider its "subchannel" Vs* for 

s4 c X ( J / non-empty) defined by 

V^ = X &/«(-*)) V" , *,{*) = L â , 

particularly in case that s£ belongs to the class 

A(9) = {s4 : st c j f , £(j*) = 0} , 0 < 0 < 1 . 

Let ®Xv) = L(K & ) r a [ f l ! fo] IiC-^ V V ) : a e A, 6 6 B] , 

r p(0, c) = min max 0?a(p), 0 < 0 < 1 , 
, I / E A ( 6 > ) ore.jai' 

rp(0, t) = max min @„(p), 0 = 0 < 1 , p e P . 
j / eAd - 0 ) ste.s/ 
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Then the quantile function of the composed channel is expressed by 

qv(0) = max rp(G, £) = lim qv(0 - X) , 0 < 0 ^ I 
/>&/> A 1 0 

(cf. Theorem 4 in [4] and Lemma 3 in [2]), analogously 

qv(0) = max r'p(0, c) = lim qv(0 + ?.), 0 ^ 0 < \ , 
psP A | 0 

and both <7v,<7vare monotonically increasing, having the same set 3>\. of discontinuity 
points in the open interval (0, 1) satisfying the relations 

<g>v = {0 : 0 < 0 < 1 , qv(0) < qv(0)} , Qsv e= {c(.~/): ̂ c X } . 

In every open subinterval ( 0 , , <92) not containing any discontinuity point from 
&v, c/v and qv are constant and equal to each other (cf. Theorem 4 in [3]). 

Hence it follows that the set 

P(0) = {peP: rp(0, £) = qv(0)} for 0 ^ 0 < 1 

is non-empty. Let 

w0 = min {v=<[fl | b\: a e Jf , a e A , b e B , V[a \ b\ > 0} , 

p0 = min {p(b): b e B , p(b) > 0} , p e P , 

<5E = i min {|c(.<3/) - e |: s<? c XT , c(s4) * e} , 

K£ = (2<j)3 V(d) (w0<5£)-<
1/2), pE = sup {p0: p e P(e)} , 0 < £ < 1 . 

The composed channel v is, by definition (cf. [2]), non-singular if \fl[a \b\> 0 for 
all a £ j f , a e A, b e B. 

Theorem 1. If £ is a continuity point of the quantile function qv (i.e., 0 < s < 1, 
E i @v), then the maximum length of /i-dimensional £-codes for the channel v satis­
fies the inequalities 

log S„(B, V) < n qv(e) + log (Id^)'1 + KE V« , 

log S„(e, v) > n CJV(E) - log ( 2 ^ 0 ) - » - KIp,)"1 V" , 

for n = 1, 2, ...; if v is non-singular, then 

|log S„(e, v) - H AV(E)| < !og (25ECo)""1 + K V« • 

Remark. The non-singular case was treated in [2], but the method used there for 
finding the bounds must be modified for the case considered here, as will be seen 
below. On the other hand, Theorem 4 in [3] guarantees only the existence of a con­
stant cE such that [log S„(e, v) - H<7V(£)| < c£ ̂ Jn, but yields no direct method for 
its computing. 
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LEMMATA 

To show the validity of Theorem 1, we shall first prove two lemmas under the 
assumption that we are given a real number £ ' (0 < e' < 1), a probability vector 
p in P, and a non-empty set si <=. X . Let of = (vafip)A for aes/, L(t) = t log C1 

(0 < t < 1),L(0) = 0, 

L0 = max {L(t)\ 0 < t < 1} = e"1 log e , 

K' = K'(s') = a*(£')-^/21 , 

K = K(E') = L0 d2(5 V(rf) + 2K' + 4K'(1 + 2 V( '0 ) ' / 2 ) , 

K0 = K0(£') = X'L0 d(d + 1) (w0)-<
1/2> , 

K0 = K'0(r!) = (K' +2 V(d)) L0(d
2 + ! ) (w 0)- ( 1 / 2 ) , 

A„ = X„(B') = (1/n) (log (fo)"1 + (X + K0) V«) , 

)!„ = )!„(e', p0) = ( l /nJOog^o) - 1 + (K + K 0 ) (p 0 ) - ]
 V'«) , 

r„ = ;.;;(£') = (i/n) (log (£0Y
] + (K + JC0) v«) • 

If N(a, b | x, j ) = {/: x,- = a, yt = b(0 S i < »)}, s.(a | b) = (v*[a | b] (1 -

- v [a I fo]))1/2,define f o r a 6 * > y e B"> 

r„(y; a, b) = {x e A": \N(a, b \ x, y) - N(b \ y) v*[a \ b] | ^ K' sa(a | b) J[N(b\y)]}, 

r,(y) = 0 r„(y; a, b), rf(y) = U r„(y) . 
asA MB jErf 

Lemma 1. If x e rf(y) for y e F„(p) then 

min %a(p) - )!„ < l„(xy; v'"Jfip) < max^Tp) + ).„. 

