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KYBERNETIKA CiSLO 5, ROCNIK 2/1966

Information Transmission in the Case
of Coding by Finite Automata

JAN CERNY

Coding and decoding by finite automata non preserving the length of input words is discussed.
A possible characteristic for transmission quality expressing and its estimation is presented.

1. INTRODUCTION

In this paper we shall consider a well-known transmission model: information
source —coder —channel —decoder, supposing that both the coder and the decoder
are finite automata. Naturally, we shall suppose, that our automata will be of the
general type, which will not preserve the length of the input words. Then there are
some difficulties in estimating the transmission quality which would not occur in
the case of coding by n-tuples.

The first question we have to answer is thit: what changes of source properties
will occur after encoding it by means of the automaton?

The secon question is connected with the circumstance, that neither in encoding
nor in decoding the length of the transmissed word is necessarily preserved. How,
then, can we define the error frequency? (There is no strict correspondence between
time indexes of the input and output words. For instance, the word “coding” can
be transmitted as “co5ng” and we have a problem whether the error frequency 1/3
or 2/3 or another value is the most suitable.)

The third and it seems the most serious question is, what the comparison of the
emitted and received message can tell about an “average” error frequency in our
transmitting model.

This paper will try to answer the questions stated above. From now the following
designations will be used:

N — the set of all natural numbers,
I~ the set of all integers,
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X" — the Cartesian product X X for n € N and a finite non empty set X. The

set X will be calledlthle alphabet and its elements the the letters;

X" ~ the set of all sequences (..., x_y, Xo, Xy, ...) where x; € X, i € I. The elements
of X' will be called the messages.

X — g-algebra of all subsets of X,

&,1,{ — letters from Greek alphabet will designate messages containing letters
which will be designated by corresponding Latin letters, e.g. &=

= (X Xos oy 1= (coes Vrts Yoo - )5

* — end of a proof;

{a, b, ..., c} — a set of elements a, b, ..., ¢;

{xeX:V(x)} — aset of such x € X that the statement V(x) is valid.

A probability space (Y, Y, i) will be called a source (¥ is assumed to be a finite
and nonempty set — an alphabet of the source). ¥’ is the g-algebra, generated by
a system of elementary cylinders on Y’ The set E < Y' is called the elementary
cylinder, if there exist integers i, ..., i, and a n-tuple ()7,«1, . }7,-“) that the following
assertion is valid:

neE<wy, =y, k=1..,n.

Then we shall say that E is determined by (7;,, ..., 7, ). If there is a danger of misun-
derstanding, we add in the places iy, ..., i". The sets from Y' are called measurable.
A finite sum of elementary cylinders is called a finite-dimensional cylinder.

The set G(Y) = N\ YU {4} is a set of words in the alphabet Y. The word A is
n=1

called the empty word (the word without letters). If the letters are subscripted then
we put (yy, .., ym) = A for k > m.
Let us define a multiplication on G(Y) with following properties:

1. For every u € G(Y) Au = ud = u.
2. Ifu=(yy, ..., y,) € G(Y), v = (Fy, ..., Jm) € G(Y), then
U0 = Y1y ens Vi Fas o o0s )

Evidently, the mulitiplication is associative.

If u € Y", then we shall put h(u) = n and call this value the length of the word u.
For A we shall put h(/l) = 0. If there is no danger of misunderstanding, we shall use
the symbol /4 also to denote the number of elements in a finite set.

Let a; = (b, ..., y?)eG(Y), n; 20, iel and let k<0, 120 kel, Iel
For n e Y' we shall write



a; = (yo, .-+ yy) if and only if

0
0 © a (i
Yo oo ¥ = W0, ¥ ¥ D)

.

il

—

-1
2. TTa: = (& ---» 1) if and only if
i=k

(k) (

Vo oo vo1) = (49, . 9, LT D)

R

—- o

a; = (Vg .- 1) if and only if

Il
=

-1 ]
()’Ea ERR )’~1) = llai, (,Vm . Hoai

The symbol [] «; will denote such a subset of Y”, for which following conditions

iel
are valid:
quai if and only if for every kel, lel, k £ —1, I = 0 there exist ke/,
iel

1 eI such that
i

~1
(yE> LT ,V—l) = Hais (yov'“! yi) = Hai'
i=k

i=0

o »

It is evident, that if ) h(a;) = oo, 3, h{a_;) = oo, then [] a; is a one-point set.

i=0 i=1 iel
If both series have a finite sum, then [] a; is an elementary cylinder.
iel

Hence we shall use the symbol IT only in relations between sequences of words
infinite in both directions and messages, resp. their finite parts. The symbol IT implies
not only the identity of letters, but also a synchronism between indexes.

Let Y be an alphabet and let us define a coordinate-shift transformation 7 on Y':

Ifne ¥, then Ty = jif and only if j; = y;,  foralliel.

The inverse transformation to T will be denoted T™'. If ¢ e X!, ye Y/, then we

put T(&, n) = (TE, Ty).
If E < Y7, then we write

TE = {ne Y': thereexist je E, Ty =y} .

If TE = E we say that E is an invariant set. The properties of the transformation T
are described e.g. in [1], chap. X.

If the source (Y', Y’, 4) fulfils the condition that for every E e Y u(E) = u(TE),
we call it stationary. Then we also say that the measure y is stationary.

