
Kybernetika

Karel Winkelbauer
On the asymptotic rate of non-ergodic information sources

Kybernetika, Vol. 6 (1970), No. 2, (127)--148

Persistent URL: http://dml.cz/dmlcz/124906

Terms of use:
© Institute of Information Theory and Automation AS CR, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124906
http://project.dml.cz


K Y B E R N E T I K A ČÍSLO 2, R O Č N l K 6/1970 

On the Asymptotic Rate of Non-Ergodic 
Information Sources 

KAREL WINKELBAUER 

In this paper the proofs of the main theorems on the existence and explicit representation of 
asymptotic rate, as introduced by the author in [15] for non-ergodic stationary sources, are newly 
given, in general, for countable alphabets and in such a manner that the methods of proofs do not 
exceed the frame of the theory of invariant measures. 

Before proceeding to the formulation of the problem we are treating in this paper, 
we shall remind some simple facts upon which the concepts given in the sequel are 
based. Let us imagine such a situation when a receiver is expecting one of the messages 
z belonging to a finite set Z of messages which are possible to come under the given 
situation. The uncertainty of the situation described is evidently the greater, the larger 
is the number of all a priori possible messages; let us denote the latter number, i.e. the 
number of messages in Z, by \z\. Originally the quantity of information which is 
needed to remove this uncertainty, is numerically expressed by the number log \z\, 
where the logarithm.is taken to the base 2; in other words, log \z\ represents the 
quantity of information expressed in bits which is contained in any message z in Z 
reaching the receiver. Consequently, the number log \Z\ as a measure of uncertainty 
may be called the logarithmic uncertainty of the set Z. 

C. E. Shannon extended the original concept of quantity of information to cases 
in which the uncertainty of the situation considered is caused by random factors. In 
such a situation the receiver gets a message z 0 ) when a random event Es occurs with 
known probability pj. Assume that \Z\ = k, 

Z-{z<1>,-<a>,...,z<»}". Pl^p2^...,^Pk; I > , = 1 . 
J = I . 

Let e be a very small positive number such that, from the viewpoint of the receiver, 
any event composed from the events Ej considered above and having its probability 
less than s is so unlikely to occur that its appearing is not expected and, therefore, 



not taken into account by the receiver. If such a composed event with probability 
<s is equivalent to occurring of one of the events 

Ei + i, El + 2, ... ,Ek 

so that 
k i 

£ Pi < s , or £ Pl > 1 - s (1 g / £ fc) , 
i = / + i ; = i 

then the receiver may take as practically certain that he receives a message z(j) with 
index j ^ /. The quantity of information which is necessary for removing the uncer­
tainty contained in the situation described now cannot be for e sufficiently small 
greater than the number log /, which is the above measure for uncertainty correspond­
ing to the reduced set of messages; cf. the pioneer work of Shannon [13]. 

Let us suppose that / is the smallest number that satisfies the inequalities given 
above, which means that, moreover, 

i - i 

i = l 

Let us denote the smallest / by L(e). The number log L(e) represents the minimum 
number of bits of imformation that is needed to remove the uncertainty of the situa­
tion considered, provided that we admit an error the probability of which is less than e. 
In the author's paper [15] is proposed to use the quantity log L(s) as a measure of 
uncertainty at the e-level of the error admitted; the number log L(s) may be called 
the logarithmic uncertainty at the e-level of the set Z together with the probability 
distribution pj. 

One of the fundamental problems of information theory is the question how to 
characterize the quantity of information which is contained in a source of messages 
the statistical properties of which are known. Shannon and McMillan have shown 
that the best characterization of information quantity for stationary sources discrete 
in time and having finite alphabets is the entropy rate, provided that the sources 
under consideration satisfy the condition of ergodicity. The author has shown in [15] 
that the entropy rate does not express the effective level of uncertainty if the stationary 
sources under consideration are not ergodic; the new measure of uncertainty the au­
thor has treated in [15] is based upon the concept of logarithmic e-uncertainty as 
described above. This new quantity was called by the author the asymptotic rate and 
shown to be effective and coinciding with entropy rate on the closer'class of ergodic 
sources. 

A stationary information source discrete in time the statistical properties of which 
are described by a probability distribution ft, produces at discrete moments of time 
letters belonging to a discrete alphabet, say A, the probability of the source production 
being independent of time. If A" means the set of all messages composed of n letters. 



then the number 

(I) -logL„(e) 
n 

represents the logarithmic uncertainty at e-level of the set A" related to one letter of 
n-dimensional messages. The author has shown in [15] (theorem on the existence 
of asymptotic rate) that the sequence (I) converges to a limit, say Hc, where Hc 

monotonically increases for e decreasing to zero to a limit H, which is then called the 
asymptotic rate of the source under consideration. As to the main properties of the 
quantity H, they may be deduced as corollaries from an explicit formula derived in 
[15] (theorem on explicit definition of asymptotic rate): the formula states that the 
asymptotic rate of a stationary source equals the essential supremum of the entropy 
rates of its ergodic components; in symbols: 

H = ess. sup H(^z), 

where H(fiz) designates the entropy rate of the ergodic component p.z of the source 
described by the probability distribution \i. Especially, if the source contains only 
a finite number of ergodic components, i.e. 

