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KYBERNETIKA — VOLUME 27 (1985), NUMBER 3

INFORMATION CHANNELS COMPOSED
OF MEMORYLESS COMPONENTS

KAREL WINKELBAUER

Explicit bounds for the maximum length of n-dimensional codes at any admitted fevel of the
probability of error are derived, valid for all n, in case that the channels considered are composed
of a firite number of memoryless components. The special case studied by the author in [2],
is discussed in this more general frame.

BASIC NOTATIONS

Given a finite non-empty set M, the symbol W,, means the class of all shift-invariant
probability measures in the space M’, where I denotes the set of all integers. A me-
asure m € W), (satisfying the relation m o T,;' = m) is defined on the g-algebra Fy,
of Borel sets in M! which may be generated by the class of “‘elementary” cylinders
(a base of the mpo]ogy) of the form T"4[z] iel,

El=N{teM:{;=z) for z={(z,0<i<n)eM";
Ogi<n
here T\, is the shift (defined by (Ty{); = ;4,)- Define
Wy = {m e Wy: mis ergodic w.r. to Ty} .

All the information channels considered here are supposed to have finite alphabets’
A, B (card 4 = 2, card B = 2), A the output alphabet, B the input alphabet.
Denoting by xy the element in (4 x B)' for x € A", y € B" given by (xy); = (x;, ;).
0 < i < n, associate with any measure w in W, the information rate (conven-
tion: log = log,)

J(w) =tim (1fn) T ofxy]log G

w* [x] wB[y] ’

where w* e W,, ® € W, are the marginal measures determined by the conditions

o'[x] = ;m[xy] , o[yl = Zm[xy] .

xe
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A point {e Z = (4 x B)' is called regular if there is a (uniquely determined) me-
asure m; € W, 5 such that

n-1
m]z} = lim (U")_ZJ{:](HMC) , zeU(4 x BY';

X designates the characteristic function of E = Z. The set of all regular points in Z
will be denoted by R. Since w(R) = 1, we may define, for w € W, p,

90, 0) =min{t 2z CofzeR:J(m) £t} 20}, 0<O LI

40, w) =max{t 2 0:wfzeR: J(m) 2t} 21 -0}, 020 <1.
The latter quantities are the lower and the upper @-quantiles of the random variable
(J(m,), L e R) w.r. to .

In the entire paper a channel (a discrete information channel, stationary and
of zero past history; cf. [1]) is defined as a family v = (v,, # € B’} of probability
measures v, on F 4 satisfying the relations

v(Tilx]) = v[x] for n'eTi[y], nelv], xed", yeB", n=12 ..
Since v,[x] is constant for # e [y], define for E = 4"

ME|y] = 2ol [yl vlx[y] =wlx], nely].
xc
If 1 € Wy then vu will denote the measure in W, 5 satisfying
vulxy] = v[x|yIuly]. xed", yeB', n=1,2,...

The quantile function g, of a channel v (cf. [5]) is defined by

q,(@) = sup {q(@, vu): pe W}, 0< O < 1.
As an auxiliary function we define

3,(0) =sup {G(0, vpu): ne Wy}, 056 < 1.

The quantile functions g, and g, of a memoryless channel v are constant, both
identically equal to the transmission-rate capacity of the channel (cf. [1]); recall

that v is memoryless iff
vx | RS IREARAR
0gi<n
If 0 <& <1, Y= B" then a family Q = (Q(y), y € Y) of mutually disjoint sets
0(y) = 4" is, by definition, an n-dimensional e-code for a channel v of length I, =
= card Yiff v[Q(y) | ] > 1 — eforall y € Y. The maximum length of n-dimensional
e-codes will be denoted by S,(e, v); in symbols:

S,(¢, v} = max {y: Q is an n-dimensional s-code for v} .
The set of all families p = (p(b), b € B) of non-negative real numbers which add

to one, will be denoted by P (the set of probability vectors on alphabet B). Let p”
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be the measure in Wy satisfying the condition
wly] =TI p(y), veB(peP).
Osi<n
TN |y)={ity; =005 i<n), s(b)=(p(b)(t— p(b))'"?,

d = max (card 4, card B),
define

N(b|y) — np(b)| £ 25(b) (nd)'?}, peP.

