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K Y B E R N E T I K A — VOLUME 7 (1971), NUMBER 4 

On the Regularity Condition 
for Decomposable Communication Channels 

KAREL WINKELBAUER 

A detailed analysis of the condition of regularity as stated in [1] for the validity of the theorem 
on £-capacity of decomposable channel is given, and some of its modifications are considered. 
One of the purposes of this paper is also to show how the regularity condition of [1] may be 
weakened. 

Some facts used in Part I of [1] without explicit proofs are established in Lemmas I and II. 
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1. INTRODUCTION 

Throughout the entire paper let (s4', A) be a given measurable space, where A is 
a ff-algebra of subsets of s4. If Q is a probability measure on A, and if V is a (finite) 
random variable on the probability space (s/, A, £), then the lower and upper 9-
quantiles of V (with respect to £) are defined as the greatest lower bound (infimum) 
and the least upper bound (supremum) 

(IT) q(0, $;V) = i n f { r : £ { V ^ r} ^ 9}, 0<9^l, 

q'(9, f; V) = sup {r : £{V ^ r} ^ 1 - 9} , 0 S 9 <• 1 , 

respectively. 
Let us assume that we are given a family W = jjVz}zeR of finite real-valued func­

tions Wz defined on ' ^ / and measurable relative to A (with parameters z lying in 
a nonempty set R); if ^ is a probability measure on the basic space (si, A), then the 
lower and upper 9-quantiles of the family FF(with respect to £) will be defined as the 



supremal quantities 

(1.2) q*(0, 0 = suPz6R q(9, t,Wz), 0 < 9 5S 1 , 

a*(0, {) = suPz6R <2'(0, £;WM), 0^0 <l. 

The family W = {WZ},6R of random variables on the basic space is said to be regular 
(with respect to <jj) if the least upper bound Vof the family Wgiven by 

(1.3) V(a) = supzeR Wz(a), a e s4 , 

is a finite random variable on the basic space (i.e. measurable relative to A), satisfying 
the relation 

(1.4) q(9, c; V) = g*(0, £) for all 0 , 0 < 0 ^ 1 . 

The assumptions we shall make as to the family Win the sequel, will be as follows: 
for every z e R, W, is the random variable on the basic space defined by the equation 

(1.5) Wz(u) = /(vX) for aestf , 

where (1) {v"}aESSl is a measurable family of strongly stable ergodic channels (with 
a finite input alphabet B and a finite output alphabet A) such that (the duration of 
past history) 

m(vx) ^ m for all a e s4 

and for some integer m (cf. [1], Part I, Sec. l); (2) R = RB is the set of all regular 
points in the space B1; (3) \iz is the ergodic input associated with the regular point 
ze R (cf. (1.9) in [1]); (4) v> , is the measure defined on FAB for v = v", |t = /<. by the 
relation (1.15) given in [1], and l(vx/.ij) is the information rate of the measure v*fiz 

(cf.(1.12)in[l]). 
Let us point out that, under the assumptions made, the measurability of W. given 

by (1.5) was shown to hold in [ I ] , Part II, Sec. 5. Moreover, the least upper bound V 
associated with the family Wby (1.3) is exactly the capacity, viz. 

(1.6) V(a) = ^(v") for every a e i , 

so that V is a bounded nonnegative random variable on the basic space, as follows 
from relations (3.7), (1.22), (3.23), and (3.24), and from Sec. 5 of [1]. 

As in [1], the channel v associated with a given probability £, on the basic space by 
the definition 

(1.7) v = jVjc(a) 

(cf. (1.27) in [ l ]) is said to be decomposable into components v" (a e ,$/). The channel v 



is said to be regularly decomposable if the family W = {W.}zeR, where W. is defined 
by (1.5), is regular (with respect to c;). 

Remark. The assumption that miy*) <, m for a € stf may be replaced by the requirement that 
m(v") :£ m a.s. K] f o r u e ^ (cf. Sec. 5 in [1]). 