Jt = £ ^ y > £;><>, i = l , 2 , . . . , m , 

the asymptotic rate of the source is expressed as the maximum 

H = max H(^.) . 
J = 1 , 2 m 

The methods of the proofs of both the main theorems on asymptotic rate quoted 
in the preceding text that are used in [15] are based upon considering together with 
information sources also communication channels which are to transmit the informa­
tion produced. 

Undoubtedly, communication channels are a more complicated object for investiga­
tion compared with information sources which represent in case of stationarity nothing 
else than invariant measures in the space of messages. The problem arises whether it 
is in principle possible to base the proofs of the main theorems on the existence and 
explicit representation of the asymptotic rate exclusively on methods which do not 
exceed the frame of the theory of invariant measures. 

The problem is studied in the following four sections of this paper; the first two 
are of preparatory character, developing the main tool needed in the investigation. 
In the third section are derived two basic lemmas necessary for the proofs of the main 
theorems quoted above, which are stated in the last section. 
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1. RESTATEMENT OF McMILLAN'S THEOREM FOR DISCRETE 

ALPHABETS 

In this paper we shall follow the terminology and notations used by the author in 
[15]. Throughout the entire paper we shall study only discrete information sources 
with discrete alphabets, i.e. such information sources that produce at discrete mo­
ments of time letters belonging to a finite or denumerable alphabet. Without a loss 
of generality we may assume that letters are represented by natural numbers. 

The set of all natural numbers is denoted in the sequel by N; the set of all integers, 
as usual, by / . Since the symbol BA designates the class of all mappings of a set A 
into a set B, the set N1 contains all doubly-infinite sequences of natural numbers, and 
z ; means the /-the member of sequence z e N1 (i e I). The basic space under considera­
tion is the measurable space (iY7, F7), where F means the class of all subsets of the 
set N, and where F7 is the cr-algebra of subsets of N1 generated by the class of one-
dimensional cylinders, i.e. sets of the form 

{z :ze iV 7 , z ; e £ } , iel, EeF. 

A discrete information source, or briefly a source, is then defined as a probability 
measure given on the cr-algebra F7. 

The coordinate-shift transformation will be denoted by T; it is defined by the 
property that (Tz)i — zi+l, z e N1, i el. A source p. is a stationary one if measure 
p is invariant with respect to the transformation T, i.e. if p = pT~i (cf. [1], § 39). 
We shall say that a source p has a finite alphabet if 

(1-0 ({i ,2, . . . , fc}7) = l 

for some natural number k. The entropy rate of a stationary source is defined as the 
limit 

(1.2) Hfoi) =. - Iim (1/n) flog p[z0, z,,..., _„_,] dp(z), 

where 

(1.3) [ Z o , z 1 , . . . , z „ _ 1 ] = " n { x : x e i V 7 , x i = z i } , z e i V 7 ; 



all the logarithms in this paper will be to the base 2. The existence of the latter limit 
is a consequence of the invariance of measure f.i (cf. [2] or [4]). As well-known, if p, is 
a stationary source satisfying condition (1.1) of finiteness of its alphabet, then its 
entropy rate fulfils the inequality 

(1-4) H(/i) S log k . 

Throughout this paper we shall consider only stationary sources; nevertheless, the 
methods of proofs given in the sequel are valid without change also for periodic 
sources. For convenience, we shall denote the class of all stationary sources by 
Jgtt. 

Our considerations will be based on the well-known McMillan's theorem which 
was proved by its author for stationary sources with finite alphabets. Since we are 
dealing more generally with sources with countable alphabets, we shall need a gener­
alization of the theorem mentioned for the case of infinite alphabets. A general 
version of McMillan's theorem for infinite alphabets was first proved by A. Perez 
in [10] (cf. also the treatment [11] by the same author); the methods of Perez's 
proofs are based on the investigation of his concerning the relations between martin­
gales and generalized entropies (in [9]). However, we shall need a special formulation 
of Perez's version of McMillan's theorem which we shall state and prove in this 
section. 

First we shall define the concepts that are necessary in the statement of the theorem. 
If J is a non-empty subset of / , let FJ be the c-algebra of sets in space N1 which is 
generated by the class of one-dimensional cylinders with coordinates in J, i.e. all 
sets of the form {z : zt e E), i e J, E e F. For the sake of simplicity, we shall put 

p - _ . p{i:iel,i£-l} _ 

If j.i e Jist, aeN, let us denote by ^ ( « , a) the conditional probability of the event 
{z : z0 = a} under the condition F~ which is uniquely determined by the equations 

є F " (1.5) f 0„(z, a) d/.i(z) = n(E n {z : z 0 = a}), E 

modulo measure /t restricted to the class F~. With the aid of the latter conditional 
probability we shall define the function #„ by the equation 

(1.6) 0„(z) - gfc, z0) , zeN1 (ne.J/st); 

z0 is, of course, the zeroth coordinate of point z. 
Now we shall assume that we are given a stationary source n with finite entropy, 

i.e. H(/x) < + oo. In the following text we shall show that then the entropy rate of the 
source \i may be expressed by the formula 

(1.7) H ^ ) = - f l o g ^ ( z ) d / i ( z ) . 