If u(E) is either 0 or 1 for every measurable invariant set E, then we call the source
(the measure) indecomposable. If the source (thc measure) is stationary and inde-
composable, then we say that it is ergodic.
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The triple (Y', v, Z') will be called the channel, if ¥, Z are finite non-empty sets
(input and output alphabets) and ¥’, Z' will be, as usual, the o-algebras generated
by the systems of the elementary cylinders in Y’, resp. Z'. Further, if v is a function
defined on Y x Z’ (the value of this function will be denoted v(E/n) for every E € Z',
n € Y') and, finally, if

1. for every Ee Z', v(E/.) is a measurable function on Y,

2. for every e Y, v(.[n) is a probability measure on Z7,

3. for every finite-dimensional cylinder E e Z’ determined by the conditions for
i-th, ..., j-th coordinate, the value v(E[q) does not depend on y;¢1, ¥j42, .- for
every ne Y.

The channel (Y, v, Z") is said to be stationary, if WEfy) = W(TE[Ty) for every
EeZ' neY.

The channel (Y/, v, Z') is a channel with finite memory, if there exist m e N such
that:

1. for every finite-dimensional cylinder E € Z', determined by the conditions for
the i-th, ..., j-th coordinate and for every ne Y’ the value v(Ef#) depends only on
Yiemr Viem+1s - Vjs

2. for every finite-dimensional cylinders E, F € Z' determined by the conditions
for the i-th, ..., j-th, resp. k-th, ..., I-th coordinate, where j + m < k and for every
neY!

W(E n Ffn) = v(Efn) («(F|n) -

The least integer m, which fulfils the conditions 1 and 2 will be called the memory
of the channel.

2. FINITE AUTOMATA

Definition 2.1. The quintuple J = (X, Y, Z, ¢, f) is called a finite automaton,
if X, Y, Z are non-empty finite sets (the set of states, of input signals and of output
.s'ignals), g is a mapping from X x Yinto X and fis a mapping from X x Yinto the
set G(Y).

From now we shall write

glx, A)=x, g(X,4) =X,

9% 15 o 1) = 9l (90x, 1) ¥ - 1) s
9(X, y1, .. i) = {x € X: there exist x, € X, g(xg, ¥y, .. Y1) = X} -

Definition 2.2. Let 7 = (X, Y, Z, g, f) be a finite automaton. Let (y, ..., ¥1) €
e Y'"**1 Then a word (x, .., x,)€ X'™**1 is called corresponding to (Ju ---» V1)
and we write (¥, ..., 1) ~ (X - X)) if g(xs, ¥;) = x4, foreveryi = k, k + 1,..., L



In the same way we introduce

(.Vk> Yi+ 15 )) ~ (Xk,- X+ 15 '~-)©g(xi’ .Vi) =X 12 k,
(coos Yo1s Yos V1o oo ) ~ (e Xops Xgu Xpp oo ) <> g(x ¥i) = X4y, T€T.
Let neY', ¢eX,(eZ k<1, (V. y) ~ (X4 ..n x;). Then we say that

(z> ..., z1) corresponding to [(ye ..o, ¥)), (Ko ..., ;)] and we write (v .-, y;) ~
~ (X oo X)) ~ (25 0 7y)

i
(i) inthe case of k<0, 12 —1if (z....27) = _ka(x,-, ¥
4
(i) in the case of k >0 it zgy...,z) = lﬂof(xi’ v,
k=1
(Zos - Zg—1) = [ 1S (x5 ¥
i+0
-1
(iii) in the case of [ < —1 if (2 oo zoq) = [1/(x0 3
i=k
-1
(1ot oo 221) = [T S(x0 v -
i=i+1

Always we shall write 4 ~ A4 ~ A.
Let neY', ¢eX',{eZ' n ~ & Then we say that [ is corresponding to (&, n)
and we write n ~ & ~ L or { = (&, ), iff {¢} = [[F(xs, »)-
iel

In the following lemmas we suppose that a finite automaton 7 = (X, Y, Z, g.f),
which has m elements in a set X, is given.

Lemma 2.1. For every (yi. ..., y,)€ Y'™** Y resp. (i Vivrs .)€ YV there exist
exactly m different (x,, ..., ), resp. (X X1y, ...), X, € X, such that (y, ... y)) ~
~ (Xps eeoy X1 )s 75D (Voo Vi 1o -o0) ~ (Xpo Xga g -2 2)- i

Proof. The assertion that there exist at least m different (x,, ...) is evidently valid,
because we can consider x, to be an arbitrary element of X. It is also clear that the
number cannot be greater, because (. ...) and x, uniquely determine (x, ...).

Lemma 2.2. To cvery ne Y there exist at least one and at most m different
Ee X', such that n ~ &.

Proof. 1. We shall show the existence of one £. Let us suppose, on the contrary,
that for a certain € Y' there does not exist £ € X', n ~ £. Let us denote the elements
of the set X x¢¥, ..., x(o’") and let them be placed in the O-th places of m different
sequences (x4, x{”....) i = 1,..., m. Let, moreover,

(yos V1 o) ~ (xE0, X2, i=1m.
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Now, let k < 0, 0 < i £ m. The all (X, %41, ...) fulfilling the conditions x; & X

for every j 2 k, x; = xi"') for every j = 0,1,... and (yk, Vit1s ) ~ (xk, Xptts ),
we shall call the extension of (x, ...) to the left until k. All the extensions are finite.
According to our supposition no infinite extension of (xf)”, ) exists.