Moreover,if v is non-singular, I„(xy; v^n") + )!'„ > m in .^ (p ) . 
<XE.c/ 

Proof. I. Given a e i , suppose that x e r„(y); then v*[x | j ' ] 3; vv0, o/[x] ^ 
^ (Powo)" because of fip[y] = (p0)", and if va[a | b] > 0 and oja[a] > 0, respectively, 
then 

\N(a,b\x,y) - n p(b) v*[a | b] | < 

< v ( « ) ( V ( ^ ) V [ « | f e ] + ^ ' ( 4 " l t ' ] ) 1 / 2 ) , 

|N(a | x) — n ft)a[x]| < 

< V("M2V(rf ) (« a [a ] ) 1 / 2 + !CVW)1/4) 

where N(a \ x) = X{A'(a, b | x, y}:be B}, K' = X'(l + 2 V(<0)1/2 ; cf. [6], Chapter 

2, and notice that sp(b) < \. Similarly as in [6], loc. cit., we have 

lOgltlZ] = £ N(fl, fc | X> y) l0g / [ f l | fe] _ £.V(fl | x) Jog ffl*[fl] < 
0/[xJ a,6 a 

^ n ®Jj>)± L0 d2(V(rf) + 2K' + 4 V(d) + 4K') V(«) • 
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Thus it is proved under the above assumptions that 

(1) \l„(xy; v V ) - -»«(p)| < K • n" ( J / 2 ) • 

II. Given a, /? in jtf, suppose that x e E^y), anc* that v^[x | j>] > 0; then v"[a | b] = 
= 0 implies that N(a, b \ x, y) = 0. Let 

Ab = {a e A: / [ a | ft] > 0, v"[a | b] > 0} , 

V, = X !V(a, ft | x, y) log V ^ a fcj for beBy, 

as A „ VX[a | ft] 
where By = (ft e B: iV(ft | y) > 0}. Since (cf. [2], (2.14)) 

X v * [ a | f t ] l o g ^ ^ < L ( v * [ A 6 | f t ] ) , 
aeA„ V \a | ft J 

|/V(a, ft | x, y) - N(b \ y) v°[a \ b]\ < \K' V'['V(ft | y)] for ft e By , 

we obtain the inequality 

14 < JV(6 | y) L(v%Ab | ft]) + W log « T * • d J[N(b | v)J , ft e B , . 

Case 7: If, for all a in A, v"[a | ft] = 0 implies that vx[a | b] = 0, then va[A61 ft] = 
= I,and 

Vb < V[/V(ft | y)] K'd log (w0)- ( 1 / 2 ) for ft e By . 

Case 2: Let \fi[ab | ft] = 0 and vx[ab | ft] > 0, ab e A, ft 6 Bv; then 

/V(at, ft | x, v) = 0 > N(b | v) v«[a6 | ft] - K'(N(b \ y) vx[a \ ft])1/2 

so that V[/V(ft | y)] < K'(woy
(i/2). Thus in both cases 

Vb < J[N(b | y)] (K'(w0)- (1 /2 ) L0 + K'd log (vv0)-(1/2)) for ft e 73,. 

From here it follows that 

(2) j:vb = \og
v-^]y\<^(n)K0. 

beBy v [x | y\ 

III. Given a, /? in j / , suppose that x e E"(y), and that (o"[x] > 0; then co"[aJ = 0 
implies that N(a | x) = 0. Let 

A0 = {a e A: of[a] > 0 , o/[a] > 0} , 

V0 = l o g ^ l = £ / V ( a | x ) l o g ^ . 
of[xj a^Ao co \a] 

Since \N(a | x) - n cox[a]\ < i(K' + 2 V(d)) d J(n), we find that 

V0 < n L(cox[A0]) + $(K' + 2 V(d)) d2 log (p0w0)-x , 

because under the assumptions made, if of[a] > 0 and o / [a ] > 0, respectively, 
then af[a] ^ p0w0, o / [a ] ^ p0w0-
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Case 1: Tf, for all a in A, cop\a] = 0 implies that co*\a] = 0, then a/[A0] = 1, and 

V0 < V(n) . i(K' + 2 V(o-)) d2 log (Pow0)-
1. 