132 From the finiteness of entropy rate and from (1.7) it follows that, according to the 
individual ergodic theorem, there exists the limit 

(1.8) «„(z) = - lim (l/n)"£ log gfT'z) , z e N ' [>] 
n ; = o 

(as to the symbol [«], cf. [1], § 30) satisfying the equality 

(1.9) k(z)dKz) = H(p). 

Now we are able to state Perez-McMillan's theorem in the form: 

Theorem 1. J/ / t is a stationary source with finite entropy, i.e. H(y) < + oo, then 
the sequence —(l/n) log ;u[z0, z , , . . . , z„_ t] converges in the mean to the function 
h„(z) with respect to fi; in symbols: 

| | - ( l / n ) l o g / . [ z 0 , z 1 , . . . , z B . 1 ] - n / , ( z ) | d u ( z ) ^ 0 for n - co . 

Proof. In the entire proof, in which we shall show also the validity of the formula 
(1.7), we shall employ the notations given in [10]. Throughout the proof we assume 
that we are given a source \i e Jisl with finite entropy. 

I. We shall set X~ = F{,:ieI''-0}. Let us define on X~ the measure X by the property 
that 

(1) X(E n F) = fi(E) . fi(F), E e F~ , Fe F<0} . 

We will show that measure fi restricted to the class X~ is absolutely continuous with 
respect to X; in symbols: 

(2) n <<X(X~). 

Let E e X~, X(E) = 0. The set E may be expressed in the form 

E = U (Ea n [a]), 
aeN 

Ea = {z: {ZJ}^-.! = {*;}.£ _! for some xeE n [a]} , 

where we have put [a] = {z: z0 = a}. Since Ea e F~ and 

0 = X(Ea n [a]) = rfE.) • -"[«] 

(cf. (l)), we obtain that fi(Ea n [a]) = 0. The latter equality implies that j<(E) = 0; 
hence (2) holds. 



Let g be the (Radon-Nikodym) density 

(3) ' - ; & ( * - > • 

dA 

It is an immediate consequence of (1.6) that (cf. (1.3)) 

(4) 9(z) = ^ = , ZGN*[H,X-\. 

Let E e F~, aeN, /.[a] > 0. Using (1.5) and (l), we obtain from Fubini's theorem 
that 

jEnlalM JMUE Aa\ J 

= n(E n [a]) = f a(z) dAfz). 
jEnM 

If E e X~, then the above expression of E with the aid of sections Ea will yield from 
the latter relations the equality 

f ^ d l ( z ) = \g(z) dX(z 
J E R Z O ] J E 

Hence it follows (4) as a consequence of (2). 

II. Let w be the source that is uniquely determined by the condition that 

(5) w{z: Zj = a / / S' j < i + n)} = F] n[aj\ ; OjeN , iel, neN . 

According to Theorem 3 stated in [10] and the relation (2) there exists the generalized 
entropy Hw of the source /i with respect to measure w which may be expressed in the 
form 

(6) Hw =- - flog g(z) dn(z) = Urn - Hw(fi, F 0 ) , 

J « n 
r0 = F

{hisI-0<i<ni, 
where 

(7) Hw(fx, X"0) = - j/„ log/, dw = - flog/, d/( ; 

the function /„ represents the (Radon-Nikodym) density 

(8) L = ^ ( * o ) ; « = i ,2 , . . . 
dw 



134 The latter function may be expressed in the form 

(9) /_(-)- /* [z%zV"'zp ]-v z e ^l>^o] ; 
A«[«o]/*[-d —JK[«--i] 

this formula is an immediate consequence of (8) and (5). Let us set for the sake of 
brevity 

(10) H„ = - X ^ O ] log / " H = - [log ^[z0 , • • -, z„- i ] d/.(z) . 

Since H„ < H„+1, H„ < nHx (cf., for example, [17], § 6), it is clear that H(^) < + oo 
holds if and only if H„ < +co for n = 1, 2, . . . Consequently, it follows from the 
finiteness of the entropy rate of the source n that the difference H„ — nH t is de­
fined, and is finite and non-positive. By an easy calculation we obtain from (7), (9), 
(10) the equality 

Hw(n,Xn
0)= H . - n H . 

so that the generalized entropy may be expressed by the formula 

(11) Hw = H(n) - H t ; 

hence Hw is finite and non-positive. The relations (6), (10), and (4) immediately yield 
the equality 

Hw + H. = - jlog 3ll(z) dn(z) . 

We have shown the validity of formula (1.7), as follows from (11). 
III. As we have found, the finiteness of the entropy rate H(/i) implies the finiteness 

of the generalized entropy Hw. Applying now the individual ergodic theorem to the 
function g, we have that there is the limit 

(12) h(z) = - lim - £ log g(TJz) , z e NJ[/f] 
n n j = 0 

satisfying the integral relation 

(13) [h(z)dlx(z) = Hw. 

Since the quantity H^ is finite as well, we may apply to the function log fi\z0~\ the 
mean ergodic theorem (cf. (10) for n = l) so that we get that the sequence (ijn) . 

n - l 

. YJ 1°8 J"[ZJ] converges in the mean (with respect to fx) to the limit h(z) — hj^z) 
j=o 

as follows from (1.8) and (12). 