Now we shall state some theorems which yield various conditions, each equivalent 
to that of regularity, in terms of distribution functions; the proofs will be given in 
Section 4 below. In the statements of the theorems mentioned we shall make use of 
the following notations: 

(1.8) E is a distribution function of V, e.g. the d.f. given by 

F(t) = c{V < t} , t real 

(cf. (1.3) and (1.6) above); 

(1.9) F . is a distribution function of Wz(z e R) 

(cf. (1.5) above); by E* we shall designate the function defined by 

(1.10) E*(r) = inf2eR Fz(t), t real. 

It is easy to see that, under the assumptions made, E represents a distribution function, 
i.e. a monotonically increasing function such that E*( —co) = 0, E^+oo) = 1. 

Theorem 1. The channel v given by (1.7) is regularly decomposable if and only 
if the equality E*(r) = F(r) holds at every continuity point r of the distribution 
function F. 

In what follows we shall denote by D the set of all discontinuity points of the 
distribution function E, i.e. 

(1.11) D = {t : F(t + 0) - F(t - 0) > 0} . 

We shall say that the distribution function E is increasing at a point r from the left 
if F(t) < E(r — 0) for any t < r. The set of those real points r at which E is conti­
nuous and increasing from the left, will be denoted by S; it may easily be seen that 
the set S may be expressed in the form (cf. (1.1)) 

(1.12) S=*{r:r$D, F(r - 0) > 0, q(F(r - 0), {; V) = r} . 

On the other hand, the set of those real points at which E is both discontinuous and 
not increasing from the left, will be designated by D0; in symbols: 

(1.13) D0 = {r:reD, if F(r - 0) > 0 then q(F(r - 0), £;'V) < r} . 



Theorem 2. The channel v given by (1.7) is regularly decomposable if and only 
if there is a subset Q of the set S which is dense in S and such that the inequality 
E*(r - 0) :£ E(r - 0) holds for all r lying in Q or in D0. 

If r and t are any real numbers, and if 

C(r, t): either there is z e R such that E2(t + 0) < F(r - 0), or 

£,{WZ S t, V< r] ^ F(r - 0) for all z e R , 

then we shall say that condition C(r, r) is valid for the r and t. 

Theorem 3. The channel v given by (1.7) is regularly decomposable if and only 
if (I) the inequality F*(r — 0) ^ F(r — 0) holds for every re D0, and (2) there is 
a subset Q of the set S which is dense in S and such that condition C(r, t) is valid 
for every r e Q and for any real t. 

It is easy to verify that by using the notations given above the regularity condition 
of [1] (cf. Sec. 1, Part I, and also (3.7) in [ l]) may be restated as follows: both (the 
given measure) £ and the channel v associated with £ by (1.7) are called regular if (l) 
the inequality E*(r - 0) — F(r - 0) holds for every r e D0, and (2) there is a count­
able subset Q of the set S which is dense in S and such that condition C(r, t) is valid 
for every /* e Q u (D — D0) and for any real t. Consequently, we may state the 
following corollary to Theorem 3 showing that the condition of regular decomposabi-
lity and that of regularity coincide. 

Corollary. A necessary and sufficient condition for the channel v given by (1.7) 
to be regularly decomposable is that it be regular. 

Let us remark that the assertion of Lemma 2.2 stated in [1], Part I, is equivalent 
to the regular decomposability of the channel v, as follows from Lemma 3.7 proved 
in Section 3 below and from the equalities 

(1.14) c(9, v) =q(6,^;V), 0<9^l, 

c'(6, v) = q'(0, £;V), 0 ^ 0 < 1 , 

c*(0, v) = q*(e, c), o < e s i , 

c*(0, v) = q*(9, £) , o s o < i ; 

the latter relations may be obtained by an immediate confrontation of the definitions 
given here and those given in [1] (cf. (1.28), (1.24), (2.5), (2.2), (3.26), (3A9), and 
(5.8) in [1]); this means that the channel v defined by (1.7) is regularly decomposable 
if and only if c*(9, v) = c(9, v) for 0 < 9 ^ 1. 



318 It follows from the equivalence mentioned in the preceding paragraph that the 
Corollary implies Lemma 2.2 of [1], and that the proof of Theorem 3 given in Section 
4 below yields another method how to show the validity of the assertion of Lemma 
2.2. Moreover, the conditions of regular decomposability stated in Theorem 3 also 
show that the regularity condition of [ l ] may be weakened. 