There are two possibilities:

a) For every i, the extensions are bounded. Let us denote k; the subscript until
which the longest extension of (x}”,...) can be made and ko = min k. Let xe X

be arbitrary. The sequence {g(x, Pho=25 100 yl)}f":,‘o,z is evidently the extension of
some (x{,‘), ) till k, — 1, which is in contradiction with the definition of k.

b) Let (x{”,...) possess unbounded extensions to the left. Let us consider all
extensions of the sequence until —1. One of them must also posses unbounded ex-
tensions to the left. Let us denote the extension (x;, x§?, ...). By repeating these
considerations we find (x%, x¥), x{?, ...} and by the induction we can define the
extension (..., x7, x{?,...), the existence of which is in contradiction with our
former supposition. This concludes the proof of existence at least one £ € X', n ~ &

2. Now we shall show that their number cannot extend m. Let us suppose, on the
cotrary, that 7 ~ ¢, i=1,.., m+ 1, + E® i 2 k Let us denote M, the
set of the all indexes j, such that x{? s x{ (i # k, i< m+ 1, kS m + 1). The
number of the sets M, is finite and all of them are non-empty. Therefore, some
lel must exist, such that My n {I,1 + 1, ...} #0for every i £k, iSm+1,
k<m+ 1

But that implies that (x{?, x{},,...), i=1,...,m + 1 are mutually different,
what is in the contradiction with the assertion of the lemma 2.1.

Lemma 2.3. Let Y; be the set of such ne Y that there exist exactly i different
¢ e X', corresponding to it. Then {Y;}}-, is the partition of the set Y into invariant
components.

Proof. According to lemma 2.2 the first part of the assertion is evident and we
need to prove only that every Y; is invariant. Let 9 j = 1, ... i be mutually
different mesages from X': It is clear that

H o~ ED e Ty ~ TED
and, therefore Ty e Y; <> ne Y.*
Lemma 24. Let Y, i = 1,...,m be the sets defined by the lemma 2.3. Then

Y;eY! for everyi=1,...,m.
Proof. Letkel,l =1 k <1,i=1,..., m. Let us denote

g

]

{1e Y': g(X, vy .., ) contains at least i elements} ,
; 1-1 X
MP = N M,

k=~w
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U MP— U M#Y for i=1,..,m~-1,
R I= - I=-o
MO =
©
U Mp for i=m.
I=-a

M) is obviously a finite-dimensional cylinder and therefore M is a measurable set
for every i € I Our purpose is to show that M™® = Y, i =1,..., m.

1. Let e M@, i < m (iu the case of i = m we can use an obvious modification
of our proof). Then there exist 1 €I, that ne M{?, but 5 ¢ M{"*" is valid for every
l el It is obvious that then e M§?  neN.

From the relations stated above it follows easily that the set

-1

G,‘+1 =N 9(X7 Yis +v e J’j)
k=—ow
defined for every j < [, contains exactly i elements and that

1) 9(Gp. ) = Gyay -

Let us designate x{%,, ..., x{,, the elements of the set G,,;. We can define
the sequences (x{9;, x{?,,...), @ =1, .., i, which arc mutually different and
corresponding t0 (Vys1s Yiszs +-.)-

By induction we can extend the sequences uniquely to the left: If the sequence
(x4, x4, ...) for some j < I corresponds to (¥;.1, ¥;+2. -.-) and if it is an extension
of the a-th sequence (x{%;,...), then, according to (1), we can find the ‘uniquely
determined xi-“’ € G;, such that g(x}”’, yj) = xj"l 1- Therefore there are exactly i mutu-
ally different ¢@ e X' with the property # ~ &®, which implies that ne Y; and
M® < Y,

©
2. Let 7€ Y, Then it is obvious that 7€ U M{". In order to show that n e MP,

o 1 ©
the validity of the assertion ¢ | M{*" must be investigated. We shall prove it
i=—w
indirectly: Let /el have the property that ye ME”".EThen there exists an integer
j =z i+ 1 such that n e MY, ye MY*" (naturally, we can omit the trivial case
of | = m) which implies according to the first part of our proof, that € ¥; and we
have obtained a contradiction with the assumption n e Y;.
Hence we can say that Y; = MV e Y/ for every i = 1, ..., m.*

Lemma 2.5. Let A = X' be a finite-dimensional cylinder and let
By = {ne Y there exists £ e A4, n ~ £}

Then B, is a measurable set, i.e. Bye Y.
Proof. Let A be determined by the conditions for the k-th, ..., I-th coordinate
and let k < 1.
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Let us denote for every integer j < k
B,;={neY' thereexists E€ A (yj, yjr1r-.-) ~ (Xjs ¥jurs o)}

Obviously, B; are the finite-dimensional cylinders determined by conditions for the
coordinates j, ..., [ — 1.

1t is easy to see that € B, if and only if 5 € B4; for every j < k. In other words,

k
By= N ByeY«
j=—o

Lemma 2.6. Let Y, be defined in the same way as in the lemma 2.3. and let

Ae X!, Then
C,={neY;thereexists Eed,n ~ teY .

