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K Y B E R N E T I K A Č Í S L O 5, R O Č N Í K 2/1966 

Information Transmission in the Case 
of Coding by Finite Automata 
JAN CERNY 

Coding and decoding by finite automata non preserving the length of input words is discussed. 
A possible characteristic for transmission quality expressing and its estimation is presented. 

1. INTRODUCTION 

In this paper we shall consider a well-known transmission model: information 
source —coder —channel —decoder, supposing that both the coder and the decoder 
are finite automata. Naturally, we shall suppose, that our automata will be of the 
general type, which will not preserve the length of the input words. Then there are 
some difficulties in estimating the transmission quality which would not occur in 
the case of coding by n-tuples. 

The first question we have to answer is thit: what changes of source properties 
will occur after encoding it by means of the automaton? 

The secon question is connected with the circumstance, that neither in encoding 
nor in decoding the length of the transmissed word is necessarily preserved. How, 
then, can we define the error frequency? (There is no strict correspondence between 
time indexes of the input and output words. For instance, the word "coding" can 
be transmitted as "co5ng" and we have a problem whether the error frequency 1/3 
or 2/3 or another value is the most suitable.) 

The third and it seems the most serious question is, what the comparison of the 
emitted and received message can tell about an "average" error frequency in our 
transmitting model. 

This paper will try to answer the questions stated above. From now the following 
designations will be used: 

N — the set of all natural numbers, 

/ — the set of all integers, 



X" — the Cartesian product X X for HEJV and a finite non empty set X. The 
i = l 

set X will be called the alphabet and its elements the the letters; 

X1 — the set of all sequences (...,x_l,x0,xu ...) where xf e X, i el.The elements 

of X1 will be called the messages. 

X — c-algebra of all subsets of X, 

£,n,C — letters from Greek alphabet will designate messages containing letters 
which will be designated by corresponding Latin letters, e.g. c = 
= (..., x_ , , x 0 , ...),n = (...,y-x, y0, •••); 

* — end of a proof; 

{a, b,..., c} — a set of elements a, b,..., c; 

{x € X: V(x)} — a set of such x e X that the statement V(x) is valid. 

A probability space (Y1, Y1, fi) will be called a source (Yis assumed to be a finite 
and nonempty set — an alphabet of the source). Y1 is the c-algebra, generated by 
a system of elementary cylinders on Y1. The set E c Y1 is called the elementary 
cylinder, if there exist integers ."., ..., in and a n-tuple(yh, ..., j>fJthat the following 
assertion is valid: 

rjeEoyik = yik, k = 1, ..., n . 

Then we shall say that E is determined by (ytl,..., yin). If there is a danger of misun­
derstanding, we add in the places it, ..., j™. The sets from Yzare called measurable. 
A finite sum of elementary cylinders is called a finite-dimensional cylinder. 

The set G(Y) = f) Y" u {A} is a set of words in the alphabet Y The word A is 
» = i 

called the empty word (the word without letters). If the letters are subscripted then 
we put (yk,..., ym) = A for k > m. 

Let us define a multiplication on G(Y) with following properties; 

1. For every u e G(Y) Au = uA = u. 

2. If u = (>'i, ..., y„) e G(Y), v = (yu ..., ym) e G(Y), then 
uv = (y!,..., y„, yu ...,ym). 

Evidently, the multiplication is associative. 
If M e Y", then we shall put h(u) = n and call this value the length of the word u. 

For A we shall put h(A) = 0. If there is no danger of misunderstanding, we shall use 
the symbol h also to denote the number of elements in a finite set. 

Let at = (y['\ ..., ytg) e G(Y), n, __ 0, i e I and let k < 0, I __ 0 k~ e / , I e /. 
For J? e YJ we shall write 



i. n ai = C^, • • •> yi)if a n d o n ! y i f 

(7o,->^) = (3'(1
0)>->^,>->^,...,^?) 

- l 

2. Y\ ai = (yB ..., y-x) if and only if 

\yl...,y-1) = (y[k\...,yik
k\...,y[-l\..,yi:t)) 

i 

3. f j a, = (j^, ..., y7) if and only if 
i = k 

- 1 ! 

(>>E,..., y-x) = n«;> (y0, •••, J;Z) = n ^ ; 
i = k ; = o 

The symbol J\ at will denote such a subset of Y1, for which following conditions 
lei 

are valid: 

f? e FT a ; if and only if for every kel, lei, k ^ — 1, / 2; 0 there exist He I, 
ie/ 

.7 e / such that 
- l i 

(yB . . . , y - x ) = Y\ai, (y0,...,yt) = f l a , . 
i = k i = 0 

It is evident, that if £ h(a) = oo, Y, n(a-i) = °°> t n e n TJ a ; is a one-point set. 
; = o ;=i iei 

If both series have a finite sum, then F] a,- is an elementary cylinder. 
iel 

Hence we shall use the symbol n only in relations between sequences of words 
infinite in both directions and messages, resp. their finite parts. The symbol n implies 
not only the identity of letters, but also a synchronism between indexes. 

Let Ybe an alphabet and let us define a coordinate-shift transformation Ton Y': 

If ^ e YJ, then Tf/ = fj if and only if yt = yi+l for all i e I. 

The inverse transformation to Twill be denoted T_1. If QeX1, ^e Y1, then we 
put T(£, -.) = (U, Tn). 

If E c Y1, then we write 

TE = (>7 e Yl: there exist fj e E, T^ = n} . 

If TE = E we say that E is an invariant set. The properties of the transformation T 
are described e.g. in [1], chap. X. 

If the source (Y1, Y1, LI) fulfils the condition that for every EeY1 n(E) = LI(TE), 
we call it stationary. Then we also say that the measure LI is stationary. 

If LI(E) is either 0 or 1 for every measurable invariant set E, then we call the source 
(the measure) indecomposable. If the source (the measure) is stationary and inde­
composable, then we say that it is ergodic. 



