Kybernetika

Karel Winkelbauer
On the asymptotic rate of non-ergodic information sources

Kybernetika, Vol. 6 (1970), No. 2, (127)--148

Persistent URL: http://dml.cz/dmlcz/124906

Terms of use:

© Institute of Information Theory and Automation AS CR, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/124906
http://project.dml.cz

KYBERNETIKA CiSLO 2, ROCNIK 6/1970

On the Asymptotic Rate of Non-Ergodic
Information Sources

KAREL WINKELBAUER

In this paper the proofs of the main theorems on the existence and explicit representation of
asymptotic rate, as introduced by the author in [15] for non-ergodic stationary sources, are newly
given, in general, for countable alphabets and in such a manner that the methods of proofs do not
exceed the frame of the theory of invariant measures.

Before proceeding to the formulation of the problem we are treating in this paper,
we shall remind some simple facts upon which the concepts given in the sequel are
based. Let us imagine such a situation when a receiver is expecting one of the messages
z belonging to a finite set Z of messages which are possible to come under the given
situation. The uncertainty of the situation described is evidently the greater, the larger
is the number of all a priori possible messages; let us denote the latter number, i.e. the
number of messages in Z, by |Z| Originally the quantity of information which is
needed to remove this uncertainty, is numerically expressed by the number log [Z],
where the logarithm is taken to the base 2; in other words, log [ZI represents the
quantity of information expressed in bits which is contained in any message z in Z
reaching the receiver. Consequently, the number log [Zf as a measure of uncertainty
may be called the logarithmic uncertainty of the set Z.

C. E. Shannon extended the original concept of quantity of information to cases
in which the uncertainty of the situation considered is caused by random factors. In
such a situation the receiver gets 2 message = when a random event E; occurs with
known probability p;. Assume that |Z| = k,

Z={z0,z, 2%} pzpz..zp; npi=1.

Let & be a very small positive number such that, from the viewpoint of the receiver,
any event composed from the events E; considered above and having its probability
less than ¢ is so unlikely to occur that its appearing is not expected and, therefore,
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not taken into account by the receiver. If such a composed event with probability
<eg is equivalent to occurring of one of the events

Ejv1: Erva, s B

so that
k

1
Y pi<e, or yp;>1—-e(1<1Zk),
i=1

i=I+1

then the receiver may take as practically certain that he receives a message z) with
index j < I. The quantity of information which is necessary for removing the uncer-
tainty contained in the situation described now cannot be for e sufficiently small
greater than the number log I, which is the above measure for uncertainty correspond-
ing to the reduced set of messages; cf. the pioneer work of Shannon [13].

Let us suppose that [ is the smallest number that satisfies the inequalities given
above, which means that, moreover,

-1

Yrsl—e.
i=1

Let us denote the smallest I by L(e). The number log L(a) represents the minimum
number of bits of imformation that is needed to remove the uncertainty of the situa-
tion considered, provided that we admit an error the probability of which is less than e.
In the author’s paper [15] is proposed to use the quantity log L(¢) as a measure of
uncertainty at the e-level of the error admitted; the number log L(e) may be called
the logarithmic uncertainty at the e-level of the set Z together with the probability
distribution p;.

One of the fundamental problems of information theory is the question how to
characterize the quantity of information which is contained in a source of messages
the statistical properties of which are known. Shannon and McMillan have shown
that the best characterization of information quantity for stationary sources discrete
in time and having finite alphabets is the entropy rate, provided that the sources
under consideration satisfy the condition of ergodicity. The author has shown in [15]
that the entropy rate does not express the effective level of uncertainty if the stationary
sources under consideration are not ergodic; the new measure of uncertainty the au-
thor has treated in [15] is based upon the concept of logarithmic e-uncertainty as
described above. This new quantity was called by the author the asymptotic rate and
shown to be effective and coinciding with entropy rate on the closer class of ergodic
sources.

A stationary information source discrete in time the statistical properties of which
are described by a probability distribution g, produces at discrete moments of time
letters belonging to a discrete alphabet, say A, the probability of the source production
being independent of time. If A" means the set of all messages composed of n letters,



then the number
1

o —log L,(¢)
n

represents the logarithmic uncertainty at e-level of the set A" related to one letter of
n-dimensional messages. The author has shown in [15] (theorem on the existence
of asymptotic rate) that the sequence (1) converges to a limit, say H,, where H,
monotonically increases for ¢ decreasing to zero to a limit H, which is then called the
asymptotic rate of the source under consideration. As to the main properties of the
quantity H, they may be deduced as corollaries from an explicit formula derived in
[15] (theorem on explicit definition of asymptotic rate): the formula states that the
asymptotic rate of a stationary source equals the essential supremum of the entropy
rates of its ergodic components; in symbols:

H = ess. sup H(y,),

where H(u,) designates the entropy rate of the ergodic component g, of the source
described by the probability distribution p. Especially, if the source contains only
a finite number of ergodic components, i.e.

fm
.”225_,‘}1,'1 éj>01 ji=12...,m,
i=1

the asymptotic rate of the source is expressed as the maximum

H j:;,r;zi)f'm H(yy) .