Let us define for a probability measure £ on the basic space and for a real number r 
such that 

(1.15) r > rmin = ess. inf {V(a) : a e */[£]} 

the probability measure c(r) by the relation 

( U 6 ) ^ ) = ( i ^ * ^ , M E * ; 
<;{« : V(a) < r} 

it is evident that the assumption that r is greater than the essential infimum guarantees 
the positivity of £{V <r}. The original proof of Lemma 2.2 in [ l ] is based upon the 
fact (used in [ l ] without an explicit proof) stated in the following lemma (which 
will be proved in Section 4 below): 

Lemma I. If £ is regular, and if r belongs to S or to D — D0, then (cf. (1.7)) 

lim c*(0, v(r)) = lim c*(0 . y, v), 
6>->l <9->l 

where y = t{V < r}, and v(r) = JVd£(r)(a), provided that c* (0, v) is continuous 
at 9 = y. 

Let us associate with a probability measure £ on the basic space and with any real 
number 

(1.17) r < rmax = ess. sup (V(a) : a e s/[£]} 

the measure £[r] by the definition 

( U 8 ) tfMnf.:^^ M&A. 
£{a : V(a) ^ r} 

evidently, assumption (1.17) guarantees that £{V ;> r} is positive. 
If the channel v[r] is defined by 

(1.19) v[r] = |W r ] (a) , 

and if 

A(r): there is a countable subset Er of the open interval (0, 1) such that 

c(s, v[r]) = c(e, v[r]) = c(e, v[r]) for all £ $ Er(0 < e < l ) , 



we shall say that assumption A(r) is valid for the r. If assumption A(r) is valid for 
every real r < rmax, we shall say that all subchannels of the decomposable channel v 
(given by (1.7)) possess quantilized E-capacity (the notations used in the statement 
of the condition A(r) are taken from [ l ] ; cf. (2.1) loc. cit. and (1.14) above). 

Making use of the Corollary, we may restate the main theorem of [ l ] , viz. the 
theorem on the existence of e-capacity, in terms of regular decomposability: 

Theorem on e-capacity. All subchannels of a decomposable channel v possess 
quantilized E-capacity if and only if the channel v is regularly decomposable. 

Theorems 1 — 3 enable various modifications in the statement of the latter theorem. 
In the proof of Theorem on e-capacity as given in Part I of [1] use was made of the 

following facts (not explicitly proved there) stated in 

Lemma II. / / £ is regular, or if all subchannels of the channel v associated with c, 
by (1.7) possess quantilized E-capacity, then the equalities 

c(9, v[r]) =c(l-y + 9.y, v) , 

c*(0, vw) = c*(l -y + 6.y,v), y = £{V ^ r} (0 < 9 < 1), 

hold for all r < rmax. 

Remark. Lemma II implies that the channel v is regular (or, equivalently, regularly decom­
posable) if and only if all subchannels v[rl are regular(ly decomposable); the sufficiency of the 
latter condition trivially follows from the relation v [ r ] = v for r g rmin. 

Theorem 5 in [ l ] shows that there are regularly decomposable channels. On the 
other hand, Example 1 in Section 6 of [2] shows that there are decomposable channels 
which are not regular. 

2. QUANTILES 

First we shall state some elementary properties of quantiles which are needed in 
the subsequent analysis of the problem of regularity. 

If c, is a probability measure on the basic space (stf, A), let us assume that A is 
a given measurable set in the space jaf, i.e. A e A, such that y = £,(A) > 0. Then if the 
measure | is defined on the basic space by 

(2.1) l(M) = y~H(M r\A) for Me A, 

the following inequalities are valid for quantiles with respect to c, of a random 
variable V: 

(2.2) q(9, ?; V) = q(9 .y,$;V) for 0 < 0 = 1 , 

q'(9,1; V) < q'(l - y + 6 . y, <*; V) for 0 < 9 < 1 . 



