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KYBERNETIKA CISLO 5, ROCNIK 2/1966

Minimum of Average Conditional Entropy
for Given Minimum Probability of Error

LiBUSE BALADOVA

Minimum of average conditional entropy, for given minimum probability of error in a sta-
tistical decision problem, is derived.

The average conditional entropy is a measure of uncertainty e.g. of messages after
their transmission; the minimum probability of error is a different measure from
the former. Therefore it is interesting and useful to be able to compare these two:
quantities. The maximum of the average conditional entropy for given minimum
probability of error is well known; our task is to find the greatest lower bound of it.
This problem is a generalization of the problem I dealt in [4] with.*

First we are introducing a notation and definitions. Let

LE) =¢logé, €50, LO)=0.

(1) Let X, Y be spaces of n and m elements respectively, where n > 1, m > L.
p
2) Let fi be the set of all probability distributions on X, i.e.
y

Yux)=1, ux)z0 for pep;
xeX

fet 7 be the set of all conditional probability distributions on Y, for given x € X,
ie.:
Yuylx)=1 for xeX, vev.

ye¥

(3) Let v(x, y) be the probability distribution on X ® Y, for a fixed pej, vev,
defined by

* During the preparation of this paper for the print, I found out that V. A. Kovalevskij in {3]
had come to the solution of the same problem without restricting to f< 4. As our method of
solution essentially differs from his, we publish it.



W5, ) = e o(vf) ¢

let v(x/y) be the probability distribution on X, for given y, defined by

v(x :M
(x/5) S ote )

xeX

{4) Let H,(») be the conditional entropy on X, for given element y € Y, i.e.

Huv(-v) = ——Z}L(v(x/y» s
{5) Let H,, be the average conditional entropy on X, for given Y, i.e.

Hyy = T o0) (—E Lofx()

R
ye¥
where v(y) is the probability on Y given by

W) = T ux)vlofx) = Tvlxy).

xeX
{6) Let f,, be the minimum probability of error, i.e.
fuv = Z V(X;’ y) s
v

where
€ — 3
xp =X —{x},

and x, is defined by means of

v(x,, y) = max ¥(x, y).
xeX

{7) Let f be, for every f € <0, 1), the set of all

(;1, v) ELR®T
such that

Jw=1T1-

A. Ya. Khinchin stated in [2] that f 0, 0 £ f < (n — 1)/n, and max H,, for
F

every 0 £ f < (n — 1)[n exist and that the following equality is valid:

max H,, = — L(f) — L(1 — f) + flog(n — 1).
i

The problem we shall deal with, is the existence and value of min H,,. Knowledge

7
of this value together with the Khinchin’s assertion enables us to estimate the value
of the minimum probability of error by knowing the average conditional entropy and

vice versa.
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Lemma 1. L(¢ + 1)/ is increasing for & Z 0.

This simple lemma may be proved by means of differentiation.

Lemma 2. Let k, | be positive integers, let p,i=1,..,k, g, i =1,..., 1 be
non-negative numbers and let

Pip = MaxX p;, 4qi, = maxgq,,
i i
0<Pro<zpi, 0<Qio<z‘h’

logp; z _Iqui

B=—)p ; .
P ZP; i Xqi

Then there exist non-negative integers r;, i = 1,2 and real numbersg; > 0, | = 1,2

sothat e, + & = p;y + g4y
as well as E

1. Bz —¢L(r, + 1) — &;L(r; + 1),
2. Yopi+ Y g =67+ eaTa .
i*io iFio

Proof. [4] contains the following assertion: the minimum of the entropy H =
—Z L(y,), for given y;, = max g, is equal to:

(M + 1) L) = L{so) »
where
M= [(I - i) ;1,-;1] , He=1—-(M+1) Mg+
The proof of this assertion, being independent on the fact that Y u; is equal to | or

to another positive constant, can be employed as proof of the inequality

B = By(cy, &) + By(ey, &),
where:
Bi(er, &) = —(r} + 1) L(e;) — L(ey — rigy) + L{cy + &),
By(cy,8) = —(ry + DL(d — &) — L{c — ¢, — ry{d — &,)) +
+ Le—c +d—g),

and
CJZsz-, C:Ci+E‘Ii,

i*io i*io

€1 = Pigs &3 = (g » d=¢ +&,

o el




By means of differentiation we casily find out, that both the functions B,.(c‘, €)s 419
i = 1, 2, are concave in the whole domain of ¢,, ¢; under consideration and therefore
B = B, + B, is concave, too. [1] contains the following assertion: the minimum
of a concave function, defined on a closed interval, is equal to the value of this
function in one of the boundary points. We can easily extend this result of functions
of more variables and therefore

E(Cl, 61) = min {E(C‘I g E(Clz, 811)5 E(Q i €12) E("lz’ H12)} >
where
ey =infe;, ¢z =supey, &y =infe, &, =supeg
holds.
By the calculation*) of ¢;;, 55, i,j = 1, 2, from (*) we easily obtain numbers ry;,
I3, such that
Bleg o)) = & L{ry ;5 + 1) + &;,L(ry; + 1),

¢ = &gy + &Fa5,
q.ed.

Theorem. For every fe<0,%) the following inequality holds: inf H,, = f L(2).
Proof. {I) Let there be € Y such that:

Then we obtain: .
ify+7 and x#x,, then vx/y)=0;
ify+7, then vx/y)=1.

Therefore, in accordance with the definition,

H, = —»E{L(v(x, 7)) + L(v(xy, 7+ f).