Owing to (2), (5), and (11), the assumptions of Theorem 4 stated in [10] are ful- 135 
filled so that Perez's version of McMillan's theorem is valid: it says that the sequence 
- ( l / n ) l ogL (cf. (8) and (9)) converges in the mean (with respect to fi) to the func­
tion h. According to (9) we have 

(14) - - log j„(z) = - 1 l o g / . [ z 0 ) Z l , . . . , - „ _ , ] + 
n n 

+-Z log n[zj], zeN'{ji\. 
n j=o 

It is easy to see that the difference 

- i lOg/n(Z)-i"Xl0g /.[-;] 
n n j=o 

converges in the mean to the limit h„(z); from here and from (14) the validity of the 
assertion of the theorem immediately follows, Q.E.D. 

2. ON THE ERGODIC THEORY FOR DISCRETE ALPHABETS 

This section is devoted to a closer investigation of the function h^ which appears 
in our statement of McMillan's theorem (cf. definition (1.8) and Theorem l). The 
investigation will be based on the ergodic theory of invariant measures in the basic 
space (N1, F1). 

For convenience, we shall denote by Vn {n e N) the class of (elementary) {in + 1)-
dimensional cylinders in coordinates running from — n to n, i.e. all sets expressible 
in the form 

(2.1) fi {z:zeNr, z ; = a,}, {a _„ , . . . , a.) eiV2 n + 1 . 

Obviously the class Vn is a countable partition of the basic space. The union of all 
the classes Vn will be designated in what follows by V: V = \J V„. 

naN 

A point z in the basic space N1 will be called quasi-ergular if and only if there is 
an invariant measure fiz, i.e. \x'z e Jist (a stationary source), having the property that 

n - l 

(2.2) iix{E) = lim (l/n) £ XE(TJZ) for each E e V ; 
n j = 0 

here XE means the characteristic function of the set E. It is evident that the measure 
(iz is uniquely determined by the quasi-regular point z and by the condition (2.2). 
We shall designate the set of all quasi-regular points in the space JV7 by Q. 



136 Remark. The latter definition of quasi-regularity is a correction to the definition 
(8.4) given in the author's paper [15], which is not sufficient. If we define the set Q0 

by the equation 

(2.3) go - 0 {-: z e N1,hm %f(z) = lim ;#>(-)} , 
EsV n n 

where we have put 

(2-4) X(
E"

>(-) = ( l / « ) l W ^ ) , 
J = 0 

then we have the set inclusion Q0 => Q, but the equality Q0 = Q is not valid: it is 
easy to show that, for example, the point z with coordinates 

Z; = 1 for i g O ; z2 i = 1 , z 2 i + 1 = i for i > 0 (i e J) 

belongs to g 0 , but it does not belong to Q. The following lemma shows that the con­
cept of quasi-regularity as defined above may be used to develop the ergodic theory. 

Lemma 1. The set Q of quasi-regular points is measurable, i.e. QeF1, and 

KQ) = * for every V- e -^st-

Proof. It follows from the countability of the class V and from the individual 
ergodic theorem that the set Q0 defined by (2.3) is measurable and of the property 
that n(Q0) = 1 for any p. e Jlsl. It may easily be shown that the set function pz de­
fined by (2.2) on V for such a point z e Q0 that satisfies the relations 

Z u r a X(E\Z) — 1 f° r every neN , 
EeV„ n 

uniquely determines an invariant Treasure on F1 (cf. the well-known Kolmogorov's 
theorem, e.g., in [ l ] ,§49; the invariance is, of course, an obvious consequence of the 
definition of the set function JXZ). This fact enables us to express the set Q in the form 

(2.5) 6 = n {z: z e Q0, £ lim /£»>(z) = 1} . 
n = l EeWn n 

Hence Q is a measurable set. 

Given 0 < e < 1 and \i e JisV let Fk(e) be a finite union of sets belonging to the 
partition Vk (k e N) which satisfies the inequality 

(1) n(Fk(e))>l-(e.2-ky. 

Let us set (cf. (2.4)) 

(2) Qk(e) = {z:ze Q0, lim X
(
F% (z) > 1 - e . 2~k} . 



Since p(Q0) = 1, it follows from the individual ergodic theorem applied to the char- 137 
acteristic function of the set Fk(e) that 

(3) f Mm $ » w dp = p(Fk(e)). 
JOo " 

From the relations (l) and (3) we obtain that 

(4) p(Qk(e)) >l-e.2~k; 

if the contrary were true, it would be 

f lim xrM dp < p(Qk(e)) + (1 - 8 . 2~k) p(Q'k(e)) = 
J(2o " 

= i-jkp(Q'k(-)) = i-(~.2-ky, 

which is the desired contradiction. If we set 

(5) Ke = n Qk(e) <= So 
k = l 

(cf. (2)), we immediately get from (4) that p(KE) > 1 — e. Let 

(6) K = \JK(l/s) ; hence p(K) = 1 . 
s = l 

Now we shall show that Q => K so that(6) will imply that p[Q) = 1, which is to be 
proved. Let z e K so that z e K(1/s) for some natural number s. Writing e = l/s and 
assuming on the contrary that z does not belong to Q, we obtain from the set inclu­
sion (5) the inequality (cf. (2.5)) 