The methods of the proofs of both the main theorems on asymptotic rate quoted
in the preceding text that are used in [15] are based upon considering together with
information sources also communication channels which are to transmit the informa-
tion produced.

Undoubtedly, communication channels are a more complicated object for investiga-
tion compared with information sources which represent in case of stationarity nothing
else than invariant measures in the space of messages. The problem arises whether it
is in principle possible to base the proofs of the main theorems on the existence and
explicit representation of the asymptotic rate exclusively on methods which do not
exceed the frame of the theory of invariant measures.

The problem is studied in the following four sections of this paper; the first two
are of preparatory character, developing the main tool needed in the investigation.
In the third section are derived two basic lemmas necessary for the proofs of the main
theorems quoted above, which are stated in the last section.
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. RESTATEMENT OF McMILLAN’S THEOREM FOR DISCRETE
ALPHABETS

In this paper we shall follow the terminology and notations used by the author in
[15]. Throughout the entire paper we shall study only discrete information sources
with discrete alphabets, i.e. such information sources that produce at discrete mo-
ments of time letters belonging to a finite or denumerable alphabet. Without a loss
of gencrality we may assume that letters are represented by natural numbers.

The set of all natural numbers is denoted in the sequel by N; the set of all integers,
as usual, by I. Since the symbol B4 designates the class of all mappings of a set 4
into a set B, the sct N’ contains all doubly-infinite sequences of natural numbers, and
z; means the i-the member of sequence z € N’ (i € I). The basic space under considera-
tion is the measurable space (N, FT), where F means the class of all subsets of the
set N, and where F' is the o-algebra of subsets of N' generated by the class of one-
dimensional cylinders, i.e. sets of the form

{z:zeN',z;eE}, iel, EeF.

A discrete information source, or briefly a source, is then defined as a probability
measure given on the ¢-algebra F.,

The coordinate-shift transformation will be denoted by T it is defined by the
property that (Tz)i =z,.1, ze N', iel. A source p is a stationary one if measure
w is invariant with respect to the transformation T, i.e. if p = pT ™' (cf. [1], § 39).
We shall say that a source p has a finite alphabet if

(L.1) (L2, .. =1

for some natural number k. The entropy rate of a stationary source is defined as the
limit

(1.2) H(p) = — Ii]r"n (1/n) J‘log #zor Zoe s Zuq ] dutlz)
where

n—-1
(1.3) (20> 21s v Zu1] = N{x:xeN, x;, =2}, zeN';
i=0



all the logarithms in this paper will be to the base 2. The existence of the latter limit
is a consequence of the invariance of measure u (cf. [2] or [4]). As well-known, if p is
a stationary source satisfying condition (1.1) of finiteness of its alphabet, then its
entropy rate fulfils the inequality

(14) H(p) < logk.

Throughout this paper we shall consider only stationary sources; nevertheless, the
methods of proofs given in the sequel are valid without change also for periodic
sources. For convenience, we shall denote the class of all stationary sources by
M gy

Our considerations will be based on the well-known McMillan’s theorem which
was proved by its author for stationary sources with finite alphabets. Since we are
dealing more generally with sources with countable alphabets, we shall need a gener-
alization of the theorem mentioned for the case of infinite alphabets. A general

" version of McMillan’s theorem for infinite alphabets was first proved by A. Perez
in [10] (cf. also the treatment [11] by the same author); the methods of Perez’s
proofs are based on the investigation of his concerning the relations between martin~
gales and generalized entropies (in [9]). However, we shall need a special formulation
of Perez’s version of McMillan’s theorem which we shall state and prove in this
section.

First we shall define the concepts that are necessary in the statement of the theorem.
If J is a non-empty subset of I, let F/ be the g-algebra of sets in space N¥ which is
generated by the class of one-dimensional cylinders with coordinates in J, i.e. all
sets of the form {z:z;e E}, ie J, E€F. For the sake of simplicity, we shall put

F- — Flsienis-13

If pe 4, aeN,let us denote by §,(+, a) the conditional probability of the event
{z:zy = a} under the condition F~ which is uniquely determined by the equations

(1.5) f Gz, a)du(z) = w(Enf{z:zo=a}), EcF~
E
modulo measure g restricted to the class F~. With the aid of the latter conditional

probability we shall define the function g, by the equation
(1.6) 9,2) = 9z z0), zeNT (ne.dy);

z, 1s, of course, the zeroth coordinate of point z.