If we denote & = v(x;, ¥), then clearly £ < 1 — f.
According to [4], for every & such that

(") rESf<(r+1)E e r=

the following inequality takes place:
Hy2B(&) = —(r+ DLE) — L{f — r&) + L(f + &).

* E.g. if we calculate from (*) ¢ = r{e; we become By(c,, &) = ¢ L(r] + 1). If, for ¢y ¢,
we calculate ey = (rhd — O)f(rh - r}) we become B, = &, L(ry + 1), q.¢ . d. At the same time
we see that the case rj = rj must be calgulated separately and this will be easily done by means
of differentiation.



420 It remains to prove that, for every r = 0, 1,2, ..., B(&) = f L(2) holds. By means
of differentiation it can be proved that BJ(¢) is a concave function for every r and
therefore in accordance with [1]

Br(f) 2 min {Br(éinf)’ Br(‘fsup)} p

where &, &.p are defined by (¥).
If r =0, then f < &, & £ 1 — f; therefore

By(£) z min {Bo(f), Bo(l = f)} 2 FL(2),

where the validity of the second inequality is evident for By(f), and, for Byt — f)
it may be verified by means of differentiation and application of Hardy’s theorem.
If r = 1, then

5z minfn, (£). 5, (L)} = min e, g2y

r+ r4+ 1

and this expression is not, according to lemma 1, smaller than f L(2).

(I1) Suppose that v(x§, y) < f for every y € Y. Let Y;, Y, be a disjoint decomposi-
tion of the space Y defined by y € Y; < v(x5, ¥) > 0, and let’s denote the number
of elements in Y, by n,. Then, according to the definition, H,(y) = 0 for every

yeY,and
oz (5l

If we put k, [ = n, p; = v(x; y1), 4 = W(x;, y2) for x;€ X, i = 1,2,.. n, then the
assumptions of femma 2 are satisfied for every y;, y, € ¥;. Therefore, for even n,
from lemma 2 follows the existence of numbers ¢; > 0, i = 1,..., n; and non-nega-
tive integers r,, i = 1, ..., ny such that

* Hy 2z Y el(r,+ 1),
i=1

Yasl—f,

ny

ZSI"l =f.

i=1

If n, is odd, then applying lemma 2 to the set Yi = ¥, — {7}, 7 ¢ y,, we obtain
€; > 0, r; = 0 such that:

n-1
H, 2z le’iL(r’i + 1)+ va(x, 7)) H,(5),
i= xeX
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iglaﬁr; =f- v(,\‘;, )7) .

Acording to (II), there exists r; such that r; > 0. Let e.g. be r{ > 0. If we apply
lemma2fork = n,p, = v(xp J)hx;eX,i=1,2,..,n,q;=¢,i=1,2,..,r +1,
we obtain &}, &3, ] and rj such that (*) holds for ¢, = ¢f, ¢, =¢, i =1,2

r -t — - ] = o _—
ny—Leg, =&, ri=rirn=ri=2..,n—1r, =r.
i=1,...,ny, beobtain:

Therefore (*} holds for every n;. If we put: ¢ =¢
< o+ 1
Hoz 3o <Lt 1)

ry

LIS

Let r = min r; = 1; then according to lemma 1, the following inequality holds:

fL(; +1).

If we apply again lemma 1, we obtain:
H,, = fL(2).

As for every average conditional entropy on X, Y being given, (1) or (11} is valid, then
£ L(2) is the lower boundary of it. The method applied by us cannot be directly used

forf >+
Corolary. Min H,,, f <0, 1> exists and is equal to f L(2).
7
According to the previous assumptions, spaces X and Y contain at least

Proof.:
5. We put:

two elements, say Xy, x, resp. y,, y

F(xl) =1-f /‘(xz) =f

"()’1/)‘1) = 1—{;7, V()’z/x1) = ‘ll:sz,
Wyfxs) = 1.

and f,, satisfy the required equality.

1t is easily proved, that the values of H,,,
(Received January 27th, 1966.)
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VYTAH

Minimum stfedni podminéné entropie pro danou nejmensi
pravdépodobnost chyby

LiBUSE BALADOVA

V préci se odvozuje minimédlni hodnota stfedni podminéné entropie pfi dané nej-
men3{ pravdépodobnosti chyby (Bayesovském riziku). Stfedni podmin&nd entropie
je mirou nejistoty napf. zprdv po priichodu kandlem, to jest po jejich pfenosu.
Podobn& nejmensi pravdépodobnost chyby je jinou mirou této neurditosti. ProtoZe
stfedni podminénd entropic neni monoténni funkci nejmensi pravdépodobnosti
chyby, nemtZeme tyto dvé veliiny pfimo porovnat. Nalezne-li se v§ak minimdlni
a maximdlni hodnota stfedni podmin&né entropie pro danou nejmensi pravdépodob-
nost chyby, bude srovndni obou veli¢in moZné, napf. téz graficky.

Maximdlini hodnota stfedni podminéné entropie pfi dané nejmensi pravdépodob-
nosti chyby je jiz delsi dobu dobfe zndma; v této prdci je na intervalu 0 < f < %
nalezena nezdpornd funkce argumentu f, jejiz hodnota je dolni dosaZitelnou mezi
viech podminénych entropii, které odpovidaji dané hodnotg f.

Dr. Libuse Baladovd, Ustav teorie informace a automatizace CSAV, Praha 2 - Nové Mésto,
Vysehradska 49.
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