The triple (Y1, v, Z') will be called the channel, if Y Z are finite non-empty sets 
(input and output alphabets) and Y', Z' will be, as usual, the ff-algebras generated 
by the systems of the elementary cylinders in Y', resp. Z'. Further, if v is a function 
defined on Y' x Z' (the value of this function will be denoted v(E\n) for every E e Z', 
t\ e Y') and, finally, if 

1. for every E e Z', v(E/.) is a measurable function on Y', 
2. for every n e Y1, v(./?/) is a probability measure on Z', 
3. for every finite-dimensional cylinder E e Z1 determined by the conditions for 

i-th,...,./-th coordinate, the value v(E/»y) does not depend on yj+1, yJ + 2, ... for 
every ^ e Y'. 

The channel (Y1, v, Z') is said to be stationary, if v(E/^) = v(TEJT^ for every 
EeZ',ne Yt. 

The channel (Y', v, Z') is a channel with finite memory, if there exist meN such 
that: 

1. for every finite-dimensional cylinder E £ Z', determined by the conditions for 
the i-th, . . . , j-th coordinate and for every ^ e Y' the value v(Efa) depends only on 

yi-m,yi-m+i, •••,yJ; 

2. for every finite-dimensional cylinders E, F e Z' determined by the conditions 
for the i-th, ...,j-th, resp. k-th, ..., /-th coordinate, where / + m < k and for every 
i1 e Y' 

v(E n Ffo) = v(E\n) (v(FJn) . 

The least integer m, which fulfils the conditions 1 and 2 will be called the memory 
of the channel. 

2. FINITE AUTOMATA 

Definition 2.1. The quintuple 3f = (X, Y,Z,g,f) is called a finite automaton, 
if X, Y Z are non-empty finite sets (the set of states, of input signals and of output 
signals), g is a mapping from X x Y into X and / is a mapping from X x Yinto the 
set G(Y). 

From now we shall write 

g(x, A) = x, g(X, A) = X , 

g(x,yi,...,yk) = g(...(g(x,yi),y2),...,yk), 

g(X,yu ...,yk) = {xeX: there exist x0 eX, g(x0, yu ..., yk) = x] . 

Definition 2.2. Let F = (X, Y Z, g,f) be a finite automaton. Let (yk,..., y,) e 
e y l _ , ' + 1. Then a word (xfc, .., x,)€ X , _ * + I is called corresponding to (y^, •••,y1) 
and we write (y t , . . . , y;) ~ (xk,..., x,)if g(xt, j , ) = xi+1 for every i = k, k + 1, ••-, I-



In the same way we introduce 

(j>*> J>*+i,---)) ~ {xk,xk+1, ...)og(x„yi) = xi+1, i = fc , 

(..., >>_i,>-o, yL, ...) ~ (..., x_! ,x 0 , x l5 .:.)<*• g(x„ yt) = x i + 1 , i e / . 

Let ri e Yf, ^ e l U e Zf, fc < /, (>>t, ..., yt) ~ (xk, ..., x,). Then we say that 
(z-, ..., z7) corresponding to [ (^ , ..., >>,), (xfc, ..., x,)] and we write (yk, ..., y,) ~ 
~ (xk, ...,X,) ~ (zE, ..., z,) 

I 

(i) in the case of fc rg 0, / = - 1 if (zh ..., z,) = ] l / ( x » J'.') > 
i = k 

(ii) in the case of k > 0 if z0, ..., z,) = IIf(*i> J'<) > 
; = o 

(z0J...,zJ.1) = n / ( x , j , ) , " 
i + 0 

- 1 

(iii) in the case of / < — 1 if (zk,.,.., z_,) = n / ( x » J7.) > 
i = fc 

(z ,+ 1 , . . . ,z_1)= r i / ( x ^ , ) . 
i = ) + 1 

Always we shall write A ~ A ~ A. 
Let >? e Yf, ^ e X ! , C e Zf, »; ~ £. Then we say that £. is corresponding to (£, ?/) 

and we write / y ~ < f ~ C o r C = </>(£, l) , iff {£} = f j f(x,, _y;). 
iei 

In the following lemmas we suppose that a finite automaton ST = (X, Y, Z, g,f), 
which has m elements in a set X, is given. 

Lemma 2.1. For every (yk, ..., yt)e Yl~k+i, resp. (yk, yk+l, ...)eYN there exist 
exactly m different (xk, ..., x(), resp. (xk, xk+l, ...), x-t eX, such that (yk, .... y() ~ 
~ (xk, ..., x,), resp. (yk,yk + 1, ...) ~ (xk, xk+1, ...). 

Proof. The assertion that there exist at least m different (xk, ...) is evidently valid, 
because we can consider xk to be an arbitrary element of X. It is also clear that the 
number cannot be greater, because (yk, ...) and xk uniquely determine (xk, ...). 

Lemma 2.2. To every n e Yl there exist at least one and at most m different 
4 eXF, such that n ~ £. 

Proof. 1. We shall show the existence of one £. Let us suppose, on the contrary, 
that for a certain rjeY1 there does not exist ^ e l ' , ( | - ( . Let us denote the elements 
of the set X X'Q1', ..., x0

m) and let them be placed in the 0-th places of m different 
sequences (x0\ x['\ . . . ) / ' = 1, ..., m. Let, moreover, 

(y0,yt,...)~(x0
i\4\...), / = 1 m . 



Now, let k < 0, 0 <c i £ m. The all (xk, xk+1,...) fulfilling the conditions x}eX 
for every ./' ^ k, Xj = x(.° for every ;' = 0 , 1 , . . . and (yk, yk+t,...) ~ (xk, xk+1, ...),. 
we shall call the extension of (x(

0
;), ...) to the left until k. All the extensions are finite. 