Proof. Let us denote A = {4 e X": C,eY'}. According to lemmas 2.4 and 2.5

every finite-dimensional cylinder in X! belongs to A. Further, if 4;€ 4, ie N and

A=) 4, then N

i=1

CAZU'CA‘,EYIf.»AEA.
i=1

i=

If Ae A then Cixiyy =Y, — C, e Y’ and therefore X' — Ae A Hence A is
the o-algebra over the system of the finite-dimensional cylinders, from which it
follows that X < A.x

Lemma 2.7. Let Y, be defined in the same way as in the lemma 2.3. Let H e
e X' x Y. Then

Dy = {neY,: there exists &€ X’ that ({,n)e H, n ~ e,

Proof. Let us denote H={HeX' x Y :D,eY}. If H=E x F, Ee X/,
FeY, then Dy = Cy 0 Fe Y and therefore H € H.

If H;eH,ieN,H= ) H, then Dy = Dy, eY and He H.
i=1 i=1
IfHeHand H = X' x Y, — H, then
Dy =Y —DyeY =HeH

what means nothing else than that H is the g-algebra over the set of all measurable

_rectangles in X' x Y7, and therefore X' x Y/ < H.x

Definition 2.3. An automaton 7 = (X, Y, Z, g,f) is called directable, if there
exist neN, (y;,....y,) € Y" such that the set g(X, yy, ..., »,) contains only one
element. The word (y,. ..., y,) is called the directing word of the atutomaton 7.

Lemma 2.8. Let 7 = (X, Y, Z,g,f) and let Y, is defined as in the lemma 2.3.
Then ne Y, if and only if for every 1€l there exists such kel that (y, ..., y)) is
the directing word for the automaton 7.



Corollary. Y, % 0if and only if 7 is directable.
Proof of the lemma. According to the proof of the lemma 2.4 Y, = M".

I-1
1. Let neM™, lel. Then n¢ MP = } M3 and there exists k < 1 that

k=—ow
n¢ M, hence g(X, y,, ..., y,) contains less than two i.e. exactly one element and
therefore (yy, ..., y,) is the directing word of 7.

2. Let  have a property of our lemma. Then for every /eI there exist M{2 : n ¢
EMP = nEgMP =neM? =Y,

Theorem 2.1. Let 7 = (X, Y,Z, g,f) be a given automaton. Let (Y',Y!, u) be
an indecomposable source and let (Y,) = 1 (Y, is defined like in the lemma 2.3).
Suppose that for every Ge X' x Y we have a set Dg (defined in the lemma 2.7)
and let v(G) = p(Dg).

Then v is an indecomposable measure on (X' x Y, X' x Y').

Proof. If follows from the lemma 2.7 that it is possible to define the function v as
we did.

Obviously v = 0 and v(0) = 0.

Let {G;} be a system of mutually disjoint sets from X’ x ¥’ and let G = U G..
t=1
Then, evidently, {D¢,} is a system of mutually disjoint measurable subsets of ¥,

and v(G) = p(Dg) = Y. w(Dg,) = Y. W(G,) (see the proof of the lemma 2.7).
i=1 i=1

Therefore v is a measure and obviously a probability measure.

Now let Ge X' x Y’ be an invariant set. Suppose that € Dg, i.e. there exists
& e X' with a property (&, 1) € G, n ~ & Since G is an invariant set, for « = 1, —1
the statement (T°¢, T°g) € G is valid. Further, evidently, T ~ T*¢, what means
nothing else than T%q e Dg;. Hence, Fy is a measurable invariant set and v(G) =
= u(Dg) € {0, 1}.%

The theorem 2.1 will be mainly utilized in the considerations concerning the
“upper frequency of errors”, which we shall define in § 4. But that is not the only
use of the theorem.

Let us consider an ergodic source (Y7, Y/, u) with the property u(Y,) = 1 and the
automaton 7 = (X, Y, Z, g, f) which encodes the messages emitted by the source.
We may want to know the average relative elongation of messages after encoding.

For a given ne Y;, E€ X!, 4 ~ &, we can consider a limit

lim h(f(x0 7o) + -+ + h(f(x, )
o n+1

which, if it exists, can express the relative elongation of the message n from the time
t = Oto infinity.
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On the other hand, if we define F,(x) e X', F,(y) € Y as the elementary cylinders
determined by the conditions x, = x, resp. y, = y for every xeX, yeY and
E(x, y) = Fy(x) x Fy(y), p(x, ¥) = v(E(x, y)), then the value

So = L h(f(x. 7)) plx. y)

ye¥

means the average elongation of the source by one letter at the time ¢t = 0. The
source (Y7, Y, i) has been ergodic, ie. stationary and indecomposable. According
to the theorem 2.1 the double source (X' x YX, X" x ¥', v)is also indecomposable.
1t is evidently stationary and, thercfore, ergodic. Then {h(f(x,. y,))} ©., is an ergodic
stochastic process and that’s why, for the almost every (&, #) e X x Y’, the assertion

i M0G0 50)) + oo WG 02 _
n- o n+1

is valid. Hence the limit wiil exist and will be equal for almost all messages. Since
the source was stationary, the choice of time origin t = 0 has no influence to the limit
and therefore we can consider the value s, to be an average relative elongation of the
source (Y*, Y/, p) after encoding by the automaton .

In order to utilize the results of the teorem 2.1 in our transmission model, let us
divide the coding into two parts:

1. n=(&n), n~¢,
2. En)—C=oEn).

The theorem 2.1 tells us that after having performed the first part, the indecom
possibility is preserved.