Proof. Since according to (2.1) 

q(9,1; V) = inf {t : £({V = t) n A) = 0 . y] , 

the inequality £{V ^ t] 3; £({V = t] n A) together with the definition (1.1) imply 
the first inequality in (2.2). The proof of the second is dual: because of the relation 

q'(0,1; V) = sup {. : £({V = t} n A) ^ (1 - 0) y} 

a similar reasoning yields the inequality 

q'(l - (1 - 0) y, {; V) = q'(6, t V), 
Q.E.D. 

Throughout the remainder of this section we shall assume that we are given 
a (finite) random variable Von the basic space; the lower and upper 0-quantiles with 
respect to a probability measure { of the random variable V will be designated in 
a simpler way by q(9, £), q'(6, £). 

If ^ is the measure associated with a probability £, by (1.18) for some r < rmax 

(cf. (1.17)), i.e. £[r] = | associated with A = {a : V(a) = r} by (2.1), then the relations 
(2.2) may be improved because the quantiles taken with respect to £tr] may be expressed 
by those taken with respect to £, directly, viz. 

(2.3) q(d, £[r]) = q(\ - y + 9 :y, £) , 0 < 0 < 1 , 

q'(0, £[r]) = q'(\ - y + 6.y,c), 0 = 9 < 1 , 

where y = £{V = r}. The same is true for the measure C(r) associated with £ by (1.16), 
provided that r > rmin (cf. (1.15); i.e. £(r) = f associated with A = {a : V(a) < r} 
by (2.1)), viz. 

(2.4) q(9, c_(r)) = q(0 . y, £) , 0 < 0 ^ 1 , 

g'(/j f w ) = q'(9 .y,t), 0 < 0 < 1 , 

where y = c{V < '"}. 

Proof. Relations (2.3) and (2.4) are immediate consequences of the equalities 

q(9, £w) = inf {t : £{V = t} = £{V < r} + 9 . y} , 

q'(9,e]) = sup{t:£{V=t} = (l-9)y}, 

and dual for £(r). 
In the rest of this section a measure £ on A is supposed to be kept fixed so that 

the 0-quantiles may be briefly denoted as q(9), q'(9). Making use of the notation (1.8), 
we may express the quantiles by means of the distribution function F in the form 

(2.5) q(9) = sup {r : F(r) < 9} , 0 < 0 < 1 , 

q'(9) = inf {r : F(r) > 9} , 0 ^ 0 < 1 . 



Lemma 2.1. The quantises q, q' are monotonically increasing functions, and 
q(6) < q'(9) for 0 < 9 < 1; q is continuous from the left (also at 0 = 1), and q' 
is continuous from the right (also at 0 = 0), and 

q(Q + 0) = q'(0) for 0 < 1 , q'(6 - 0) = a(0) for 0 > 0 ; 

the equality q(9) = q'(0) holds if and only if q is continuous at 6, or, equivalently, 
if q' is continuous at 9. 

The elementary proof of the preceding lemma coincides with that of Lemma 3.3 
given in [ l ] , Part II, and makes use of (2.5). 

Let us point out that for the sets D and S defined by (1.11) and (1.12), respectively, 
we easily obtain that 

(2.6) if reD then q(F(r - 0) + 0) = r , and 

(2.7) if reS then q(F(r) + 0) = q(F(r)) = r . 

Lemma 2.2. If r e S or r e D - D0 then there is a sequence r„ (n = 1,2,...) 
strictly increasing to r and such that either (i) r„e D0 for all n (cf. (1.13)), or (2) 
r„ e S for all n. 

Proof. Assume that there is an r' < r such that the open interval (r', r) does not 
contain any point from S. The supposition that (r', r) does not contain any point 
from D leads to a contradiction: this enables us to construct a sequence having 
property (l) of the lemma. Otherwise, we may easily construct a sequence with 
property (2) which proves the lemma. 

We shall say that the distribution function F is increasing at a point r to the right 
if F(t) > F(r + 0) for any t > r. The set of those real points at which F is increasing 
to the right, will be denoted by S'; it is easy to find that the set S' may be expressed 
in the form 

(2.8) S' = {r : F(r + 0) < 1, q'(F(r + 0)) = r} . 

We shall make use of the preceding lemmas in the proofs of the propositions stated 
in the next section. 