According to our supposition no infinite extension of (x0°, ...) exists. 
There are two possibilities: 

a) For every /', the extensions are bounded. Let us denote kt the subscript until 
which the longest extension of (x0°, ...) can be made and k0 = min kv Let x e X 

i = l m 

be arbitrary. The sequence {g(x, >'fco-2> •••> yi)}T=k0-2 is evidently the extension of 
some (x0°,.. .) till k0 — 1, which is in contradiction with the definition of k0. 

b) Let (x(
0°, ...) possess unbounded extensions to the left. Let us consider all 

extensions of the sequence until —1. One of them must also posses unbounded ex­
tensions to the left. Let us denote the extension (x(l\, x0

l), . . . ) . By repeating these 
considerations we find (x(_°2, x

(l\, x(
0
!), ...) and by the induction we can define the 

extension (..., x(l\, x(
0

l),...), the existence of which is in contradiction with our 
former supposition. This concludes the proof of existence at least one ^eX1^ ~ c,. 

2. Now we shall show that their number cannot extend m. Let us suppose, on the 
cotrary, that ;? ~ £<0, i = 1, ..., m + 1, £(i) 4= £(ft), i ¥= k. Let us denote Mik the 
set of the all indexes j , such that x(.° # xj!0 (i # k, i^ m+ 1, k- m + 1). The 
number of the sets Mik is finite and all of them are non-empty. Therefore, some 
lei must exist, such that Mjk n {1,1 + 1, ...} # 0 for every i # k, i<, m + 1, 
fe g m + 1. 

But that implies that (x\l), x\+1,...), i = 1, . . . , m + 1 are mutually different, 
what is in the contradiction with the assertion of the lemma 2.L* 

Lemma 2.3. Let Y be the set of such ^eYI that there exist exactly i different 
i eXl, corresponding to it. Then {Y;}?=i is the partition of the set Y1 into invariant 
components. 

Proof. According to lemma 2.2 the first part of the assertion is evident and we 
need to prove only that every Y; is invariant. Let £(j), j = 1, ..., i be mutually 
different mesages from X1: It is clear that 

17 ~ £(;) oTn~ nu) 

and, therefore T^eYio^& Y;.* 

Lemma 2.4. Let Y, i = 1, . . . , m be the sets defined by the lemma 2.3. Then 
Yf e Y1 for every i = 1, . . . , m. 

Proof. Let kel, I = J, k < J, i = 1 , . . . , m . Let us denote 

Mi'i = {'7 e y I ; #(^> JA= • • -, yt) contains at least i elements} , 

M ( i ) = 0 Mi? , 
k=-oo 



м ( i ) = / " ™ í = ~ 

U M ( i ) - U M\i+l) for i = 1, ..., m - 1 , 

U M ( i ) for i = щ . 

M[° is obviously a finite-dimensional cylinder and therefore M ( i ) is a measurable set 
for every i e I. Our purpose is to show that M ( l ) = Y, i = 1, ..., m. 

1. Let >7 e M ( , ) , i < m (in the case of i = m we can use an obvious modification 
of our proof). Then there exist I el, that ^ e M(

7'
}, but ^ $ M , ' + 1 ) is valid for every 

Z e /. It is obvious that then ^ e M\'l„, n e N. 
From the relations stated above it follows easily that the set 

; - i 

GJ + 1 = f| g{X,yk,...,yj) 
t = - 0 0 

defined for every j S I, contains exactly / elements and that 

(1) g(Gj,yj) = G}+1. 

Let us designate x\+\,..., x\+1, the elements of the set Gl + 1. We can define 
the sequences (x.+ j,, xfl2, •••), « = L •••, h which are mutually different and 
corresponding to (yl+1, yi+2, . . . ) . 

By induction we can extend the sequences uniquely to the left: If the sequence 
(xja

+1, Xjxl2, •••) for some j S I corresponds to (yj+1, )>j + 2> •••) and ifit is an extension 
of the a-th sequence (xl*+1, ...), then, according to (1), we can find the uniquely 
determined Xjx) e Gj, such that g(xj"

), yt) = xf+1. Therefore there are exactly i mutu­
ally different £,ia) e X1 with the property ^ ~ £(°°, which implies that ^ e Y and 
M ( i ) c Y. 

2. Let ^ e Y;. Then it is obvious that tj e \J M\l). In order to show that ^ e M ( l ) , 
00 l = - o o 

the validity of the assertion ^ $ \J M\'+1) must be investigated. We shall prove it 

indirectly: Let lei have the property that >? e M^i + 1).|Then there exists an integer 
j ^ i + 1 such that ^ e MU), ^eMu+l) (naturally, we can omit the trivial case 
of i = m) which implies according to the first part of our proof, that ^ e Yj and we 
have obtained a contradiction with the assumption ^ e Yt. 

Hence we can say that Yt = M ( i ) e Y1 for every / = 1, ..., m.* 

Lemma 2.5. Let A a X1 be a finite-dimensional cylinder and let 

BA — fa e Y1: there exists <̂  e A, JJ ~ ^} 

Then BA is a measurable set, i.e. BA e Y1. 

Proof. Let A be determined by the conditions for the k-th, . . . , Z-th coordinate 
and let k < I. 



Let us denote for every integer j ^ k 

BA] = {n e Y': there exists g e A ( » >7+1 , ...) - (x,, x, + 1 , . . . ) } . 

Obviously, BAj are the finite-dimensional cylinders determined by conditions for the 
coordinates/ ..., / — 1. 

It is easy to see that ^ e BAif and only if ^ e BAJ for every j ^ k. In other words, 

BA= fl BAJeY'.* 
j= - o o 

Lemma 2.6. Ler Y, fee defined in the same way as in the lemma 2.3. and Zef 
A e X'. Then 

CA = (fj e Yt: there exists £e A,n ~ ^ } e l " . 