Now, let us consider the part 2. Let us suppose again that an automaton J =
=(X,Y Z g, f) is given. In the beginning the § 2 we showed the method of the
construction of { for given &, 5, such that n ~ &, { = <p(f, 11).

Lemma 2.9. The set M = {(£, n) e X' x Y 15 ~ &} is measurable.
Proof. Let ne N and let us denote

My = {EMeX x Yyt(yop o ba) ~ (Kep o X))

Obviously M, is a finite-dimensional cylinder in X' x Y. We shall show that

M =\ M,. The inclusion < is evident, hence we have only to prove >. Let
n=1 o

(¢, M) e NM,and let kel be arbitrary. Then (&, #) € M}y ,, and, therefore,
n=1

9(x; ¥) = X+, which implies that n ~ &%



Lemma 2.10. Let A e Z'. Then
E, = {(& n)eX" x Y':thereexists such { e A, that g ~ & ~ {J e X! x Y/,

Proof. Let 4 be an elementary cylinder, determined by (z, ..., z,) on the coor-
dinates k, ..., [. It is sufficient to suppose that k < 0, I = —1, because the other
cases can be reduced to this one (e.g. if k > 0, then 4 is the sum of elementary cylin-
ders, determined by (zo, ..., Zy—1, Zj» ... 2;), Where (2o, ..., 2,-;) are arbitrary).
For (z, ..., z;) there exists at most a countable set of (xg, ..., %), (Vg ..., ¥1) O
which (z;f, e zf), k<kIzl, corresponds. Let E be a system of all elementary
cylinders, determined by (xg, ..., x;), (Vg .-, »1) in X' x Y'. Let ne N and let us
denote
W,={&neX x Y':—ieN, —izn=f(x,y)= 4},
W,={&neX xY: ieNizn =f(x,y)=4}.

d

Obviously

X’><YI~[UWUU W= weX x ¥,

n=1 n=1
If M is the set, defined in the lemma 2.9, then
E,=MnWnNE.
EeE

New, let us denote A the system of the sets, which fulfil the assertion of the our
lemma. Wealready know, that A contains all elementary cylinders, determined by
(zo-vz) k20,12 ~1

Let A;eA ieN, A= UA It is evident, that E, = UEA eX' x Yand A€ A,

i=1
That means, that A is closed with respect to countable disjunctions and that it

contains all finite-dimensional cylinders. Let A€ A, A’ = Z' — A. Then E, =
=MnW)—E;eX' xY =>4cA

Hence A is the g-algebra over the class of all finite-dimensional cylinders and
that’s why Z7 < A

Lemma 2.11. Let A = Z' be an invariant set. Then E4 is also invariant. (Eqis
defined like in the lemma 2.10.)

Proof. Let (£ 1) € E4. Then there exists such (e A, that n ~ & ~ { and for
a =1, —1 such Belexists, that T% ~ T°¢ ~ T?{. Since T% € A (4 is invariant),
E , is an invariant set. :

From now we shall denote Y, = Dg,,. Obviously Y, e Y.

Theorem 2.2. Lot (Y, Y', ;1) be an indecomposable source and let p(Yy,) = 1.
Let (X' x Y', X" x Y, v} be a double source as defined in the theorem 2.1. Let
(2", Z', 7) be a source defined as follows:

AeZ' = n(A) = v(E,)

E, is introduced in lemma 2.10). Then (Z', Z, 1) is indecomposable.
’4
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Proof. = is evidently a probability measure. Let 4 € Z', TA = A. According to
lemma 2.11 E 4 is also invariant. Since all conditions of the theorem 2.1 are fulfilled,
the double source (X' x Y', X' x Y!,v) is indecomposable and n(4) = v(E,) e
e{0;1}.%

3. THE CHANNEL

The purpose of the present part is to show the role played by the channel in our
transmission problem. We shall suppose that we have a channel with finite memory.

Theorem 3.1. Let (Y., Y', ) be an indecomposable source and let there exist
a stationary measure [i equal to p on the class of the all measurable invariant sets.
Let (Y, v, Z") be a stationary channel with a finite memory.

Then the double source (Z' x Y', Z' x Y!, w), where

o(d) = fv(A,,/r;) du forevery AeZ' x Y!,

is indecomposable (A,, is a section of A determined by ).

Proof. According to a well known theorem (see e.g. [2]) the measure @, defined
by the formula &(4) = [v(A,/n) dji for every Ae Z' x Y', is indecomposable, be-
«cause the measure ji has been ergodic.

Now, let Ae Z" x Y be an invariant set. Then

(¢ n)e A<= (TL, Tn)e A= Ay, = TA,
and for every n e Y7

WAz, Tn) = W(TA,[Tn) = W(A,/n).

Let f(n) = v(A,/n) for every n € Y. Then the function f is evidently invariant. From
the definition of the Lebesgue integral we known that

J"(An/”) dp = lim "il L;l u {n k;—l S (4, < S} .

nw k=1

The sets on the right side are obviously invariant, therefore we can replace p by
and o(4) = @(4) € {0; 1}. =

In the § 2 we found out that the encoding by finite automaton preserves the pro-
perty of indecomposability, if some conditions are satisfied. However, no analoguous
statement is possible about stationarity. We shall try to prove that for the source
which arises after encoding the ergodic source by a finite automaton, there exists
a stationary source equal to the previous source on the class of all measurable in-
variant sets. In that case we could use the theorem 3.1 which tells us that after trans-
mission through a channel we get also an indecomposable source.