3. REGULAR FAMILIES 

Throughout this section we shall assume that we are given a family W— {WZ}ZER 

of random variables on the basic space (R nonempty). If £ is a probability measure 
on the basic space, and if the measure f is associated with £, by the definition (2.1), 
where y = %(A) > 0, A e A, then the relations (2.2) applied to Wz together with 



definitions (1.2) imply that 

(3.1) q*(6,1) >= q*(0 .y,£) for 0 < 9 = 1 , 

q*(0, | ) ^ a*(l - 7 + 0 . 7, <f) for 0 < 0 < 1 . 

In the following lemmas £[r] is the measure associated with a probability £ by 
(1.18) for r < rmax (cf. (1.17)), provided Vis defined by (1.3), measurable relative to A, 
and finite. 

Lemma 3.1. / / q*(6, £[r]) > r or <?*(1 - y + 0 . y, £) > r, where y = £{V > r} 
then 

q*(0, £[r]) = q*({ - y + B.y,E) (0 ^ (9 < 1). 

Proof. Assume that on the contrary the latter equality does not hold for some 9 
satisfying the assumptions. Then it follows from (3.1) and from the assumptions of 
the lemma that 

q*(9, £[r]) < t < q*(l -y + 6.y,£) 

for some t > r. The latter inequalities imply that there is some ze R such that 

i{Wz ^t}^(l-9)y and £{WZ = t, V ^ r} < (1 - 9) y 

which contradicts the set inclusions 

{Wz ^ t} c {V ^ t} c {V £ r} . 

Lemma 3.2. If the family Wis regular with respect to £, then 

q*(9, £[r]) = q*({ -y + 0 . y, £) for all 9 , 0 < 9 < 1 , 

where y = %{V>. r}. 

Proof. If r ^ rmin(cf. (1.15)) then £[r] = £,, y = 1 so that the assertion of the lemma 
holds. Let r > rmin. If r £ D (cf. (1.11) then if r e S', 

q*(l - y + 0 . y, £) ^ qt(l - y + 9 . y, t) = q(l - y + 9 .y, £) > 

> «'(- - 7, £) = <Z'(T(r), 0 = r for 0 < 9 < 1 , 

and if r $ S', q'(l — y,£) > r, as follows from Lemma 3.5 given below, and from 
(1.4), Lemma 2.1, and (2.5); consequently, Lemma 3.1 maybe applied which shows 
that the assertion ofthe.lemma holds in the case considered. 

Let us assume now that r e D. If 9 is such that q*(l — y + 9 . y, £) > r, then the 
assertion follows from Lemma 3.1. Suppose that the latter inequality does not hold; 
then 

q*(\ -y + 9.y,£) = a*(l - y + 9 . y, £) = r . 



On the other hand, there is a sequence rn (n = 1, 2,. . .) increasing to r and such that 
r. i D. Since the assertion of the lemma holds for all rn, as shown above, we have 
by Lemma 3.5, and by (3.1) applied to c w with respect to <_[r"] that, for 0 < 0' < 0, 

q*(\ -yn + 0'/3„ . yn, c) = „*(0'/?„. <_[r"]) _S 

_ q*(ep„, e-') _ _„(0, cM) _ «*(0, c w ) , 

where y„ — <_ {V __ r„}, /?„ = y/yn. From here and from (3.1) we obtain for n -» oo 
and 0' -» 0 the inequalities 

g,(l - y + 0 . y, _) _g q*(0, <_[r]) __ _*(l - y + 0 . y, c) 

(cf. Lemma 3.5) which together with the above equality yields the desired result, 
Q.E.D. 

In the subsequent lemmas <_(r) is the measure associated with a probability measure _ 
by (1.16) for r > rmin (cf. (1.15)), where V is supposed to be a random variable 
satisfying relation (1.3). 

Lemma 3.3. Given r, condition C(r, t) [cf. Section 1] is valid for the r and for all 
real t if and only if the equality 

?*(!,£(„) = «*(y,f) 
holds with y = <_{V < r}. 