Rr) = 0 {ye B

An n-dimensional e-code Q = (Q(y), y € Y) for a channel v is said to be a {p, &)-code

for pin Piff Y < F,(p). Define

Si(e, v, 1) = max {l,: Q is an n-dimensional (p, ¢)-code for v} .

The behaviour of the latter auxiliary quantity will be studied by means of the n-

dimensional information density

Li{xy; v?) = (1/n)log (v[x | ¥][(very* [x]) -

COMPOSED CHANNEL

We shall make the following assumptions: k is a natural number, (v, %€ %)
for # = {1,...,k} is a family of memoryless channels, ¢ = (g”,, <o &) is a pro-

bability vector satisfying the condition
£ =min{{ae X} >0,
and v is the composed channel defined by
k
v(E) =Y Evi(E), neB', EeF,;
a=1

the latter relation will be written as
v=) L.

aeX’
Together with the given channel v we shall consider its *
sl < A (s non-empty) defined by
DN (FLCH NP CIED WA

aead S

particularly in case that .« belongs to the class
AO)={d: oA cH, )20}, 0<O 1.
Let Z,(p) = Y.{p(b)v:[a | b] 1, {ab;vu?): ac A, be B},

IIA

(@, &) = min maj& Ap), 0<O L1,

SHeA(@)

r(©,8) = max minZ,(p), 02O <1, peP.

SEA(1—0) aest

‘subchannel”™ v* for
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Then the quantile function of the composed channel is expressed by

9,(0) = maxr,(0,&) = limg (0 — 1), 0< O 1
peP il0

(cf. Theorem 4 in [4] and Lemma 3 in [2]), analogously
G{0) = max r(0,&) =1limg, (0@ +7), 020 <1,
peP A10
and both g,. 7, are monotonically increasing, having the same set 2, of discontinuity
points in the open interval (0, 1) satisfying the relations
Z,={0:0<0 <1, q(0)<q(0). 2, c{id)dcH}.

In every open subinterval (@, @2) not containing any discontinuity point from
2,, q, and §, are constant and equal to each other (cf. Theorem 4 in [3]).

Hence it follows that the set
PO)={peP:1)(0,8) =§[(0) for 00 <1
is non-empty. Let
wo = min {W[a|bliaed, acd, beB, v[alb]>0},
po = min {p(b): be B, p(b) >0}, peP,
b, = dmin {|d() ~ ¢ A, L)+ 2},
K, = (2d)* J(d) (wed,) Y, p, =sup{po:pePle)}, 0<e<l.

The composed channel v is, by definition (cf. [2]), non-singular if v*[a | b] > 0 for

allae A, aec A4, beB.

' Theorem 1. If ¢ is a continuity point of the quantile function g, (ie., 0 <& < 1,
¢ ¢ &,), then the maximum length of n-dimensional e-codes for the channel v satis-
fies the inequalities
10g S,(&¥) < 1 q.(e) + log (26,60) ™ + K,/ ,
log S,(e, v) > n g,(e) — log (26,&,)"* — K(p.)™' v,
for m = 1,2, ...; if v is non-singular, then

llog S,(e, v) — n q,(g)] < log(20,&0)"" + K, /n .

Remark. The non-singular case was treated in [2], but the method used there for
finding the bounds must be modified for the case considered here, as will be seen
below. On the other hand, Theorem 4 in [3] guarantees only the existence of a con-
stant ¢, such that !log S,(e. v) — nq,(e)] < ¢,4/n, but yields no direct method for

its computing.
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LEMMATA

To show the validity of Theorem 1, we shall first prove two lemmas under the
assumption that we are given a real number & (0 < &' < 1), a probability vector
pin P, and a non-empty set o/ = . Let w® = (vi?)"! for we o, L(1) = tlog ™!
(0 <t =1),L0) =0,

Ly = max {L(1):0 <t <1} =c¢ 'loge,
K =K'(¢) = d(e’)y" />,
K = K(¢) = L, d*(5 V(d) + 2K’ + 4K'(1 + 2 J(d))'"?),
Ko(e') = K'Ly d(d + 1) (wg) /2|
Ky = Kofe") = (K' + 2(d)) Ly(d* + 1) (wg) /2,
iy = () = (1n) (log (&)™" + (K + K¢) v/n),
o = 2a(€ po) = (1/n) (log (&o)™* + (K + Kg)(po) ™' /n),
= 2e) = (tfn) (log (&) ™" + (K + Ko) Vn).-