Lemma 3.1. Let (Y, Y', i) be a given ergodic source and let y(Y,,) = 1. Let
(Z*, Z', n) be defined as in the theorem 2.2.

Then n is an indecomposable measure, to which such a stationary measure &
exists that 1 = 7 on the class of the all measurable invariant sets.

Proof. According to theorem 2.2, 7 is an indecomposable measure. Let m, m, n
be non-negative integers and let

[0 oo X (s oo Yu)] € XPHAHL s ymemes (o2 Ve G(Z).

We shall write [(x_z, .-, X)s (Vo> -+ > V)] = (2= -, 2,) if and only if there exist
integers k=0, 120, g 20, p<O0 and such z_,_,, ..., Z_,_1, Zyyqs:
such that

cees Zpty

0] FC i ) oo f s Vi) = (2o 00 Znsd) s
(ii) f(xm YO) = (Zp 1700 24—1) s
(iii) B y-m)) > Ko B (%o y) > 1.

Let A€ Z' be an elementary cylinder determined by the word (z_,, ..., z,). Let
us denote
Fyo={(&n)eX" x Y rexist m, i, [(X_p .os X (Voo o= V)] =
- (z_”, . z,,)} .
For given (z_,, ..., z,) we have only an at most countable set of (x_g, ..., X,,),
(¥_m» --» V) With the property
([C 2P N S 0 ) I CA-

which implies that F, is the sum of the countable class of sets E n W, where W is
introduced in the proof of the lemma 2.10 and E is an elementary cylinder. Hence
Foe X' x Y.
Let us denote
h = max h(f(x, ))-

xeX
veY

Let (& n) e F 4. Then h(f(xq, ¥o)) £ h and then such integers j = 0, j < h exists, that
(6. n)e @~ !(T™IA). Therefore F, L') @ (T77A4).

Now let re N be arbitrary and ﬁ;(:l. Let us define the class of the sets {F }2,,
F, cFy

(&, n)eFo, if (. n)eFu (E,n)e@ (T 77A), orifno ieN v {0}
has a property T™(¢,n)e 9 "4),
(& n)eF, ieN,if (§,n)eF, T7H(& n)e ™ (T™"4) and
T n)é¢e (T 7A) for 0 <i.
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The sets F;, i € N are measurable because they are countable sums of the intersections
o

W with the elementary cylinders. 1t is evident, that F, = |J F, and that F is measur-
i=0

able (F; are mutually disjoint).
Now we shall prove, that ¢~ (T""4) = U T™'F,.
i=0

Let (& n)e ¢ '(T7"4). Then such integers i, j 20, k20, 1 2 0 exist that
Fxo v f(%) V) = Zonoio o Z,4 1-0. there exists 1 € N U {0}, that

(&meT"Fy and (&,n)eU T F,.
i=0

Since v is a stationary measure (v defined as in the theorem 2.1), it follows

@ o

(T74) £ V(QOT TF) < ZOV(T"'F,) SPYWF)=wF4) =

i= i=0
h h
= \’('L:JO(;)“(T' IA4)) §«ZOH(T“J-A)'

This inequality we have proved for all elementary cylinders determined by
(z—m> +--» 2,) (the minimum g-algebra over them is already Z7).

Let us consider the class A of such sets A € Z*, which satisfy our last inequalities.
Obviously A contains all finite-dimensional cylinders, especially Z’e A. Further,
A is a monotone class over the algebra of finite-dimensional cylinders and that’s
why Ais a g-algebra and Z' < A.

Now, let A, € Z*, 4, | 0. Then

n—1 l n h

-1 h
limsup L Y AT A ) limsup— 3 Y a(T774,) =Y n(T74,)
noa =0 j=o §=0

n=w N i=0 ni

and therefore

n—1
lim <1imsup L Y n(T“Ak)> =0.
ko n—ow R i=0

According to [4], § 31, lemma b, on Z” there exists a stationary measure 7, equal
to 7 on the class of all measurable invariant sets.*

The theorem 3.1 and lemma 3.1 show us that if in our fundamental transmission
model the source is ergodic and has a property y(Y,,) = 1, then on the output of the
channel we shall get an indecomposable source. Let us designate it (¥, Y, Z)
If the decoding finite automaton J° = (¥, X, Z,§,f) has the properties Z = Y,
ﬁ(f;n) = 1 then on the output of the decoding automaton we shall have an inde-
composable source (Y, Y/, 7).

The validity of the condition #(¥;,) = 1 will depend on the properties of the chan-
nel and the coding and decoding automata. In the following lemmas we shall show



a sufficient condition in the case of the channel with the same input and output
alphabets.

Lemma 3.2. Let (Z',0,Z") be a stationary channel with the finite memory.
Let neN, A = Z" and let F = F(A) be a set defined by a following conditions:
(e F(A) if and only if to every ke N there exist such integers I, £ —k, I, 2 k,
that (zg,nsrs - 21, ) € A, (Ziys ooy Zpyigey) E A

Let (Z', Z', ) be an indecomposable source with the property n(F) = 1, and let
such a stationary measure T exist that n = T on the class of the measurable in-
variant sets. Let the channel have a property V ,: For every { € F and such ke N,
that (zy, ..» Zg+n—1) € A, the relation o(B[{) # 0 is valid, where B is an elementary

cylinder, determined by (zy, ..., Zypy).
Let us define i(E) = [o(E[{) d= for every E e Z'.
Then j(F) = 1.