£ lim /F
n)(z) <1-8<1 

FsVfc n 

for some fc eN and 0 < (5 < 1. Let us choose m > k such that e . 2~"! <. 5. Since 
z e Qm(e), as follows from (5), it must be 

£ lim xf(z) > lim £%(-) > 1 - e . 2~m St 1 - 5 . 
EeV„, n n 

On the other hand it holds for every F e V t that 

£ lim ;#>(*) g lim zPC*); 
(£eVm.E cF) n n 



138 it is because m ^ k and because Vm is a subpartition of Vk. Summarizing the preceding 
facts, we deduce that 

X lim Xf(z) > 1 - S , 
FeVft n 

which is the desired contradiction. This proves the assertion of the lemma. 

A stationary source p is, by definition, ergodic if it satisfies the condition of ergodi-
city that 

(2.6) TE = E and p(E) > 0 implies p(E) = 1 

for Ee F1. A point z in the basic spaceN1 is called regular if it is quasi-regular and 
if the measure pz uniquely determined by (2.2) is an ergodic source. 

Now we shall summarize the fundamental results of ergodic theory that will be 
needed in the sequel, in three lemmas. In the lemmas the set of all regular points in 
the space N1 is denoted by R. 

Lemma 2. The set R of regular points is measurable, i.e. R e F1, and p(R) = 1 
for every p. e Jisi. 

Lemma 3. For every ergodic source p the set of those regular points z for which 
pz = p, is measurable and is of p-measure one; in symbols: 

p{z: zeR,pz = p} = 1 . 

Lemma 4. For any E e F1, p2(E) is a measurable function of variable z on R, and 

p(E) = pz(E) dp(z) for every p e Msl. 

More generally, for any non-negative measurable function f on the space (N1, F1) 
the integral $fdpz is a measurable function of variable z on R, and 

p(E) = Az(-E) dp(z) for every pe J?s 

Proofs of the lemmas are based on Lemma 1 and are given in [15] (cf. also the 
systematic survey in [5^, and the original contribution [3] where are studied compact 
dynamical systems only). 

Now we are prepared to investigate the function hr The desired property we shall 
need in the sequel is stated in the following lemma. The method of the proof of the 
lemma is due to K. R. Parthasarathy (cf. [6] and [8], where the sources investi­
gated have finite alphabets). 



Lemma 5. If /xe Jisl, H(fi) < + oo, then 

li{z: z e R, h<z) = 1%)} = 1 ; 

in words, hj(z) equals with probability one the entropy of ergodic component /j,z 

of any given stationary source fi with finite entropy. 

Proof. For a eN, let 

(1) Ea = {z: z e R, [iz{x: x e N1, gj^x, a) = §Jx, a)} = 1} ; 

cf. (1.5). The set Ea is measurable by Lemma 2 and 4. According to Theorem 2.6 in 
[6] (the proof is valid also for countable alphabets) it holds that 

(2) n(Ea) = 1 for every ft e Jisx. 

From (2) it follows that for 

(3) E = f)Ea, n(E) = 1 for every \ieJisi. 
aeW 

Let n be a stationary source with finite entropy: H(^) < + oo. Owing to (l) we have 
for any zeE 

1 ^ \iz{x: 0„(x) = gjx)} = 

= /•,( \){x:x0 = a, §Jx, a) = ffjx, a)}) = 
asN 

= E ^{x: xo = a, &(*, fl) = 8d.x> a ) l = X A*»[fl] = ! • 
aetf aeiV 

Hence it follows that 

(4) " nz{x : x e N1, g(x) = gjx)} = 1 , zeE. 

As a consequence of Theorem 8.2 stated in [15] we obtain that, provided the entropy 
rate H(ju) is finite, 

n{z: ze R, H(juz) < + oo} = 1 . 

Putting 

(5) F = E n {z: z e R, H(/.z) < + oo} , 

we deduce from (3) the equality 

(6) ix(F) = 1 . 

Now let z e F. Relations (4) and (5) yield the equality 

(7) nz{x: xeN1, h„(x) = h,m{x)} = 1 (z e F). 



140 If z e R, H(jUz) < + oo, it follows from the ergodicity of nz and from McMillan's 
theorem as given in the preceding section (cf. Theorem l) that 

hjx) = Hfe) , xeN'OJ 

(the latter fact is a consequence of the invariance of h^). From (7) and from the latter 
relation we deduce that 

fiz{x: x e N1, hj[x) = H(^)} = 1 , z e F . 

Applying Lemma 3, we can write the latter equality in the form 

ixz{x : x e R, JXX = fi2, hj^x) — r\(p.x} = 1 , z e F . 

Integrating" with respect to \i and using Lemma 2 and Lemma 4, we immediately ob­
tain that (cf. (6)) 

f ^ { x : x e R , h M ( x ) = H(nx)} dn(z) = 

= | i { x : x e i { , ^ ) = H(nx)} = 1 , 

which proves the assertion of the lemma. 