Proof. Let us denote A = {A e X7: CA e Y7}. According to lemmas 2.4 and 2.5 
every finite-dimensional cylinder in X' belongs to A. Further, if Ate A, ieN and 

A = U A h then 
i = 1 

CA = U CAi e Y' => A e A . 
i = l 

If A 6 A then C (Xi_4) = Yx - CA e Y' and therefore X' - Ae A. Hence A is 
the CT-algebra over the system of the finite-dimensional cylinders, from which it 
follows that X' cz A.* 

Lemma 2.7. Let Y1 be defined in the same way as in the lemma 2.3. Let H e 
eX' x Y'. Then 

DH = {neY1: there exists f e X' that (£, rj) e H, >7 ~ £} e Y1. 

Proof. Let us denote H = {H e X' x Y' : DH e Y'}. If H = E x F, E e X1, 
F e Y', then DH = CE n E e Y' and therefore H e H . 

If ff, s H, / e N, H = U # / then Dw = U 0 H i e Y' and H e H . 
i = l i = l 

If HeH and /f' = X' x Y, - /f, then 

D„, = Yj - DHeY'=>H'eH 

what means nothing else than that H is the <r-algebra over the set of all measurable 
rectangles in X ' x Y', and therefore X' x Y' ez H.* 

Definition 2.3. An automaton ST = (X, Y, Z, o , / ) is called directable, if there 
exist neN, (yx, ..., y„) e Y" such that the set a(X, yu ..., y„) contains only one 
element. The word (>•,, ..., >„) is called the directing word of the atutomaton ST. 

Lemma 2.8. Lef $~ = (X, Y, Z, g,f) and let Y, is defined as in the lemma 2.3. 
Then ^ 6 Yx if and only if for every lei there exists such kel that (yk, ..., >',) is 
the directing word for the automaton ST. 



C o r o l l a r y . Yt ¥= 0 if and only if &~ is directable. 
Proof of the l emma. According to the proof of the lemma 2.4 Yt = M U ) . 

1. Let ^eM(1), lei. Then rj $ M{2) = f] M(
k
2) and there exists k < 1 that 

г- i 

n 
) £ = - C 

^ $ M^} , hence g(X, yk, ..., yt) contains less than two i.e. exactly one element and 
therefore (yk,..., v() is the directing word of ST. 

2. Let ^ have a property of our lemma. Then for every / e / there exist Mk
2) : ^ $ 

4 Mff ->^4 M\2) => y e M U ) = y,.* 

Theorem 2.1. Let 2T = (X, Y, Z, g,f) be a given automaton. Let (Y1, Y1, fi) be 
an indecomposable source and let /i(Y,) = 1 (Yt is defined like in the lemma 2.3). 
Suppose that for every G e X1 x Y1 we have a set DG (defined in the lemma 2.7) 
and let v(G) = n(DG). 

Then v is an indecomposable measure on (X1 x Y1, X' x Y'). 
Proof. If follows from the lemma 2.7 that it is possible to define the function v as 

we did. 
Obviously v ^ 0 and v(0) = 0. 

Let {G;} be a system of mutually disjoint sets from X1 x Y1 and let G = U G(. 
t = i 

Then, evidently, {DG.} is a system of mutually disjoint measurable subsets of Yt 

and v(G) = n(DG) = £ p{DG) = £ v(G;) (see the proof of the lemma 2.7). 
i = 1 ' i = 1 

Therefore v is a measure and obviously a probability measure. 
Now let GeX' x Y1 be an invariant set. Suppose that ^ e DG, i.e. there exists 

C e l 7 with a property (£, ^eG^ ~ £,. Since G is an invariant set, for a = 1, - 1 
the statement (Ta<J, T*n) e G is valid. Further, evidently, T^ ~ T"£, what means 
nothing else than T°>/ e DG. Hence, FG is a measurable invariant set and v(G) = 
= /i(I»G)e {0,1}.* 

The theorem 2.1 will be mainly utilized in the considerations concerning the 
''upper frequency of errors", which we shall define in § 4. But that is not the only 
use of the theorem. 

Let us consider an ergodic source (Y1, Y1, ^) with the property n(Y^) = 1 and the 
automaton 2T = (X, Y, Z, g,f) which encodes the messages emitted by the source. 
We may want to know the average relative elongation of messages after encoding. 

For a given ^ e Ylt £ e X1, »/ ~ ij, we can consider a limit 

Hm Kf(xo,yo)) + - + Kf(xn,yB)) 
n + l 

which, if it exists, can express the relative elongation of the message ^ from the time 
/ = 0 to infinity. 



On the other hand, if we define Ei(x) e X1, F2(y) e Y1 as the elementary cylinders 
determined by the conditions x0 = x, resp. y0 = y for every xeX, y e Y and 
E(x, y) = Ei(x) x F2(y), p(x, y) = v(E(x, y)), then the value 

so = I h(f(x, y)) • K*. y) 

means the average elongation of the source by one letter at the time t = 0. The 
source (Y7, Y1, /j) has been ergodic, i.e. stationary and indecomposable. According 
to the theorem 2.1 the double source (X1 x Y1, X1 x Y1, v) is also indecomposable. 
It is evidently stationary and, therefore, ergodic. Then {h(f(x„, >'„))}"„ is an ergodic 
stochastic process and that's why, for the almost every (£,, n)eX" x Y1, the assertion 

limHj(*o'>y>) + --- + KßcsiM 
n + 1 n + 

is valid. Hence the limit will exist and will be equal for almost all messages. Since 
the source was stationary, the choice of time origin t = 0 has no influence to the limit 
and therefore we can consider the value s0 to be an average relative elongation of the 
source (Y1, Y1, /i) after encoding by the automaton ST. 

In order to utilize the results of the teorem 2.1 in our transmission model, let us 
divide the coding into two parts: 

2. (L10 - c = <p(L n) • 

The theorem 2.1 tells us that after having performed the first part, the indecom 
possibility is preserved. 