Now we shall assume that we are given a stationary source p with finite entropy,
ie. H(,u) < +o0. In the following text we shall show that then the entropy rate of the
source u may be expressed by the formula

(1.7) H(y) = — flog 9,(z) du(z) .
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From the finiteness of entropy rate and from (1.7) it follows that, according to the
individual ergodic theorem, there exists the limit

(1.8) h(z) = — lim (l/n)niilog 9T’z), zeN'[u]
n i=

(as to the symbol [u]. cf. [1], § 30) satisfying the equality

19) [ty a1 = .

Now we are able to state Perez-McMillan’s theorem in the form:

Theorem 1. If ju is a stationary source with finite entropy, i.e. H(u) < + oo, then
the sequence —(1/n)log p[z, z,, ..., z,_,] converges in the mean to the function
h,(z) with respect to u; in symbols:

ﬁ—(l/n) log p[zo, 24s vvvs 2oy} = hy(2)| du(z) = 0 for n— oo.

Proof. In the entire proof, in which we shall show also the validity of the formula
(1.7), we shall employ the notations given in [10]. Throughout the proof we assume
that we are given a source p € J, with finite entropy.

1. We shall set ¥~ = FUE1i29 } et y5 define on X~ the measure A by the property
that

1) MENF)=E).u(F), EeF~, FeF9

We will show that measure y restricted to the class X~ is absolutely continuous with
respect to A; in symbols:

(2) p< <A(X7).
Let E€ X7, A(E) = 0. The sct E may be expressed in the form
E-y@Enld).
E, = {z:{z.}ic-1 = {x:}ic-1 forsome xeEn [a]},
where we have put [a] = {z: z, = a}. Since E, e F~ and .
0 = ME, n [a]) = u(E,) - ula]

(cf. (1)), we obtain that u(E, n [a]) = 0. The latter equality implies that u(E) = 0;
hence (2) holds.



Let g be the (Radon-Nikodym) density 133
dp a
3 = (¥X7).
® 9=27%)
It is an immediate consequence of (1.6) that (cf. (1.3))
@ g(z) = gL(zl, ze N'[u, 7]

H Zo]
Let EeF, aeN, u[a] > 0. Using (1.5) and (1), we obtain from Fubini’s theorem

that
f Ental ?[% 4z) = _[m UE % d,u(z)] du(x) =

— WEA[a]) = j o(2) di(z).

E nfla]

If E e X7, then the above expression of E with the aid of sections E, will yiefd from
the latter relations the equality

J 93 50 = f g(2) di(z) .
£ #[20] E
Hence it follows (4) as a consequence of (2).

IL. Let w be the source that is uniquely determined by the condition that

itn—1

5 wlziz;=afi£j<i+n)}= ula]]; a;eN, iel, neN;
i J 11 J J
i=i

According to Theorem 3 stated in [ 10] and the relation (2) there exists the generalized
entropy H,, of the source u with respect to measure w which may be expressed in the
form

(6) H, = — Jlog g(z) dufz) = lim L Ho(p, X3),
n N
ffg - F(i:v‘c!,ogi<n}
where
) Ho, ) = — jfn log f, dw = — jlogf" a;

the function f, represents the (Radon-Nikodym) density
_du

®) : fo=E@); n=12..
w
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The latter function may be expressed in the form

Ao MZo 710 2] e N .
(9) £i2) #[Zo]‘T[Zl]hm P , zeNp, %]

this formula is an immediate consequence of (8) and (5). Let us set for the sake of
brevity

(10) H, = =Y cvep[z] log p[z] = — J‘Iug 1z <oer Zuo1] du(2) .

Since H, < H,.y, H, < nH; (cf., for example, [17],§ 6), it is clear that H(y) < +o
holds if and only if H, < + oo for n = 1, 2, ... Consequently, it follows from the
finiteness of the entropy rate of the source p that the difference H, — nH, is de-
fined, and is finite and non-positive. By an easy calculation we obtain from (7), (9).
(10) the equality

H,(u, %) = H, — nH,

so that the generalized entropy may be expressed by the formula
(11) H, = H() - H;

hence H, is finite and non-positive. The relations (6), (10), and (4) immediately yield
the equality

H,+H =— Jlug g,(z) du(z) .
We have shown the validity of formula (1.7), as follows from (11).
II1. As we have found, the finiteness of the entropy rate H(u) implies the finiteness

of the gencralized entropy H,,. Applying now the individual ergodic theorem to the
function g, we have that there is the limit

n=1
(12) h(z) = — lim 1Y log g(T%2), =z e N'[u]
n N j=0
satisfying the integral relation
(13) jh(z) du(z) = H,.