The following theorem is an immediate corollary to both Lemma 5 and Theorem 1 
of the preceding section; it constitutes the version of McMillan's theorem for count­
able alphabets that will be used as the main tool in the proofs of the basic lemmas 
stated in the following section. 

Theorem 2 . If )x is a stationary source with finite entropy, i.e. H(ju) < +oo, then 
the sequence — (l/n) log ^[z0 , zx, ..., zn_j] convergences in the mean (with respect 
to fi) to the function H(/i,), i.e. to the entropy rate of the ergodic component \iz of 
the source given. 

Let us point out that we shall use in the sequel only the fact that the sequence 
—(ijn) log ^[z0 , z , , . . . , z„_ t] converges in probability to H(JI2) with respect to the 
given stationary source p. 

3. BASIC LEMMAS 

After the preparations made in the preceding sections, we can proceed to the main 
programme of this paper. 

Throughout the remainder of this paper the symbol \M\ means for a finite set M 
the number of elements in M, and for an infinite set we define \M\ = +oo. If 
fi B Jlsx, n e At, we put 

(3.1) ii„(E) = li{z:zeNI,(z0,z1,...,zn_1)eE}, E c N", 



and define the n-dimensional e-length of the source p., in symbols L„(e, p), by the 
relation 

(3.2) Ln(e,p) = min{jE | :E <= N", p„(E) > 1 - e} , 0 < £ < 1 . 

The number Ln(s, p) represents the minimum number of n-tuples composed of letters 
of our universal alphabet N whose total probability exceeds 1 - s. 

Lemma 1. If fie Jist, and if c is a finite real number, then the assumption that 

(1) p{z:zeR,H(pz)<_c} = \ 

implies the inequality 

(2) EE (1/n) log L„(£, p) £ c for 0 < £ < 1 . 

Proof. If p is a source satisfying the assumptions of the lemma, it follows from 
Theorem 8.2 given in [15] that the entropy rate H(p) S c < + oo. Then it is possible 
to apply Theorem 2 of the preceding section; we obtain that the sequence —(ljn) x 
x log p\z0,..., z„_j] convergences to H(pz) in probability modulo p. Let 0 < e < 1 
and <5 > 0. Then there is an index n0 such that for any n 2; n0 the inequality 

{zizeR, -(ljn)logp[z0,...,_,,_J g H(pz) + 5} > 1 - £ . 

holds. Given n S n0, we deduce from (1) and from the preceding inequality that the set 

(3) E„ = {z: z e N", p„(z) ^ 2-"(c+*} 

has the property that pn(E„) > 1 — e (cf. (3.1)); it is because H(jU2) + § < c + d for 
z e R[p]. From the latter fact and from the definition (3.2) we obtain that jE„| > l„ = 
= Ln(e, p). On the other hand, owing to (3.1) and (3), we have 

1 ^ pn(En) = Y, H*(z) ^ \E„\ • 2 - " ( c + 5 ) . 
ze£„ 

Combining the inequalities which were found, we get that 

l„ < 2" ( c + " , i.e. (1/n) log L„(e, p) < c + 5 . 

The latter result implies the desired inequality (2) because of the arbitrariness of 5, 
Q.E.D. 

The second basic lemma is a dual version of the first. There is a difficulty in the 
proof of this dual version that we can use Theorem 2 only in case the entropy rate of 
the source considered is finite; if not, we must approximate the source by a source 
with finite entropy. This is possible to do, as pointed out by Parthasarafhy in [7] 
where an approximation is based on results given in [12] and [14]. 



142 Let us define the measurable transformation of the basic space (N1, F'), denoted 
in the sequel as xk (k e N), by the relations 

(3.3) (xkz)i = zf for Zi^k, (xkz)t = k + 1 for zf > k (i e j) . 

If fi is a stationary source, then the measure \ixk
x is again a stationary source which 

has a finite alphabet and finite entropy rate satisfying the inequality 

(3.4) H O ^ ^ I o g f j c + l ) , 

as follows from (1.4). 

Lemma 6. / / fie JisX, then the sequence of entropy rates H^rr:/1), k = 1, 2, ..., 
monotonically increases to the entropy rate H(^). 

Proof. The assertion of the lemma coincides with Theorem 1 stated in [7]. 

Lemma II. If \i e J(sl_, and if c is a finite real, number, then the assumption that 

(1) ix{z: z e R, H(/tz) > c} = 1 

implies the inequality 

(2) Hm (1/n) log L„(e, /.i) > c for 0 < £ < 1 . 
n 

Proof. Let n be a source satisfying the assumptions of the lemma. Given e, 
0 < e < 1, choose E' such that 

(3) e + 2E' < 1 , e' g ie . 

Let 8 > 0. Choose 5' > 0 such that 

(4) 43' < 5 . 

If we apply Lemma 6 to the source \iz for z e R, we obtain that (cf. (3.3)) the sequence 
H^T ; / 1 ) monotonically increases to ri(fiz) for fc ^ co; hence it follows the set in­
clusion 

{z: ze R, H(jj.) > c - 5'} = U {z: z e R, H ( ^ T ~ X ) > c - 5'} . 
ft=i 

Then we deduce from (l) that there is k0 such that for fc ^ k0 

(5) fi{z: ze R, H ^ T ^ 1 ) > c - 5'} > 1 - e'. 