Proof. Since E(r - 0) = y (cf. (1.8)), the inequality Fz(t + 0) __ E(r - 0) is 
equivalent to the relation q(y, <_; Wz) _g ? (cf. (1.9)), and the inequality 

i{Wz __ r, V < r} __ F(r - 0) 

is equivalent to the relation <_(1, <_(p); 1V_) ^ f. From the latter equivalences we 
conclude that condition C(r, t) is equivalent to the implication: 

if qJy,Q$t then _,(1, . ( r )) __ f; 

this together with (3.1) yields the desired equality, and conversely. 

Lemma 3.4. / / Q is a subset of S (cf. (1-12)) which is dense in S, and if the equality 

«*(1, £<„) = «*()>, fi) with y = F(r - 0) 

(cf. (1.8)) holds for every r in Q, then it holds for every r in S such that q* (6, <_) is 
continuous at F(r — 0) = y. 

Proof. If r 6 S — Q then there is either (l) a sequence rne Q (n = 1, 2, ...) in­
creasing to r, or (2) a sequence sne Q (n = 1, 2, . . .) decreasing to r. In the first 
case an immediate application of the first inequality in (3.1) for <.(.n) with respect 



to c(r) will yield (together with the above equality valid for r„) the relation qj\, £(r)) g 
= q*(y, £) which compared with (3.1) guarantees the validity of the desired equality 
for r (cf. the proof of Lemma 3.2 where such an approximation method is described 
in some detail). The second case is treated similarly by using the second inequality 
in (3.1) for £(r) with respect to £{Sn) which gives the inequality 

tj„(l, £(f)) S qjy + 0, £) . 

However, continuity assumption implies the validity of the equality qjj + 0, %) = 
= q*(y, i) which compared with (3.1) again proves the desired relation, Q.E.D. 

In the remainder of this section we shall keep £ fixed, and denote the quantiles of 
the given family Wsimply by q*(0), q*(0). 

Lemma 3.5. The quantiles q*, q* are monotonically increasing functions satis­
fying the inequality q*(9) ^ q*(9) for 0 < 9 < 1; q is continuous from the left at 
every 9 (0 < 0 g 1), and 

q*(9 - 0) = qj0) for 0 < 0 < I ; 

9 is a discontinuity point of q* if and only if it is a discontinuity point of q*; if 9 
is a point of continuity of q* (and of q*, respectively), then the equality q*(0) = 
= q*(8) holds. 

The lemma represents a more general formulation of Lemma 3.5 proved in [1], 
Part II. 

As above we shall assume that V given by (1.3) is a (finite) random variable with 
a distribution function F. It follows from the definition (1.10) of the (distribution) 
function F* that 

(3.2) F»(. + 0) £ F(t + 0) , t real 

because of the set inclusion {Wz :g t] => (V S t}- An analogous fact for quantiles is 
established in the following 

Lemma 3.6. The quantiles satisfy relations 

q*(0) = q(9) for 0 < 0 < 1 , q*(9) g q'(9) for 0 g 9 < 1 . 

Proof. According to (1.3), 

£{WZ £ r} ^ §{V< r} = 9 

for r = q(0), and for every z e R. The latter inequality immediately implies that 
q*(0) ^ r which yields the first inequality. The proof of the second is dual. 

Let us remark that Lemma 3.6 together with Lemma 3.5 guarantee the validity of 
the assertion stated in Lemma 2.1 given in Part I of [1]. The subsequent lemma shows 
that the assertion of Lemma 2.2 as stated in [1] is equivalent to (1.4). 



Lemma 3.7. The family Wis regular if and only ifq*(9) = q(0) except a countable 325 
set of 0's. 

Proof. The lemma is an immediate consequence of condition (1.4) and Lemma 3.5. 

Lemma 3.8. Given a real number r such that reD or F(r - 0) < 1 (cf. ( l . l l ) , 
(1.12)), then E*(r - 0) <. F(r - 0) if and only if 

q,(F(r - 0) + 0) = r . 

Proof. The relation E*(r — 0) _ F(r — 0) holds if and only if, for every 9 > 
> F(r — 0) and for every t > r, there is some z e R such that Fz(t) <, 9; the latter 
condition is equivalent to the inequality q*(F(r — 0) + 0) 2> r; the lemma is valid. 