Now, let us consider the part 2. Let us suppose again that an automaton ST = 
= (A', Y, Z, g, f) is given. In the beginning the § 2 we showed the method of the 
construction of £ for given £,, n, such that n ~ £, 4' = <P(£, l)-

Lemma 2.9. The set M = {(£, i j j e l ' x Y1 : t\ ~ £,} is measurable. 
Proof. Let n e N and let us denote 

M„ = {(!, n) eX1 x Yl: (,;_„, ..., y„) ~ (x„„, ..., x„)} . 

Obviously M„ is a finite-dimensional cylinder in X1 x Y1. We shall show that 

M = f) M„. The inclusion c is evident, hence we have only to prove =>. Let 
K = l OC 

(£, f]) e f) M„ and let kel be arbitrary. Then (£, r\)eM^ + 1 and, therefore,. 
n = l 

d(xk, yd = xk + i which implies that n ~ c;.* 



Lemma 2.10. Let A e Z1. Then 

EA = {(£, n)EXT xY1 : there exists such C e A, that n ~ £, ~ C} £ X7 x Y1. 

Proof. Let A be an elementary cylinder, determined by (zk, ..., z,) on the coor­
dinates k,..., 1. It is sufficient to suppose that k ^ 0, / 2: - 1 , because the other 
cases can be reduced to this one (e.g. if k > 0, then A is the sum of elementary cylin­
ders, determined by (z0, ..., zk_l, zk,...,z,), where (z0, ..., zk_1) are arbitrary). 
For (zk,..., z() there exists at most a countable set of (xk,..., x,), (yk, ..., y;) to 
which (zf, ..., zf), % § k, 7 >. I, corresponds. Let £ be a system of all elementary 
cylinders, determined by (xk,..., x,), (y%,..., y}) in X1 x Y1. Let neN and let us 
denote 

W„ = {(£, n)eX' x Yl : -ieN, -i ^ n =>f(xt, >>,) = A) , 

Wn = {(£, /7) e X7 x Y': ieN,i^n ^f(xh y,) = A} . 

Obviously 

X1 x Y1 - [ U Wn u U r„] = H'e X' x Y7. 
n = l n = l 

If M is the set, defined in the lemma 2.9, then 

EA = M n Wn (\E. 
EeE 

New, let us denote A the system of the sets, which fulfil the assertion of the our 
lemma. Wealready know, that A contains all elementary cylinders, determined by 
(zk,...,Zl),k = 0, /__ - L 

Let A; e A, i e JV, A = \J At. It is evident, that EA = \J EAf e X7 x Y' and A e A. 
i = 1 i = 1 

That means, that A is closed with respect to countable disjunctions and that it 
contains all finite-dimensional cylinders. Let A e A, A' = Z7 — A. Then EA, = 
= (M nW)- EAeXr x Y1 => A' e A. 

Hence A is the ff-algebra over the class of all finite-dimensional cylinders and 
that's why Z1 c_ A.* 

Lemma 2.11. Let A cz Z7 be an invariant set. Then EA is also invariant. (EA is 
defined like in the lemma 2A0.) 

Proof. Let (£,n)eEA. Then there exists such C e A, that n ~ c ~ C and for 
a = 1, - 1 such pel exists, that T"/j ~ T*C ~ T^C- Since T" e A (A is invariant), 
£ x is an invariant set.* 

From now we shall denote Y. = D£zJ . Obviously Yj, e Y7. 

Theorem 2.2. L-et (Y7, V7, ;t) fee an indecomposable source and let fi(Yu) = 1. 
Let(Xx x Y1, X1 x Yr,v) be a double source as defined in the theorem 2.1. Let 
(Z1, Z1, n) be a source defined as follows: 

AeZ1 => n(A) = v(EA) 

(EA is introduced in lemma 2A0). Then (Z1, Z7, TC) is indecomposable. 



Proof. % is evidently a probability measure. Let A e Z1, TA = A. According to 
lemma 2.11 EA is also invariant. Since all conditions of the theorem 2.1 are fulfilled, 
the double source (X1 x Y1, X1 x Y1, v) is indecomposable and 7t(A) = v ^ ) e 
e { 0 ; l } . * 

3. THE CHANNEL 

The purpose of the present part is to show the role played by the channel in our 
transmission problem. We shall suppose that we have a channel with finite memory. 

Theorem 3.1. Let (Y1, Y1, pi) be an indecomposable source and let there exist 
a stationary measure fi equal to fi on the class of the all measurable invariant sets. 
Let (Y1, v, Z1) be a stationary channel with a finite memory. 

Then the double source (Zl x Y1, Z1 x Y1, co), where 

co(A) = v(Ajn) dfi for every AeZ1 x Y1, 

is indecomposable (An is a section of A determined by n). 
Proof. According to a well known theorem (see e.g. [2]) the measure to, defined 

t>y the formula m(A) = ^v(Anjn) dfi for every A e Z1 x Y1, is indecomposable, be­
cause the measure fi has been ergodic. 

Now, let AeZ1 x Y1 be an invariant set. Then 

(C, n) e A o (U, Tn)eA^ AT„ = TA, 

and for every n e Y1 

v(ATjTn) = v(TAjTn) = v(Ajr1). 

Letj(rj) = v(Ajn) for every n e Y1. Then the function/is evidently invariant. From 
the definition of the Lebesgue integral we known that 

\v(Anln) dn = lim % i = i fi [n : ^ i l < v(AJn) < £ } . 
J n-.oot=i n [ n n) 

The sets on the right side are obviously invariant, therefore we can replace fi by /t 
and co(A) = co(A) e {0; l} . * 

In the § 2 we found out that the encoding by finite automaton preserves the pro­
perty of indecomposability, if some conditions are satisfied. However, no analoguous 
statement is possible about stationarity. We shall try to prove that for the source 
which arises after encoding the ergodic source by a finite automaton, there exists 
a stationary source equal to the previous source on the class of all measurable in­
variant sets. In that case we could use the theorem 3.1 which tells us that after trans­
mission through a channel we get also an indecomposable source. 