Case 2: Let co°[a0] = 0 and af[a0] > 0, a0 e A; then Af(a0 | x) = 0. Choose 
b0 in B such that 

p(b0) v
a[a0 | b0] > 0 ; 

then 

./V(a0, bo\x,y) = 0>n p(b0) v«[a0 | 60] - K"(n p(b0) v*[a \ b])1'2 -

-K'(v"\a\b]N(b0\y)y2 

where K" = 2 V(d). Thus V(n) < (K' + K") (p0)_1 (w0)-(1/2) so that 

Vo < V(») g ' + f / y (L0 + a12 L(p0 V(w0))) • 
Po V(w0) 

In both cases we obtain that 

(3) l o g C ° - ^ < V ( n ) K 0 i . 
«> LXJ Po 

If v is non-singular, then co"\a] > w0 for co^a] > 0, and co"[a] ^ vv0 for ©"[a] > 0, 
which yields (cf. Case l) the inequalities 

(4) log - ^ < V(n) (X' + 2 V(d)) d2 log (w0)-<1/2> < V(n) ^o • 
aJ"[x] 

IV. Let # = { « e i : x e / ^ ( y ) } ; by assumption, J / * is non-empty. Write 

/„ = In(xy; vV) , I* = !„(*}•; v r fV), 

.J = {jS e i : ^ ^*, v"[x | y] > 0} , 9T = (0 e si: $ $ si*, a/\x] > 0} , 

r = max .^(p) , r' = min Mx(p) , 

Q = (l/n) (r + K Vn), e' = (l/n) (r' - K V«), 

'̂ = L^ Zí 
E-rf- ÜJ 

If a E .s/* then, according to (l), 

2""' co*[x] < v*\x | y] < cox\x] 2"e 

so that Q' < I* < Q. Applying the inequality (2), we obtain 

exp2 (nl„) = exp2 (nit) • (1 + V) (1 + V)"1 < 2«(1 + (1 - Q ( ^ Y 1 exp (K0 Jn)) 

so that /„ < r + 2„. Analogously, making use of (3), we get In > r' — X'„. If v is non-

singular, then I„ > r' - X'n by (4). • 
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Lemma 2. If 0 < e < 1 — e' then 

logS*(e,v"V) < n(max ^ ( p ) + X„(e')) + log( l - e - e')"1 ; 
as.r/ 

if e' < £ < 1 then 

log S*(e, v V ) > n( min M^p) - X'„(e', p0)) - log (|(e - e')"1) . 

If v is non-singular, then it holds for e' < e < 1 that 

n( min Ma(p) - X'n(e')) < log S*(e, v*pP) + log (§(e - e ' )"1) . 

The p roof is the same as that of Lemma 2 in [2], performed by making use 
of the preceding Lemma 1. 

Theorem 2. Let X,(<5) = K(S) + K0(<5) + d log e, K2(8) = K(5) + K'0(5), 0 < 
< <5 < L Then the maximum length of n-dimensional e-codes (0 < s < l) for the 
composed channel v satisfies the inequalities 

log Sn(e, v) < n qv(e + 48) + log (2<5Co)_1 + V(") K,(<5) 

for 4<5 < 1 - e, and 

log S„(e, v) > R <yv(e - 4<5) - log (2§i0)-
1 - V(n) (p0)-L K2(<5) 

for e > 4<5 and any p e P(e - 45). If v is non-singular, then 

log S„(e, v) > R gv(e - 4<5) - log ( 2 ^ 0 ) " J - V(») X2(<5), e > 4<) . 

Proof. Repeating the proof of Theorem 1 in [2] with the aid of the preceding 
lemma, we obtain that 

log S„(e, v) < n qv(0) + n X„(e') + log (1 - e . 0 " 1 - e')"1 + d log (n + 1) 

for e < 0 £ 1, e' > 0, e' + e . 0 - 1 < 1. Since 1 - e . <9 -1 - e' > \(0 - e) for 
e' g i ( o — e)» log (R + 1) < V(«) log e, the first inequality follows from the preced­
ing one by setting <5 = e' = \(0 - e). Taking p in P(0') and using the second 
inequality of Lemma 2 above in the proof of Theorem 2 in [2], we derive the ine­
quality 

log S„(e, v) > R qv(0') - n X'(e', p0) - 1og(f(e - e')"1) 

for 0 g 0' < e, 0 < e' < e — 0 ' . From here the second inequality given in the 
theorem follows for <5 = e' = \(e — 0'). The third inequality is verified analogously. 

• 
Theorem 1 is a corollary to Theorem 2 for <5 = <5E because qv(e ~ 4<5E) = qv(e) = 

= qv(e + 4<5£) for e $3)v, -K,(<56) < Ke,K2(5e) < Ke. In verifying the latter inequalities 
it is necessary to use the following relations: <5 < \, d ^ 2, L0 < (J)2. 

(Received May 29, 1984.) 
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