Since the quantity H, is finite as well, we may apply to the function log ufz4] the

mean ergodic theorem (cf. (10) for n = 1) so that we get that the sequence (1/n).
n=1

. Y. log u[z,] converges in the mean (with respect to ) to the limit h(z) — h,(z)

j=o0
as follows from (1.8) and (12).



Owing to (2), (5), and (11), the assumptjons of Theorem 4 stated in [10] are ful-
filled so that Perez’s version of McMillan’s theorem is valid: it says that the sequence
—(1/n) log f, (cf. (8) and (9)) converges in the mean (with respect to p) to the func-
tion h. According to (9) we have

1 1
(14) - ;logf,,(z) = - ;10g Wzos 21y oo Zaes ] +

1 n—1
+— Ylogu[z], zeNTu].
n j=o
It is easy to see that the difference
1 1ot
— —log fifz) — = Y log y[z;]
n n j=0

converges in the mean to the limit k,(z); from here and from (14) the validity of the
assertion of the theorem immediately follows, Q.E.D.

2. ON THE ERGODIC THEORY FOR DISCRETE ALPHABETS

This section is devoted to a closer investigation of the function h, which appears
in our statement of McMillan’s theorem (cf. definition (1.8) and Theorem 1). The
investigation will be based on the ergodic theory of invariant measures in the basic
space (N”, F').

For convenience, we shall denote by V, (n € N) the class of (clementary) (2n + 1)-
dimensional cylinders in coordinates running from —n to n, i.e. all sets expressible
in the form

(2.1) N {z:zeN,z;=a}, (a_,.....a,)eN" ",

Obviously the class V,, is a countable partition of the basic space. The union of all
the classes V, will be designated in what follows by V:V = (J V,.

neN
A point z in the basic space N” will be called quasi-ergular if and only if there is
an invariant measure g, i.e. jt, € 4, (a stationary source), having the property that

n—1
(2.2) uA(E) = lim (1/n) ¥ 55(T’z) foreach EeV;
n j=0 .
here y; means the characteristic function of the set E. It is evident that the measure
1, is uniquely determined by the quasi-regular point z and by the condition (2.2).
We shall designate the set of all quasi-regular points in the space N by Q.

135



136

Remark. The latter definition of quasi-regularity is a correction to the definition
(8.4) given in the author’s paper [15], which is not sufficient. If we define the set Q,
by the equation

(2.3) Qo = N {z: ze N, Tim y¥(z) = lim ¥"(2)} ,
Eev n »

where we have put

n—1
(2:4) 18(z) = (Um) L 2(T72)
then we have the set inclusion Q, o @, but the equality Q, = @ is not valid: it is
easy to show that, for example, the point z with coordinates

z;=1 for i<0; zy;=1, zy4, =i for i>0 (iel)

belongs to Q,, but it does not belong to Q. The following lemma shows that the con-
cept of quasi-regularity as defined above may be used to develop the ergodic theory.

Lemma 1. The set Q of quasi-regular points is measurable, i.e. Q € F, and
w(Q) =1 for every pe M.

Proof. It follows from the countability of the class V and from the individual
ergodic theorem that the set Q, defined by (2.3) is measurable and of the property
that 4(Q,) = 1 for any p e .4, It may easily be shown that the set function g, de-
fined by (2.2) on V for such a point z € Q,, that satisfies the relations

Y limy’(z) =1 forcvery neN,

EeVn n

uniquely determines an invariant 1ieasure on F (cf. the well-known Kolmogorov’s
theoren, e.g.,in []],§49; the invariance is, of course, an obvious consequence of the
definition of the set function p.). This fact enables us to express the set Q in the form

(2.5) Q=N {zze Qo 3 limz{z) = 1] .
n= eV N

Hence Q is a measurable set.
Given 0 < & < 1 and p e A,,. let Fi(c) be a finite union of sets belonging to the
partition V, (k € N) which satisfies the inequality '

Q)] o pFe) > 1= (s.2702.
Let us set (cf. (2.4))

(2 0e) = {z:2€ Qo lim y¥y (2) > 1 —&. 274},



Since H(Qo) = 1, it follows from the individual ergodic theorem applied to the char- 137
acteristic function of the set Fy(e) that

(3) J lim 3@y du = p(Fy(e)) .
Qo

n
From the relations (1) and (3) we obtain that

@) Q) > 1 —e.27%;

if the contrary were true, it would be

f im xp,y dp £ 1(Qufe)) + (1 — e.27%) u(Qi(e)) =
Qo

= 1= Q) S 1 - (.27,
which is the desired contradiction. If we set
%) K, :k61Qk(8) = Qo
(¢f. (2)), we immediately get from (4) that u(K,) > 1 — &. Let
(6) K :sg Kjs; hence p(K)=1.