Proof. Forevery Ee Z' x Z' we designate w(E) = fo(E,/¢) dn. According to the
theorem 3.1 the double source (Z' x Z', Z' x Z', ») is indecomposable. F is ob-
viously an invariant measurable set in Z' and therefore F x Z' is measurable and
invariant in Z' x Z'. Then i(F) = o(F x Z')e {0; 1}.

Now, we have to show that j(F) = 1. Indirectly: Let us suppose i(F) = 0. Let
ke N and let us denote

F, = {CEZI vexist Iy £ —k, 1, 2 k:(zppers o2 )EA,
(Z10 o Ziyen-g) € 4}

Obviously F, | F and therefore ji(F,) | 0. Let us denote ¥,(0) = o(F,[() for every
{eZ'. ¥, converges in the mean to ¥(.) = o(F/.). It is evident that ¥ = 0 almost
everywhere.

Since we hawe a channel with a finite memory and since 4 contains only a finite
number of elements, ¢(B/y) for a given B, defined as above, can acquire on F only
a finite number of values (different from 0).

Let us denote p = min g(B/[{). Obviously p > 0.

[eF

From the definition of the functions ¥, and ¥ one can deduce that {¥,} converges
to zero almost everywhere. Let { € F has such property that Y’k(c) — 0. Then for
p* > Othere exists such ko that W,({) < p* for k = ko. We can suppose that 2k, > m,
where m is the memory of the channel.

Since { € F, for a number k, there exist such integers I, < —ko [, 2 kg, that
(Ziomnt1r oo 21) € A, (24 3o 21, 40—1) € A. Let B be an elementary cylinder deter-
mined bY 2;, _y41s --os Z1pp Ziye ---» Zi,+a—1- 1t I8 evident that B < F, and therefore
o(B[{) < p* which contradicts with the definition of p.

Thus the only possibility is f(F) = [e(F[{}dn = 1.*

Lemma3.3. Let 7 = ()Z, )7, Z,g,f). Let ne N and let A be a set of some Ji;'ecting
words of the length n for &, with this property: :
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.

If (Fis o F) €A, (Fis oo0r Fu) ~ (R1s s X,), then such ieN, i < m exists, that
J(%s y) # A

Let F(A) be defined like in the previous lemma (Z = Y).

Then F(4) < ¥,,.

Proof. Let 7j € F(A4). According to the lemma 2.8, ij belongs to ¥,. Further, for
every ke N there exist such integers I;, I, that Iy £ —k, I, 2 k and (J, 415 ---
v ¥1)€A, (Fips oo Fiyen—1) € A. That implies, that such i, <1, £ ~k, i, =
= I, = k, that f(%,,, y;,) # A4, f(%,,, 7:,) # A. Therefore fje ¥,,.%

The lemmas 3.2 and 3.3 show us that in some cases we could achieve n(F(A4)) = 1
(by taking a sufficiently large n) and then A(FA)) = g(Y,,) = 1.

4. THE FREQUENCY OF ERRORS

One can assume that in our transmission model we shall define the “frequency of
errors” similarly as in coding and decoding by n-tuples: on the space Y* x Z¥
(Y’ is a space of messages emited by a source and Z' is a space of messages received
on the output of the decoding automaton) we shall define a double source and the
ingegration of some weight function will be performed over the space.

In our model, in general, it need not be sufficient to consider “finite-dimensional™
weight functions; we shall have to introduce a limit weight function depending on
all coordinates, beginning with some k. Since Z = Y, we shall consider the space
Yh x YL

Definition 4.1. Let (1, 7) e Y/ x Y/, neNand letL, < {1, ..., n} x {1, ..., n} satisfy
the conditions:

L (,)eL,, (kl)eL,= either i=k, j=1,
or i<k, j<l, or i>k, j>1I,
2. (i,jyeL,=y;=7;.

Let a,{n, 7, L,) = n — h(L,) (here h denotes a number of elements in L,) and let
. =
w,(n, ) = = min a,(n, 7, L,) .
noLn

The function w, defined on Y’ x Y7 will be called the n-dimensional weight func-
tion.

Lemma 4.1. w, is a measurable function on (Y' x Y', Y/ x YT},
Proof. w, is evidently constant on every elementary cylinder, determined by
a conditions on 1-st — k-th coordinates (k = n).*

Definition 4.2. Let us define for every (1, ) e Y’ x Y’



w(n, i) = limsup w,(n, 7)

n— oo
then we shall call w the upper frequency weight function on Y' x Y.

Definition 4.3. Let ne N and w, be n-dimensional weight function on ¥’ x Y.
Let (Y' x Y, ¥Y' x Y!, ) be a double source. Then we shall call

&(w) = limsup fw,z(ﬂ’ ii) dw

oo

the upper frequency of errors of the double source.

Lemma 4.2. Let w be an upper frequency weight function on Y' x Y'. Then w is
measurable and for every (n,7j) e Y x Y the following statement is valid:

w(n, 1) = w(Tn, 7) = w(n, i) = w(T™*n, 7) = w(n, T™'%).