Lemma 3.1. Let (Y1, Y',n) be a given ergodic source and let n(Ylt) = 1. Let 
(ZJ', Z1, n) be defined as in the theorem 2.2. 

Then n is an indecomposable measure, to which such a stationary measure n 
exists that n = ft on the class of the all measurable invariant sets. 

Proof. According to theorem 2.2, n is an indecomposable measure. Let m, m, n 
be non-negative integers and let 

[ ( x . g , . . . , x s ) , ( j . s „ . . j „ ) ] e r « + 1 x Y r a + R + 1 , (z_„ , . . . , z„)eG(Z) . 

We shall write [(x_m,..., xm), (y_m,..., y,„)] -> (z_„,..., z„) if and only if there exist 
integers k ^ 0, I 2: 0, q _; 0, p < 0 and such z_„_k,..., z___,, zn + 1; : ..., z„ + 1 

such that 

0) j(*-s, y-m)...f(xm, ym) = (z_„_„ ..., z„ + ; ) , 

00 / ( * o . . V o ) - ( - , + i - — . z , - i ) , 

(iii) Kf(x_m, y_m)) > k , h(f(xm, ym)) > I. 

Let A e Z' be an elementary cylinder determined by the word (z_„,..., z„). Let 
us denote 

FA = {(£, r^eX1 x Y1 : exist m, m, [(x_m,..., xm), (y.m, ..., ym)~] -> 

- ( . - „ , . . . , z „ ) } . 

For given (z_„,..., z„) we have only an at most countable set of (x_m, ..., xm), 
(y_m, ..., ym) with the property 

[(x_m,...,xm),(y_m,...,ym)]-,(z_„,...,z„) 

which implies that FA is the sum of the countable class of sets E n W, where W is 
introduced in the proof of the lemma 2.10 and E is an elementary cylinder. Hence 
FAeX! x Y1. 

Let us denote 
h = max h (f(x, y)) . 

Let (£, rj) e FA. Then h(f(x0, y0)) S h and then such integers ; _^ 0, j £ h exists, that 
h 

(t, t])eq>-l(T-jA). Therefore FA c U q>~\T~jA). 
.7 = 0 

Now let reN be arbitrary and fixed. Let us define the class of the sets {E;}?L0, 
F, = FA: 

({, tj) G F0 , if (., if) 6 E^, (&17) 6 <p~ ' ( T - A ) , or i f n o i e J V u {0} 

has a property T~ '(£, JJ) e <p"rA) , 

(£,i;)_E-, i e N , \^ (^,ri)eFA,T-%ri)e<p-l(T-rA) and 

T~J'(£, j/) £ <p-'(T- rA) for 0 £ j < i. 



The sets E;, i e N are measurable because they are countable sums of the intersections 

If with the elementary cylinders. It is evident, that FA = \J Ft and that E0 is measur-
1 = 0 

able (E; are mutually disjoint). 

Now we shall prove, that (p~\T~rA) <= (J T_iE;. 
i = 0 

Let (£, n)e cp~A(T~rA). Then such integers i, j __ 0, k __ 0, / __ 0 exist that 
j(Xj, j>,) ...f(xp )>j) = z_„_fc, . . . , z„ + , i.e. there exists n eN u {0}, that 

(£, i,) € T " ^ and ( £ , w ) e U T _ , j V 
; = o 

Since v is a stationary measure (v defined as in the theorem 2.1), it follows 

n(T~rA) <; v(U T^Ei) __ Z v(T-'E () 5_ f v(E;) = v(Ex) S 
i = 0 i = 0 i = 0 

=. v(\Jcp~l(T~U))^^K(T~JA). 
j=0 j = 0 

This inequality we have proved for all elementary cylinders determined by 
(z_„,.. . , z„) (the minimum c-algebra over them is already ZJ). 

Let us consider the class -4 of such sets A e Z', which satisfy our last inequalities. 
Obviously A contains all finite-dimensional cylinders, especially Z1 e A. Further, 
A is a monotone class over the algebra of finite-dimensional cylinders and that's 
why A is a c-algebra and Zl a A. 

Now, let Ak e Z', Ak \ 0. Then 

limsup - \ * ( r -U_)__ Hmsup - V I n(T~JAk) = f n(T~>Ak) 
M->OO 11 i = 0 n-»oo il 1 = 0 j = 0 j ' = 0 

and therefore 

lim (limsup - X n(т~iлS\ = ° • 

According to [4], § 31, lemma b, on Zr there exists a stationary measure n, equal 
to n on the class of all measurable invariant sets.* 

The theorem 3.1 and lemma 3.1 show us that if in our fundamental transmission 
model the source is ergodic and has a property fi(YLl) = 1, then on the output of the 
channel we shall get an indecomposable source. Let us designate it (Y1, Y1, ^ ) . 
If the decoding finite automaton _T = (Y X, Z,g,f) has the properties Z = Y 
/I(YU) = 1 then on the output of the decoding automaton we shall have an inde­
composable source (Y1, Y', n). 

The validity of the condition /J(YM) = 1 will depend on the properties of the chan­
nel and the coding and decoding automata. In the following lemmas we shall show 



a sufficient condition in the case of the channel with the same input and output 
alphabets. 

Lemma 3.2. Lef (Z1, Q, Z') be a stationary channel with the finite memory. 
Let neN, A <= Z" and let F = E(A) be a set defined by a following conditions: 
t, e E(A) if and only if to every keN there exist such integers ly <. — k, l2 >. k, 
that(zh_n+1, ..., z ( l ) e A , (z,2, ..., z , 2 + „_ 1 ) eA . 

Let (Zr, Z', n) be an indecomposable source with the property n(F) = 1, and let 
such a stationary measure n exist that n = n on the class of the measurable in­
variant sets. Let the channel have a property VA: For every ( _ E and such keN, 
that (zk, ..., zk+„_1) e A, the relation Q(BJQ -£ 0 is valid, where B is an elementary 
cylinder, determined by (zk, ..., zk+n_1). 