Now we shall show that Q > K so that(6) will imply that p{Q) = 1, which is to be
proved. Let z € K so that z € Ky for some natural number s. Writing ¢ = 1/s and
assuming on the contrary that z does not belong to Q, we obtain from the set inclu-
sion (5) the inequality (cf. (2.5))

YlimPE) s1-06<1

FeVi n

for some ke N and 0 < § < 1. Let us choose m = k such that e.2™™ < §. Since
z € Q,(e), as follows from (5), it must be

Y olimxP(z) z lim yP(z) > 1 —e.27m 21 - 4.
EeVm n n

On the other hand it holds for every F € V, that

lim y§(2) £ lim 2{(z) ;
(EeVm,E<F) n n
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itis because m = kand because V,, is a subpartition of V,. Summarizing the preceding
facts, we deduce that

T lim P(z) > 1 - 5.
FeVi n
which is the desired contradiction. This proves the assertion of the lemma.

A stationary source u is, by definition, ergodic if it satisfies the condition of ergodi-
city that

(2.6) TE = E and p(E) >0 implies u(E)=1

for E € FL. A point z in the basic space N is called regular if it is quasi-regular and
if the measure p, uniquely determined by (2.2) is an ergodic source.

Now we shall summarize the fundamental results of ergodic theory that will be
needed in the sequel, in three lemmas. In the lemmas the set of all regular points in
the space N is denoted by R.

Lemma 2. The set R of regular points is measurable, i.e. Re F', and p(R) = 1
for every pe M.

Lemma 3. For every ergodic source y the set of those regular points z for which
Kz = i, is measurable and is of p-measure one; in symbols:

plzizeR . =p} =1.

Lemma 4. For any E € F, 1,(E) is a measurable function of variable z on R, and
u(E) = j u-(Eydu(z) forevery pe.#,,.
R

More generally, for any non-negative measurable function f on the space (N', F)
the integral [f dp, is a measurable function of variable z on R, and

wE) = J. u(E) dufz) for every pe .
R

Proofs of the Jemmas are based on Lemma 1 and are given in [15] (cf. also the
systematic survey in [5], and the original contribution [3] where are studied compact
dynamical systems only);

Now we are prepared to investigate the function h,. The desired property we shall
need in the sequel is stated in the following lemma. The method of the proof of the

lemma is due to K. R. Parthasarathy (cf. [6] and [8], where the sources jnvesti-
gated have finite alphabets).



Lemma 5. If pe M, H(u) < + oo, then 139
u{z:ze R, hfz) = H(p,)} = 1;

in words, h,(z) equals with probability one the entropy of ergodic component p,
of any given stationary source p with finite entropy.

Proof. For aeN, let
1) E,={z:ze R pix:xe N\, g (x, a) = §,(x, a)} = 1};

cf. (1.5). The set E, is measurable by Lemma 2 and 4. According to Theorem 2.6 in
[6] (the proof is valid also for countable alphabets) it holds that

2 WE,) =1 forevery pe.,.
From (2) it follows that for

3) E=NE,, uE)=1 forevery pe.#,.

asN

Let p be a stationary source with finite entropy: H() < + oo0. Owing to (1) we have
for any ze E

1

1%

“z{x: g“(x) = gllx(x)} =
(Y {550 = 0045 0) = B ) =

= Y e % = 0. g,(v.0) = 6,05 a)) 2 ¥ pla] = 1.
aeN aeN
Hence it follows that

@) o plx:xeN g (x) =g, (x)} =1, zekE.

As a consequence of Theorem 8.2 stated in [ 15] we obtain that, provided the entropy
rate H(u) is finite,

w{zize R H(p,) < +o0} = 1.
Putting

(5) F=Enf{zizeR H() < +o},
we deduce from (3) the equality

(6 WF) =1.

Now let z € F. Relations (4) and (5) yield the equality

) wix:xeN', h(x)=h,(x)} =1 (zeF).
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If ze R, H(u,) < +oo, it follows from the ergodicity of p, and from McMillan’s
theorem as given in the preceding section (cf. Theorem 1) that

hy(x) = H(u), xeNTu]

(the latter fact is a consequence of the invariance of h,). From (7) and from the latter
relation we deduce that

u{x:xe N h(x) =H(u)} =1, zeF.
Applying Lemma 3, we can write the latter equality in the form
pfx  xeR, po =, hy(x) = H(u} =1, zeF.

Integrating with respect to g and using Lemma 2 and Lemma 4, we immediately ob-
tain that (cf. (6)) )

jpuz{x ixeR, hy(x) = H(,)} du(z) =

=pf{x:xeR, h(x) =Hp)} =1,

which proves the assertion of the lemma.