It is easy to see that (cf. (2.2)) 

uzxk
 i — fiTkZ for ze R, xkz e R (ke N). 



Hence we get according to (5) that *43 

(6) H%X{-'- zzR, HG«z) > c - 5'} > 1 - e' for ) c _ J c 0 , 

since n(R n T;\R)) = i. 
Now let us choose k > k0 fixed. Applying Theorem 2 to the stationary source 

/iT;/1 = n', we have that the sequence - ( l / n ) log £i'[z0, ..., z„_-J converges in 
probability to H(nz) with respect to JX'; cf. (3.4). Consequently, there is n0 such that 
(cf. (3)) 

(7) ^ - - 2 log ( ! - _ - _ _ • ) 
8 

and that, for any n ^ n0, 

(8) fi' \z: zeR,- - log n'[z0, ..., z B _J ^ H(/iz) - _ ' | > 1 - e' . 

Combining the relations (6) and (8) for n' — fir^1, we obtain the inequality 

(9) n' L-.zeN1, - -\og ix'\z0, ..., z„_,] > c - 2<5'j > 1 - 2s' 

for n ^ n0. Putting for a given n ^ n0 

En = {z: z e N", n'„(z) < 2-n(-c~2S,)} , 

we deduce from (9) the relation 

(10) fin(E„) > 1 - 2 . ' . 

Let F„ <= N" be such that 

(11) \F„\ =L„(S,fi'), p;(E„)> l - £ ; 

the existence of such a set is guaranteed by (3.2). It follows from Lemma 1.4 given 
in [15] that 

(12) Ln(£, fi') = L„(£, IXT-1) < Ln(a, ft) = /„. 

From the inequalities stated in (10), (11), and (12) we deduce the relations 

1 - s - 2e' < fi(E„ fl F„) < \E„ n E„| . 2~n(-c~2d') < 

< \F„\. 2~n(-c~2S') < 1„. 2~n(c~2o"). 

Owing to (7), we obtain from the latter inequalities that 

log l„ > n(c - 2b') - in<5. 



144 Finally, using (4), we deduce the relation 

- log L„(£, fi) > c — 5 , 
n 

which implies the desired inequality (2) because of the fact that 5 was chosen ar­
bitrarily. This proves the lemma. 

To derive the main theorems, we shall make use of the following two lemmas which 
are a direct consequence of the definition (3.2). 

Lemma 7. 7/0 <; £, < 1, and If fi, fiu and \i2 are stationary sources such that 

/.(£) = (I - £,) nt(E) + Z fi2(E) , EeF1, 

then 

Um - log L„(e, fi) ^ lim - log L„(e - č, fit) for £ < e < 1 . 

Proof. The lemma is an immediate corollary to Lemma 1.2 given in [15]. 

Lemma 8. // 0 < £' ^ 1, and if fi', fi[, and JX'Z are stationary sources such that 

H'(E) = {' fi[(E) + (1 - £') n'2(E), EeF1, 

then 

lim - log Lie, fi')^'Mk~ logL„ I — , fx[ ) for 0 < e < £' . 
» n - « \? J 

Proof. The assertion of the lemma coincides with Lemma 5.2 stated in [15] for 
the special case of stationary sources. 

4. MAIN THEOREMS ON ASYMPTOTIC RATE 

In this section we shall apply the lemmas of the preceding section to prove the main 
theorems on the existence and explicit representation of the asymptotic rate. 

Theorem I. Let ft be a stationary source. Then it holds the inequality 

lim - log L„(et, fi) < lim - log Ln(e2, n) for 0 < s2 < st < 1 ; 

consequently, the limit 

Пm-logLn(є,џ) = HE(џ) 



exists except at most a countable set of numbers s. The function HE((i) monotonically 
increases for e \ 0 to a limit, which will be denoted by H(n) and called the asymp­
totic rate of the source fi. 

Proof. It is sufficient to prove the above inequality. In the proof we shall repeat the 
method used in [15], but applying the basic lemmas of the preceding section which 
are based on the ergodic theory of invariant measures only. 

Let \i.eJl__v Let Xx and X2 be chosen arbitrarily such that 0 < X2 < Xt < 1. 
If c is a non-negative extended real number, let us set 

(1) Z,(c) = {z: z e R, h % ) < c} , 

(2) Z2(c) = {z: z e R, H(p.) Z c} . 

Define the numbers c. and c2 by 

cx = inf{c: n(Zt(c)) Z 1 - Xt} , 

c2 = sup {c: ix(Z2(c)) \> X2} . 

Then we have 

(3) 1 - I = »(Zt(ct)) _ 1 - h > 0 , 

(4) «' = /<Z2(c2)) = ^ ;.2 > 0 . 