Proof. The measurability follows from lemma 4.1 and from the definition of w.
Let (1, i) e Y* x Y’ Then

nw,(n, i) = 1< nw(Ty, ) S nw(na) +1,

. 1 ~ . 1
w1, 71) — M w(Tn, 7) £ w,(n. 7) + —
n

which implies that w(y, 7) = w(T#, #). The other equalities can be proved in a similar
way.*

Lemma 4.3. Let B be an arbitrary Borel set. Then every section
w(B), = {fieYVi:(n,f)ew (B}, w (B, ={neY::(n,7)ew '(B)}

is an invariant set.
Proof. The validity of the statement follows directly from lemma 4.2.%

Theorem 4.1. Let (Y x Y, Y' x Y, w) be a double source and let w,(E) =
= o(E x Y, 0,(F) = o(Y" x F) for every E€Y', Fe Y\ Let w, and w, be inde-
composable.

Then ®(w) < w(y, ) for almost all (n, ) with respect o w.

Proof. Let B be a Borel set and let 7j € Y:. Then, according to the lemma 4.3,
(B e 01 1) |

Let us denote W = {ffje Y : w,(w™*(B); = 1}. From the lemma 4.2 it follows
that W is an invariant set and w,(W)e {0; 1}. Therefore

o(w'(B)) = jwl(‘VAl(B); dw, e {0; 1} .
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It is now evident, that a real number ¢ = 0 exists such that w(y, 77) = ¢ for almost
all (n, 7). Therefore

&(w) = limsup J‘w,‘(r;, ) do < Jw(n, iydw = c = w(n, 7)

ne 0

for almost every (1, 71).*
The next theorem gives the sufficient conditions for the possibility of the estimation

of the mean frequency of errors represented by the upper frequency of errors qf‘(w)
by comparing emitted and received messages.

Theorem 4.2. Let (Y', Y%, i) be an ergodic source. Let T (X Z,g.f) and
F =(X. Y. Z,4,f) be the coding, resp. the decoding automata.Let ¥ = Z, Y = Z.
Let the deszgmmons Y.y, Y1, have the meanmg introduced in § 2 for T, resp. F.
Let u(Yyy) = L. Let for every ne Yy, n ~ NC be denoted o(n) = {; let % be
defined on Yy, in a similar way and let a, o be defined on Y' — Y, resp.
¥2 - ¥,, as an arbn‘rary constant. Let A, I'(A) be defined as in the lemma 3.3
and let p(a”'(F(A))) = 1. Let (Z', o, Z') be a stationary channel with a finite
memory and with the property V, (lemma 3.2). Let us denote G, = {n'* e Y":
10, 9P e G} for every ne Y, Ge Y x Y and o(G) = [o(e™*(G,)Ja(n)) dpu.

Then for almost every (n, j) € Y x Y' (with respect to )

D(w) < win, 7).

Proof. Let us consider a source (¥’ Y’ i) defined by the relation A(E) =
= [o(Efo(n)) du. This source is, according to the lemma 3.1 and the theorem 3.1,
indecomposable (see the note after the lemma 3.1). From the conditions of the pre-
sent theorem it follows that on the input of the chancll n(F(4)) =1 and then
according to lemma 3.2, i{F(4)) = 1 on its output, which implies (lemma 3.3)
fi(Y,;) = 1. The source on the input of the decoding automaton fulfils hence the
conditions of the theorem 2.2 and therefore the measure w,(.) = oY’ x .)is
indecomposable. Since w; = p is also indecomposable, according to the theorem
4.1, &(w) < w(n, 7)is valid for almost every (1, 7) (with respect to w).*

§ 5. CONCLUSION

The author hopes that the results of this paper, mainly the theorem 4.2, possess
some technical applications e.g. in considerations about tape teleprinters and the
quality of their transmission. In fact the coder and the decoder can be considered
like finite automata with two states (the digit state and the letter state) and it seems
that all conditions from the Theorem 4.2 are practically always fulfilled. However,
applications of the above results may present some practical difficulties connected
with the absence of answers to following two questions:



1. Can be the limsup in the theorem 4.2 replaced by a limit?
2. What is the estimation of the difference w,(n, 1) — ®(w) depending on n?

(Received December 17th, 1965.)
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VYTAH

Prenos informaécii pri kédovani a dekédovani pomocou
kone¢nych automatov

JAN CERNY

V préci sa uvazuje prenos zprdv, vysielanych ergodickym zdrojom s koneénou
abecedou, cez staciondrny kandl s konednou pamitou, priCom kdédovanie a deko-
dovanie sa vykondva pomocou konecnych automatov. Tieto automaty st zobecnenim
Mealyho automatov v tom, Ze kazdej dvojici, tvorenej vstupnym pismenom a vni-
tornym stavom automatu, odpovedd niektoré vystupné slovo (pripadne i prdzdne).
PretoZe sa jednd o kddovanie, nezachovdvajice dIZku, predpokladd sa stilad medzi
vstupnou a vystupnou zpravou pri prechode medzi indexami ~1 a 0. Z tychto dovo-
dov je treba zmenit i doteraz obvykla definiciu rizika (frekvencie chyb).

V préci sa $tuduji otdzky, ako vplyva takéto kédovanie na pravdepodobnostné
vlastnosti zdroja na vystupe kodovacieho automatu a aké vlastnosti maji mat prvky
sponimaného prenosového modelu, aby bolo moZné z porovnania vyslanej a prijatej
zpravy vyslovit nejaké tvrdenie o strednej frekvencii chyb prenosu.

Jin Cerny, CSc., Univerzita P. J. Safdrika, katedra matematiky, nam. Febr. vif. 9, Kosice.
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