The following theorem is an immediate corollary to both Lemma 5 and Theorem 1
of the preceding section; it constitutes the version of McMillan’s theorem for count-
able alphabets that will be used as the main tool in the proofs of the basic lemmas
stated in the following section.

Theorem 2. If u is a stationary source with finite entropy, i.e. H(u) < 400, then
the sequence —(l/n) log u[zu, Zyyeuns z,,__1] convergences in the mean (with respect
to 1) to the function H(.), i.e. to the entropy rate of the ergodic component yi, of
the source given.

Let us point out that we shall use in the sequel only the fact that the sequence
—(1/n)log u[ 2o, zy, ..., Za~1] converges in probability to H(u,) with respect to the
given stationary source p.

3. BASIC LEMMAS

After the preparations made in the preceding sections, we can proceed to the main
programme of this paper.

Throughout the remainder of this paper the symbol ]M ] means for a finite set M
the number of elements in M, and for an infinite set we define lM] = +o0. If
uwe Mg, ne N, we put

3.1) #(E) = p{z: ze N', (20, 215 ..., Z,4) € E}, E < N",



and define the n-dimensional e-length of the source u, in symbols L,,(E, n), by the
relation

(3.2) Le, ) =min {|E: Ec N y(E)>1—¢}, O<e<l.

The number L,(z, 1) represents the minimum number of n-tuples composed of letters
of our universal alphabet N whose total probability exceeds 1 — .

Lemma L. If pe M, and if ¢ is a finite real number, then the assumption that
1) pizizeR H(p) S ¢} =1
implies the inequality
(2) Bim (1/n)log L(e,p) S ¢ for O<e<1l.

n

Proof. If p is a source satisfying the assumptions of the lemma, it follows from
Theorem 8.2 given in [15] that the entropy rate H(u) < ¢ < +oo. Then it is possible
to apply Theorem 2 of the preceding section; we obtain that the sequence —(1/n) x

x log u[zo, ..., Z,— ] convergences to H(y,) in probability modulo p. Let 0 < & < 1
and & > 0. Then there is an index n, such that for any n = n, the inequality

{z:zeR, —(1/n)log u[zg, ..., Z,-1] < H(w,) + 6} > 1 — &.
holds. Given n = n,, we deduce from (1) and from the preceding inequality that the set
(3) E, = {z:z2eN" p(z) 2 27°C*D}
has the property that p,(E,) > 1 — & (cf. (3.1)); it is because H(x,) + 6 < ¢ + 6 for

z & Rfu]. From the latter fact and from the definition (3.2) we obtain that |E,| = I, =
= L,(e, 1). On the other hand, owing to (3.1) and (3), we have

12 pBy) = 3 ml(2) 2 |E,| . 27779
z6En

Combining the inequalities which were found, we get that
[, <27 je. (Ufn)log Lfe,p) S c + 6.

The latter result implies the desired inequality (2) because of the arbitrariness of J,
Q.E.D.

The second basic lemma is a dual version of the first. There is a difficulty in the
proof of this dual version that we can use Theorem 2 only in case the entropy rate of
the source considered is finite; if not, we must approximate the source by a source
with finite entropy. This is possible to do, as pointed out by Parthasarathy in [7]
where an approximation is based on results given in [12] and [14].
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Let us define the measurable transformation of the basic space (N’, F'), denoted
in the sequel as 1, (k € N), by the relations

(3.3) (uz)i =z for z;<k, (nz)y=k+1 for z;>k (iel).

If u is a stationary source, then the measure uty ' is again a stationary source which
has a finite alphabet and finite entropy rate satisfying the inequality

(34) H(uzi ") < log (k + 1),

as follows from (1.4).

Lemma 6. If ue A, then the sequence of entropy rates H(uty '), k = 1,2, ...,
monotonically increases to the entropy rate H(y).

Proof. The assertion of the lemma coincides with Theorem 1 stated in [7].
Lemma IL. If pe #,, and if c is a finite real, number, then the assumption that
6y} p{zize R H(p) = ¢} =1
implies the inequality
) Lim (1/n)log L(e, p) Z ¢ for 0 <e<1.
n
Proof. Let u be a source satisfying the assumptions of the lemma. Given ¢,
0 < & < 1, choose & such that
(3) e+2 <1, & Z3e.
Let 6 > 0. Choose &' > 0 such that
4) 46" < 8.

If we apply Lemma 6 to the source g, for z € R, we obtain that (cf. (3.3)) the sequence
H(p,7z *) monotonically increases to H(p,) for k — oo; hence it follows the set in-
clusion

{zize R H(i,) > ¢ — &} =kGl{z: ze R H(pt) > ¢ — 5.
Then we deduce from (1) that there is k4 such that for k = kg
) plz: ze R H(pt, Y > c— 6} > 1 —¢.
It is easy to see that (cf. (2.2))

utel = p,, for zeR nyzeR (keN).