Let /.J, /*2 and /ti, p2 be the sources which are defined by the equations 

(5) /.1(E) = (l-f)-1/((EnZ1(c])), 

(6) H[(E) - (£')- V ( £ n Z2(c2)) , EeF'; 

j . - = r J [ / ' - ( i - «)/*!] if ^ > 0 ' 

^ =(1 - c J ' Y l | > - ST-i] if <:'<!• 

The stationarity of the sources just defined follows from the equality /iT2 = /(I 

(z e R); let us mention that the latter fact guarantees the invariance of the sets (1) 
and (2). If Cj < +oo, then the source fit satisfies the assumptions of the first basic 
lemma for c = c,, as follows from (5), (3), and (l); we have 

(7) lim(l/;i) log Ln(e, fix) g ct , 0 < e < 1 ; 

the latter inequality remains valid also for Cj = +co. Now applying Lemma 7 and 
the inequality £ g Xt (cf. (3)), we deduce from (7) the inequality 

(8) 155 (1/n) log Ln(e, n) < c. for kt < e < 1 . 



If c2 < + oo, then the source fi[ satisfies the assumptions of the second basic lemma, 
as follows from (6), (4), and (2); hence we obtain that 

(9) Hm (1/n) log L„(e, n[) ^ c2 , 0 < e < 1 ; 

the latter inequality remains valid for c2 = + oo since in such a case the source n[ 
satisfies the assumptions of Lemma II for any finite c so that the given lower limit 
cannot be finite. By an application of Lemma 8 and the inequality £,' ^ X2 (cf. (4)) 
we deduce from (9) the relation 

(10) Urn (1/n) log L„(e, //) ^ c2 for 0 < e < X2 . 
» 

From the definitions of c t and c2 it follows that 

[i{z: zeR, H(fiz) > c2} < X2 < lt < fi{z: z e R, H(nz) ^ c,} ; 

hence the inequality c2 2: c± must hold. The latter inequality together with the in­
equalities (8) and (10) imply the first assertion of the theorem, Q.E.D. 

Corollary. 7/ fi is an ergodic source, then the equalities 

lim (1/n) log Ln(s, /.) = H(^) = H(fx) 
n 

are valid for any e, 0 < e < 1. 

Proof. It follows from Lemma 3 that the numbers cx and c2 both equal to the 
entropy rate H(^) independently of which Xt and X2 were chosen. 

Let us make the convention that the essential supremum of a measurable function / 
on a measurable set Z with respect to a probability measure \x on Fl will be denoted as 

ess. sup/(z) = i n f { ( : ^ { z : z e Z , / ( z ) ^ t} = 1} . 
zeZlni 

Theorem II. The asymptotic rate of a stationary source /t equals the essential 
supremum of the entropy rates of its ergodic components: 

H(n) = ess. sup H(^z) . 
zeRlfl 

Proof. Let us put h = ess. sup H(ju2). Let us assume that H(fx) >' h, i.e. H(n) > 
> c > h for some c. From the inequality h < c we deduce that the source satisfies 
the assumptions of Lemma I for c, which yields the contradictory inequality H(fi)^c. 
Then the inequality H(pi) ^ h must be valid. 

Assume that H(ji) < h; i.e. H(/J) < c2 < h for some real number c2. From here 
and from the definition of the essential supremum we obtain that [i(Z2(c2)) = % > 0 
(cf. (2) above). Defining the sources \i\ and \i'2 formally in the same way as in the proof 



of Theorem I (cf. (6)), we deduce from L e m m a I I appl ied to ii\ an inequali ty of the 

form (9), which yields together wi th L e m m a 8 the con t rad ic to ry inequality H(n) 2: c 2 . 

This proves the theorem. 

As a final r emark , let us men t ion tha t an ax iomat ic definition of the asympto t ic 

ra te was given by the a u t h o r in his paper [ 1 6 ] . 

(Received December 1st, 1969.) 
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O asymptotické neurčitosti neergodických zdrojů informace 

KAREL WINKELBAUER 

Autor ukázal ve své práci [15], že entropie není vhodnou informační charakte­
ristikou pro případ neergodických stacionárních zdrojů informace, a proto zavedl 
novou charakteristiku informační vydatnosti, která je založena na pojmu logaritmické 
e-neurčitosti a je nazvána asymptotickou neurčitostí stacionárního diskrétního zdroje 
informace. Již v práci [15] bylo ukázáno, že asymptotická neurčitost, a nikoli entro­
pie, má všechny potřebné vlastnosti efektivní míry množství informace. 

Důkazy uvedených důležitých vlastností asymptotické neurčitosti opřel autor v ci­
tované práci o obecnou teorii přenosu informace diskrétními sdělovacími kanály. 
Avšak stacionární zdroj informace představuje z matematického hlediska invariantní 
míru, tedy matematický objekt značně jednodušší, než jsou sdělovací kanály. Vznikl 
problém, zda je principiálně možné založit důkazy o existenci a explicitním vyjádření 
asymptotické neurčitosti na metodách nevybočujících z rámce teorie invariantních 
měr. 

Tento problém je řešen v této stati, a to v kladném smyslu. Ukazuje se, že důkazy 
hlavních vět o asymptotické neurčitosti lze opřít o jemnější prostředky teorie inva­
riantních měr, jimiž jsou ergodická teorie a upřesněná verse McMillanovy věty. 

Doc. RNDr. Mg. Mat. Karel Winkelbauer, DrSc, Ústav teorie informace a automatizace 
ČSAV, Vyšehradská 49, Praha 2. 
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