Let us define fi(E) = Jg(E/C) dn for every E e Z'. 
Then fi(F) = 1. 
Proof. For every E e Z ' x Z ' w e designate co(E) = ^(E^jC) dn. According to the 

theorem 3.1 the double source (Z' x Zl, Z' x Z', to) is indecomposable. E is ob­
viously an invariant measurable set in Z' and therefore E x Z' is measurable and 
invariant in Z' x Z1. Then fi(F) = m(F x Z') e {0; 1}. 

Now, we have to show that fi(F) = 1. Indirectly: Let us suppose fi(F) = 0. Let 
keN and let us denote 

Fk = {C e Z' : exist /. < -k, l2 ^ k : ( z , . _ , + 1 , . . . , z u ) e A , 

(zh, ..., z , 2 + „ _ 1 ) e A } . 

Obviously Fk j E and therefore fi(Fk) | 0. Let us denote f k(Q = Q(FkjC,) for every 
C e Z'. *Pk converges in the mean to *E(.) = _(E/-). It is evident that W = 0 almost 
everywhere. 

Since we hawe a channel with a finite memory and since A contains only a finite 
number of elements, Q(B/y) for a given B, defined as above, can acquire on E only 
a finite number of values (different from 0). 

Let us denote p = min Q(BJC). Obviously p > 0. 

From the definition of the functions Wk and W one can deduce that [Wk] converges 
to zero almost everywhere. Let £ e E has such property that *Fk(Q -• 0. Then for 
p2 > 0 there exists such fc0 that *Pk(Q < p2 for fc 2: fc0. We can suppose that 2fc0 > m, 
where m is the memory of the channel. 

Since £ e E, for a number fc0 there exist such integers lv ^ — fc0 l2 ^ fc0, that 
(z(l_„ + 1, .-., z(l) e A, (z,2 , . . . , z,2+„_,) e A. Let B be an elementary cylinder deter­
mined by zh_„+l,..., zh, z,2, ..., z,2+„_,. It is evident that B c Fko and therefore 
Q(BJ() < p2 which contradicts with the definition of p. 

Thus the only possibility is fi(F) = Je(r/C) dn = 1.* 

Lemma 3.3. Let 2T = (%, Y, Z, g,f). Let n e N and let A be a set of some directing 
words of the length n for # \ with this property: 



412 If (yu .,,, yn) g A, (j;,, ..., y„) ~ (x,, ..., x„), /hen such i eN, i ^ m exists, that 

?(*» yt) # A-
Lef E(A) fee defined like in the previous lemma (Z = Y). 
ThenF(A) c Yu. 
Proof. Let >7 e E(A). According to the lemma 2.8, fj belongs to ¥x. Further, for 

every keN there exist such integers /«_, /2, that /, ^ —k,l2^k and (Ji,_„ + !, . . . 
..., j> ( l)eA , (j?,2,..., j J , 2 + B _i)eA . That implies, that such i, S / , 1 —k, i2 2i 
^ /2 ^ k, that/(jc ( l, >>,•,) # A,'f(xh, yi2) # A. Therefore t? e F n . * 

The lemmas 3.2 and 3.3 show us that in some cases we could achieve n(F(A)) = J 
(by taking a sufficiently large n) and then fi(FA)) = /i(T,,) = 1. 

4. THE FREQUENCY OF ERRORS 

One can assume that in our transmission model we shall define the "frequency of 
errors" similarly as in coding and decoding by rc-tuples: on the space Y1 x Z1 

(Y1 is a space of messages emited by a source and ZJ is a space of messages received 
on the output of the decoding automaton) we shall define a double source and the 
ingegration of some weight function will be performed over the space. 

In our model, in general, it need not be sufficient to consider "finite-dimensional" 
weight functions; we shall have to introduce a limit weight function depending on 
all coordinates, beginning with some k. Since Z = Y, we shall consider the space 
Y' x Y'. 

Definition 4.1. Let (n, fj) e Y1 x Y1, n eN and letL„ c {1, ..., n] x { 1 , . . . , n)satisfy 
the conditions: 

1. (i,./) e L„, (k, I) e L„ => either i = k, j = / , 

or i < k , j < I, or i > k , j > I, 

2- (U j) e L„ => y ; = ys . 

Let a„(n, fj, L„) = n - h(L„) (here h denotes a number of elements in L„) and let 

wn(n> iO = ~ m i n an(l> ij> L„) . 
n L„ 

The function w„ defined on Y7 x Y7 will be called the n-dimensional weight func­
tion. 

Lemma 4.L w„ is a measurable function on (Y7 x Y7, V7 x Y1). 
Proof. w„ is evidently constant on every elementary cylinder, determined by 

a conditions on 1-st — /c-th coordinates (k 2: n).* 

Definition 4.2. Let us define for every (n, fj) e Y7 x Yl 



w(n, rj) = limsup w„(n, n) 

then we shall call w the upper frequency weight function on Y1 x Y1. 

Definition 4.3. Let nsN and w„ be n-dimensional weight function on Y1 x Y1. 
Let (Y1 x Y1, Y1 x Y1, m) be a double source. Then we shall call 

Ф(oS) = limsup w.,(n, n) dco 

the upper frequency of errors of the double source. 

Lemma 4.2. Let w be an upper frequency weight function on Y1 x Y1. Then w is 
measurable and for every (n, fj) e Y1 x Y1 the following statement is valid: 

w(n, fj) = w(Tr], fj) = w(ri, Tfj) = w(T~xr], fj) = w(n, T"1?/). 