Hence we get according to (5) that
(6) pr{zize R Hp) > c— 8} >1—¢ for k 2k,

since (R n 1 '(R)) = L. |

Now let us choose k = k, fixed. Applying Theorem 2 to the stationary source
ptg ' =, we have that the sequence —(1/n)log u'[zo, ..., Z,—1] converges in
probability to H(y,) with respect to g; cf. (3.4). Consequently, there is n, such that

(cf. (3)

@) he 2 —2log (1 — & — 2¢)

k)

and that, for any n = ny,

(8) w {z: zeR, — %log lzo0 .o Zpm1] 2 H(w) — 5’} >1—¢.
Combining the relations (6) and (8) for p' = yut; !, we obtain the inequality
) W {z: zeNY, — i—log W[zos oo Zpon] > ¢ — 26/} >1 -2
for n = ng. Putting for a given n = ngy

E, = {z: zeN", pz) < 27""2}

we deduce from (9) the relation

(10) t(En) > 1 — 2¢".
Let F, = N" be such that
(11) |Ful = L(e w), mafE) > 1~ &5

the existence of such a set is guaranteed by (3.2). It follows from Lemma 1.4 given
in [15] that

(12) L,,(é‘, [L’) = L’n(gﬂ .l”lx—l) = L“(E, H) =1,.
From the inequalities stated in (10), (11), and (12) we deduce the relations

{—e—2¢ < wE,NF) < |E,nF,|.27¢72 <

< |Fy| 27" < g pone2)
= |[Fnl « =ty s .
Owing to (7), we obtain from the latter inequalities that

log 1, > n(c — 28") — 4né .
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Finally, using (4), we deduce the relation
1
—logL(s,u) >c~ 6,
n

which implies the desired inequality (2) because of the fact that § was chosen ar-
bitrarily. This proves the lemma.

To derive the main theorems, we shall make use of the following two lemmas which
are a direct consequence of the definition (3.2).

Lemma 7.If0 < ¢ < 1, and if p, uy, and u, are stationary sources such that

WE) = (1 = & ulE) + Epp(E), EeF,
then

1
B L log L(e, ) < T ~log Ly{e — & ) for &<e<1.
non non
Proof. The lemma is an immediate corollary to Lemma 1.2 given in [15].

Lemma 8. If 0 < & < 1, and if W', uy, and py are stationary sources such that

W(E) =& uy(E) + (1 — &) u4(E), EeF,
then

1
mllogLn(s,u')zm—logLn(i,ﬂQ) for 0<e<?'.
n R n N &

Proof. The assertion of the lemma coincides with Lemma 5.2 stated in [15] for
the special case of stationary sources.

4. MAIN THEOREMS ON ASYMPTOTIC RATE

In this section we shall apply the lemmas of the preceding section to prove the main
theorems on the existence and explicit representation of the asymptotic rate.

Theorem 1. Let p1 be a stationary source. Then it holds the inequality

1 1
Tim — log L,(e, #) < lim—log L,(e;, 1) for 0 <e, <eg <13
n n n n

consequently, the limit

tim L 1og L&, p) = Hn)
n h



exists except at most a countable set of numbers ¢. The function H (1) monotonically 145
increases for e ~ 0 to a limit, which will be denoted by H(u) and called the asymp-
totic rate of the source ji.

Proof. It is sufficient to prove the above inequality. In the proof we shall repeat the
method used in [15], but applying the basic lemmas of the preceding section which
are based on the ergodic theory of invariant measures only.

Let pe M. Let 4, and 1, be chosen arbitrarily such that 0 < 1, < 4; < I.
If ¢ is a non-negative extended real number, let us set

1) Zyc) ={z:ze R, H(p.) £ ¢},
® Zy(c) = {zize R, H(w,) = ¢} .

Define the numbers ¢, and ¢, by

¢, = infle: p(Z(c)) 21— A},

c, - sup {¢: w(Zo(c)) = 4, .