If Nla,b|x,p)={itx;=a,y;=b0Zi<n), sfa | b) = (va [ b} (1 -
— v*[a | b]))"2, define for ae &, ye B,

Ii(yia,b) = {xe 4" [N(a, b|x,y) — N(b|y)v[a|b]| £ K s(a]|b)[N(b|»)},
RO = 0 s b), 10) = U RO).

i

I

Ko

Lemma 1. If x e I'Y(y) for y € F,(p) then

min 2,(p) — 7 < L(xy; v/u") < max 2,(p) + 7,
acd aesd )
Moreover, if v is non-singular, I(xy; v*ii”) + 2 > min Z,(p) .
aed

Proof. I. Given e s/, suppose that x e I';(y); then v/[x | y] 2 wh, o’[x] =
2 (powo)" because of (’[¥] Z (po)', and if v*[a | b] > 0and w*[a] > 0, respectively,
then

lN(u, b ] X, ¥) —n p(b) v’[a l b]l <
< V() (V(d)vla|b] + K'(v[a | b)),
IN(a | x) — nofx]| <

< /(n) d@2 J(d) (w[a])/* + K'(e[a])*'*)
where N(a | x) = Y {N(a, b | x, y}: be B}, K' = K'(1 + 2 /(d))"/? ; cf. [6], Chapter
2, and notice that s,(b) < 1. Similarly as in [6], loc. cit., we have

logi%’d—y] =3 N(a,b|x, y)logv[a|b] — YN(a|x)logw’a] $
o*[x] b a

S n2(p) + Ly d*(V(d) + 2K’ + 4 J(d) + 4K') /(n) .
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Thus it is proved under the above assumptions that
) ]I,,(xy; VipP) — Wu(p)l < K.n 03,

I1. Given o, B in &, suppose that x € I'y(y), and that /[ x | y] > 0; then v"[a [ 6] =
= 0 implies that N(a, b|x,y) =0 Let

A, ={aeA:v[a|b]>0,v"[a]|b] > 0},

V=Y N(a, b|x, )1 ogv[a‘b] for beB,,
acs fa|b]

where B, = {be B: N(b| y) > 0}. Since (cf. [2] (2.14))

L va] o] 1oe H’;%L T4, | 5]).

IN(a, b|x, y) — N(b | y)v[a|b]| < 3K’ J[N(b|y)] for be B,,
we obtain the inequality
< N(b| y) L(v[4,] b]) + 3K log(wo)™" . d V[N(b|»)]. beB,.

Case I: 1f, for all a in A, v*[a | b] = Oimplies that v*[a | 6] = 0, then v[4, | b] =
= 1, and
Vi < JIN(b| ¥)] K'dlog (wo)™ /> for beB,.

Case 2: Let v¥[a, | b] = 0 and v[a, | b] > 0, a,€ 4, b & B,; then
Na b 5.3) = 0> No | 3) vl | ] = KNG | ) va ] 6]
so that /[N(b | y)] < K'(wo)~ /. Thus in both cases
Vi < VIN(b | 9] (K"(wo)~""® Ly + K'd log (wo) Y/?) for beB,.

From here it follows that

) YV, =log Yg[im < J(n) K, .
Vx| y]

beB,

III. Given o, f in o7, suppose that x € I'}(y), and that w’[x] > 0; then &’[a] = 0
implies that N(a | x) = 0. Let

Ay ={aed:wa]l >0, oa] >0},

V, = log w:}x:][ =a§uN(a | x) log w:}EaEII .
Since |N(a | x) = n wa]] < YK’ + 2+/(d))d /(n), we find that
Vo < n L(@A4o]) + HK' + 2(d)) d* log (pyw,) ™",

because under the assumptions made, if @*[a] > 0 and w’[a] > 0, respectively,
then w[a] = pow,, ©’[a] = pow,-
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Case I:1f, for all a in 4, w’[a] = 0 implies that &*[a] = 0, then @*[4,] = 1, and
Vo < /(1) - XK' + 2/(d)) d* log (powo) ™" -
Case 2: Let @'[ag] = 0 and w[ao] > 0, ag € 4; then N(a, | x) = 0. Choose
b, in B such that
p(bo) v“[a0 | bo] >0
then

N(ag, by | x, ¥) = 0 > n p(bo) v[ag | o] — K"(n p(bo) v"[a | b])'"* —
— K([a | 6] N(bo | )"
where K" = 2 /(d). Thus /(n) < (K" + K") (po) " (wo) */? s0 that

Vo < v X2 (L r0 sw0).