Proposition 1. The family W is regular if and only if the equality E*(r) = F(r) 
holds at every continuity point r of the distribution function F. 

Proposition 2. The family W is regular if and only if there is a subset Q of S 
(cf. (1.12)) dense in S and such that the inequality F*(r - 0) <, F(r - 0) holds for 
allr^Qyj D0 (cf. (1.13)). 

Proof. I. Let us make the assumption that Wis regular. We shall show that then 

F*(r + 0)< F(r + 0) 

for all r, r real. Assume that the contrary would be true, i.e. F(r + 0) > F*(r + 0) = 
= 9. From the relations 

Q{WZ <, r) = Fz(r + 0) ^ E*(r + 0) = 9 

and from definition (1.2) we conclude that q*(9) <, r; hence, according to (1.4), 
q(9) = q*(0) <: r. On the other hand, £{V <, r} = F(r + 0) > 9 implies that 
q(9) > r which yields the desired contradiction. 

By using (3.2) we obtain that the equality F*(r + 0) = F(r + 0) holds for all r 
which implies both the assertions stated in Proposition 1 and 2. 

II. Assume that F*(r - 0) = F(r - 0) for all reQu D0, where Q _ S dense 
in S. We shall prove that then the latter inequality must remain valid for all r e S u D. 
This may easily be done by approximating from the left an r e (S u D — D0) not 
lying in Q according to Lemma 2.2, making use, if necessary, of the density of Q in S. 
Then applying again Lemma 3.8 together with Lemma 3.6 we find that 

q*(F(r - 0) + 0) = q(F(r - 0) + 0) for all re(SnS')uD, i.e. 

qt(B + 0) = q(9 + 0) for all 9, 0 < 9 < 1 , 



except a countable set of 0' s. From here and from Lemma 2.1 and Lemma 3.5 
it immediately follows that the regularity condition (1.4) must be valid; hence the 
family W is regular. This proves Proposition 2. 

Since the condition stated in Proposition 1 guarantees the validity of that given 
in Proposition 2, the latter considerations enable to conclude the validity of Proposi­
tion 1, Q.E.D. 

4. EQUIVALENCE OF REGULARITY CONDITIONS 

We shall start with two lemmas which establish the only facts that are needed in 
addition to those of the preceding section in proving the theorems and lemmas 
stated in Sec. 1 under the assumptions (1.5). 

Lemma 4.1. If condition C(r, r) is valid for every real t and for some reSu 
u (D - D0), then F*(r - 0) ^ F(r - 0). 

The lemma follows from Lemma 3.3 given above and from Theorem 4 stated in [1] 
by the method used in the proof of Lemma 2.2 given in [ l ] . 

Lemma 4.2. If condition A(r) is valid for some r, r < rmax, then q*{9, vlr^) 2; r 
forO < 0 < 1. 

The proof is based upon Theorem 2 of [ l ] applied to v[r]. 

P r o o f o f T h e o r e m 1. The theorem coincides with Proposition 1. 

P roof of T h e o r e m 2. The theorem is a version of Proposition 2. 

P roof of Theo rem 3. It follows from Lemma 4.1 and Theorem 2. 

P roof of Lemma I. According to (1-14) and (1.16) the lemma coincides with 
Lemma 3.4 for the case considered. Let us mention that the assertion of Lemma I 
may be shown to be valid for any real r lying both in S and in D — D0 by making 
use of the Corollary to Theorem 3 and of Theorem 4 of [1]. 

P roof of L e m m a II. The assertion of the lemma follows from (1.14), (2.3), 
Lemma 4.2, and Lemma 3.2 together with Lemma 3.1. 

(Received March 10, 1971.) 
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K podmínce regularity pro rozložitelné sdělovací kanály 

K A R E L W I N K E L B A U E R 

Hlavním cílem práce je oslabit formulaci podmínky regularity, jež se ukázala 

v práci [1] jako nutná a postačující k platnosti věty o existenci e-kapacity. Za tím 

účelem je provedena potřebná analýza této podmínky, přičemž jsou dokazovány 

některé vztahy, jichž bylo použito v práci [1] bez podrobnějšího důkazu. 
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