\

Then we have

(3) 1= C=uZeNz1~4 >0,
“@ E=uZy(c,)) =22, >0.
Let uy, fa and uy, ft5 be the sources which are defined by the equations
&) #(E) = (1 = 97" u(E n Zy(er))
© WG(E) = (&) E ~ Z(cs)), EeF:
o == -9u] i >0,
A (I R VR I A

The stationarity of the sources just defined follows from the equality pr,=p,
(z € R); let us mention that the latter fact guarantees the invariance of the sets (1)
and (2). If ¢y < + oo, then the source y, satisfies the assumptions of the first basic
lemma for ¢ = ¢y, as follows from (5), (3), and (1); we have

™ Hm (1/n)log L,(e, pt,) S ¢, 0<e<1;

the latter inequality remains valid also for ¢; = +o0. Now applying Lemma 7 and
the inequality & < 4; (cf. (3)), we deduce from (7) the inequality

(8) Tim (1/n) log L(e, p) £ ¢; for A <e<1.
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If ¢, < + o0, then the source pj satisfies the assumptions of the second basic lemma,
as follows from (6), (4), and (2); hence we obtain that

) lim (1/n)log L(e, 1) 2 ¢,, 0 <e<1;
»

the latter inequality remains valid for ¢, = + o0 since in such a case the source p)
satisfies the assumptions of Lemma II for any finite ¢ so that the given lower limit
cannot be finite. By an application of Lemma 8 and the inequality &' 2 1, (cf. (4))
we deduce from (9) the relation

(10) lim (1/n)log L(e, ) Z ¢, for 0 <e<i,.
»

From the definitions of ¢; and ¢, it follows that
wlzize R H(u) > ¢} £ 2, <4y S pfzize R H(,) = ¢4} ;

hence the inequality ¢, = ¢; must hold. The latter inequality together with the in-
equalities (8) and (10) imply the first assertion of the theorem, Q.E.D.

Corollary. If pu is an ergodic source, then the equalities
lim (1/n) log L,{e, 1) = H(x) = H(p)
n
are valid for any ¢,0 < e < 1.

Proof. It follows from Lemma 3 that the numbers ¢; and ¢, both equal to the
entropy rate H(u) independently of which 2, and 1, were chosen.

Let us make the convention that the essential supremum of a measurable function f
on a measurable set Z with respect to a probability measure ¢ on F¥ will be denoted as

ess.supf(z) = inf{t:p{zize Z, fz) S 1} = 1}.

zeZ[p]

Theorem II. The asymptotic rate of a stationary Source u equals the essential
supremum of the entropy rates of its ergodic components:

H(p) = ess. sup H(p,) .
zeREn]

Proof. Let us put h = ess. sup H(u.). Let us assume that H(p) >"h, i.c. H(i) >
> ¢ > h for some ¢. From the inequality # < ¢ we deduce that the source satisfies
the assumptions of Lemma I for ¢, which yields the contradictory inequalify H(u)<c.
Then the inequality H(i) < h must be valid.

Assume that H(g) < h; ie. H(u) < ¢, < h for some real number c,. From here
and from the definition of the essential supremum we obtain that p(Z,(c,)) = & > 0
(cf. (2) above). Defining the sources uj and p} formally in the same way as in the proof



of Theorem I (cf. (6)), we deduce from Lemma II applied to p} an inequality of the
form (9) which yields together with Lemma 8 the contradictory inequality H! (u) = cy.
This proves the {heorem.

As a final remark, let us mention that an axiomatic definition of the asymptotic
rate was given by the author in his paper [16].

(Received December 1st, 1969.)
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VYTAH

O asymptotické neurCitosti neergodickych zdroji informace

KAREL WINKELBAUER

Autor ukdzal ve své prdci [15], Ze entropie neni vhodnou informaéni charakte-
ristikou pro ptipad neergodickych staciondrnich zdroji informace, a proto zavedl
novou charakteristiku informaéni vydatnosti, kterd je zaloZena na pojmu logaritmické
e-neurditosti a je nazvdna asymptotickou neurditosti staciondrniho diskrétniho zdroje
informace. JiZ v préci [15] bylo ukédzdno, Ze asymptotickd neur&itost, a nikoli entro-
pie, md viechny potiebné vlastnosti efektivni miry mnoZstvi informace.

Ditkazy uvedenych duleZitych vlastnosti asymptotické neurditosti opiel autor v ci-
tované prdci o obecnou teorii pfenosu infermace diskrétnimi sdglovacimi kandly.
AvSak staciondrni zdroj informace pfedstavuje z matematického hlediska invariantni
miru, tedy matematicky objekt znadn€ jednodusi, nez jsou sdé€lovaci kandly. Vznikl
problém, zda je principidlng moZzné zaloZit diikazy o existenci a explicitnim vyjddfeni
asymptotické neurditosti na metoddch nevybodujicich z rdmce teorie invariantnich
mér.

Tento problém je feSen v této stati, a to v kladném smyslu. Ukazuje se, Ze dlikazy
hlavnich v& o asymptotické neurditosti Ize opfit o jemn&j§i prostfedky teorie inva-
riantnich mér, jimiZ jsou ergodickd teorie a upfesnénd verse McMillanovy véty.

Doc. RNDr. Mg. Mat. Karel Winkelbauer, DrSc., Ustav teorie informace a automatizace
CSAV, Vysehradskad 49, Praha 2.
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