Po /(o)
In both cases we obtain that
of[x] o1
(3) log —— < J/(n) K —.
o[x] Po

If v is non-singular, then @*[a] Z w, for &*[a] > 0, and w’[a] = w, for w’[a] > 0,
which yields (cf. Case 1) the incqualities

Ty
(4) log wH < V() (K" + 2 J(d)) @ log (wo)™V? < J(n) K} -
WX
IV. Let @* = {oc.o/: xeTi(y)}; by assumption, «* is non-empty. Write
L= L{xy;vou), I3 = L{xy; v7'w),
B={Bed: péa* V[x|y]>0}, # ={Bed:p¢L* o [x] >0},

r=max Z(p), r = ming(p),
acaf acs
o=(n)(r+ K¥n), o =(1/n)(r - Kyn),

V=i ( v e V—[‘L’Jy

sear Vx| v],
wu[x] -1
Vvi=3%¢ L) .
»EZ@/ ’ (Zd a)/’[x])
If o e o/* then, according to (1),
2" ox] < v[x1]y] < w[x] 2"
so that o’ < I} < o. Applying the inequality (2), we obtain
exp, (nl,) = exp, (nly) . (L+ V) (1 + V)™ < 291 + (1 — &) (&)~ exp (Ko /1))
so that I, < r + 2,. Analogously, making use of (3), we get I, > ' — . If v is non-
singular, then I, > r' — A, by (4). O
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Lemma 2. If 0 < ¢ < 1 — ¢ then

log (e, viu®) < n(mai( R(p) + M) +log(t — e — &)
if & < ¢ <1 then '
o 8206, %1%) > nmin .05) = 7 ) ~ og (e — ).
s
If v is non-singular, then it holds for &' < ¢ < 1 that
n( mi:; Ap) — 2:(&)) < log Si(e, vu?) + log (3(e — &)™)

The proof is the same as that of Lemma 2 in [2], performed by making use
of the preceding Lemma 1.

Theorem 2. Let K ,(8) = K(8) + Ko(8) + dloge, Ky(8) = K(5) + Ko(8). 0 <
< 8 < L. Then the maximum length of n-dimensional e-codes (0 < ¢ < 1) for the
composed channel v satisfies the inequalities

log S,(g, v) < n q,(e + 48) + log (26&0) ™" + /(1) K,(8)
for4d £1 — ¢, and
log S,(e, v) > n (e — 48) — log (26&,)™* — /(n) (po) " * K,(6)
for & = 4 and any p e P(e — 45). If v is non-singular, then
log S,(e,v) > n q,(e — 46) — log (26&0) ™" — (n) K,(8), e=4d.

Proof. Repeating the proof of Theorem 1 in [2] with the aid of the preceding

lemma, we obtain that
log S,(e,v) < nq(@) + nAe) +log(l —e.@ ' — &) ' +dlog(n+ 1)

fore<@=1,¢>06+¢.0"" <1 Since 1 ~¢.07"' —¢ 24O — &) for
¢ £ 30 — g),log(n + 1) < /(n) log e, the first inequality follows from the preced-
ing one by setting 6 = ¢ = 4(@ — ¢). Taking p in P(@') and using the second
inequality of Lemma 2 above in the proof of Theorem 2 in [2], we derive the ine-
quality
log S,(e, v) > n §(0') — n X&', po) — log (3(c — &)™)
for 0 £ 0@ <¢ 0<¢ <e— @. From here the second inequality given in the
theorem follows for 6 = &' = {(¢ — @"). The third inequality is verified analogously.
m}
Theorem 1 is a corollary to Theorem 2 for & = 5, because 7,(¢ — 45,) = q,(¢) =
= q,(¢ + 48,) fore ¢ 9,, K(3,) < K, K,(8,) < K, In verifying the latter inequalities
it is necessary to use the following relations: 6 < ,d = 2, L, < (%)%

(Received May 29, 1984.)
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