Proof. The measurability follows from lemma 4.1 and from the definition of w. 
Let (IJ, fj) e Y1 x Y1. Then 

n w„(n, fj) — 1 ^ n w„(Tn, fj) S n w„(n, fj) + 1 , 

w„(»J, J?) g w„(Tn, ,7) ^ w„(n, fj) + -
n n 

which implies that w(n, fj) = w(Tr], fj). The other equalities can be proved in a similar 

way.* 

Lemma 4.3. Let B be an arbitrary Borel set. Then every section 

w-^Bl = {fjeYI: (n, fj) e w~l(B)} , w~\B}-n = {n e Y, : (n, fj) e w " 1 ^ ) } 

is an invariant set. 
Proof . The validity of the statement follows directly from lemma 4.2.* 

Theorem 4.1. Let (Y1 x Y1, Y1 x Y1, co) be a double source and let a>x(E) = 

= (o(E x Y1), co2(F) = co(Y7 x F)for every EeY^Fe Y1. Let ah and co2 be inde­

composable. 
Then <P(eo) 5= w(n, fj)for almost all (n, fj) with respect to co. 
Proof . Let B be a Borel set and let fj e Y. Then, according to the lemma 4.3, 

©.(w- 1 ^)-) e {0 ; l } . 
Let us denote W = {n e Y1 : (ox(w ^B)^ = 1}. From the lemma 4.2 it follows 

that Wis an invariant set and co2(W) e {0; l}. Therefore 

(ö(w-Ҷß)) = Lг^w-Қв)- dw2 є {0; 1} . 



414 It is now evident, that a real number c ^ 0 exists such that w(jy, ^ = c for almost 
all (jj, fj). Therefore 

<p(co) = l imsup wrfr\, fj) dm g w(r\, fj) dco = c = vv(>;, ij) 

for almost every (f/, 77).* 
The next theorem gives the sufficient conditions for the possibility of the estimation 

of the mean frequency of errors represented by the upper frequency of errors <P(a>) 
by comparing emitted and received messages. 

Theorem 4.2. Let (Y1, Y1, p) be an ergodic source. Let ST = (X, Y, Z, g,f) and 
,<F = (X, Y Z, g,f) be the coding, resp. the decoding automata. Let Y = Z, Y = Z. 
Let the designations Yu, Yu have the meaning introduced in §2 for 5", resp. $~. 
Let /i(Yn) = 1. Let for every ^ e Yu, ^ ~ { ~ £ be denoted a(^) = £; let a be 
defined on Ylt in a similar way and let a, a be defined on Y1 — Yu resp. 
YD - Y1X as an arbitrary constant. Let A, F(A) be defined as in the lemma 3.3 
and let p(a~1(F(A))) = 1. Let (Z1, Q, Z1) be a stationary channel with a finite 
memory and with the property VA (lemma 3.2). Let us denote G„ = {V2) e Y' : 
: »7, f?(2)) e G} /o r every ^e Y1, GeY1 x Y1 and m(G) = ^ ( a ^ ^ G j / a ^ ) ) d^. 

Then for almost every (fj, fj) e Y1 x YJ (wifh respect to 10) 

<P(co) ^ w( ,̂ 17) . 

Proof. Let us consider a source (Yf Y',fi) defined by the relation /2(E) = 
= Jo(E/a(^)) d̂ u. This source is, according to the lemma 3.1 and the theorem 3.1, 
indecomposable (see the note after the lemma 3.1). From the conditions of the pre­
sent theorem it follows that on the input of the chanell 7i(E(A)) = 1 and then 
according to lemma 3.2, fi(F(A)) = 1 on its output, which implies (lemma 3.3) 
fi(Yxi) = 1- The source on the input of the decoding automaton fulfils hence the 
conditions of the theorem 2.2 and therefore the measure a>2(.) = co(Y' X .) is 
indecomposable. Since cot = p. is also indecomposable, according to the theorem 
4.1, <P(a>) :g w(r\, fj) is valid for almost every (t\, fj) (with respect to of).* 

§5. CONCLUSION 

The author hopes that the results of this paper, mainly the theorem 4.2, possess 
some technical applications e.g. in considerations about tape teleprinters and the 
quality of their transmission. In fact the coder and the decoder can be considered 
like finite automata with two states (the digit state and the letter state) and it seems 
that all conditions from the Theorem 4.2 are practically always fulfilled. However, 
applications of the above results may present some practical difficulties connected 
with the absence of answers to following two questions: 



1. Can be the limsup in the theorem 4.2 replaced by a limit? 

2. What is the estimation of the difference wn(t], Fj) — 0(co) depending on n? 

(Received December 17th, 1965.) 
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Přenos informácií pri kódovaní a dekódovaní pomocou 
konečných automatov 

JÁN ČERNÝ 

V práci sa uvažuje přenos zpráv, vysielaných ergodickým zdrojom s konečnou 
abecedou, cez stacionárny kanál s konečnou pamáťou, pričom kódovanie a dekó-
dovanie sa vykonává pomocou konečných automatov. Tieto automaty sú zobecněním 
Mealyho automatov v tom, že každej dvojici, tvorenej vstupným písmenom a vnú-
torným stavom automatu, odpovedá niektoré výstupné slovo (připadne i prázdné). 
Pretože sa jedná o kódovanie, nezachovávajúce dlzku, předpokládá sa súlad medzi 
vstupnou a výstupnou zprávou pri přechode medzi indexami — 1 a 0. Z týchto dóvo-
dov je třeba zmeniť i doteraz obvyklá definíciu rizika (frekvencie chyb). 

V práci sa študujú otázky, ako vplýva takéto kódovanie na pravděpodobnostně 
vlastnosti zdroja na výstupe kódovacieho automatu a aké vlastnosti majú mať prvky 
sponimaného přenosového modelu, aby bolo možné z porovnania vyslanej a prijatej 
zprávy vyslovit' nějaké tvrdenie o strednej frekvencii chyb přenosu. 

Ján Černý, CSc., Univerzita P. J. Šafárika, katedra matematiky, nám. Febr. víť. 9, Košice. 


		webmaster@dml.cz
	2012-06-04T12:55:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




