
Kybernetika

Milan Studený
Asymptotic behaviour of empirical multiinformation

Kybernetika, Vol. 23 (1987), No. 2, 124--135

Persistent URL: http://dml.cz/dmlcz/124870

Terms of use:
© Institute of Information Theory and Automation AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124870
http://project.dml.cz


K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 2 

ASYMPTOTIC BEHAVIOUR 
OF EMPIRICAL MULTIINFORMATION 

MILAN STUDENY 

The asymptotic behaviour of an estimator of multiinformation is investigated. It is shown 
that it qualitatively depends on the value of certain numerical characteristic. If this characteristic 
is non-zero then the estimator is asymptotically normally distributed. In the opposite case the 
asymptotic distribution of the estimator is the distribution of a weighted sum of squares of 
independent normally distributed random variables. 

1. INTRODUCTION 

This paper deals with the asymptotic behaviour of empirical multiinformation 
(it can be also called sample multiinformation). Multiinformation was studied by 
Perez in [6] as a generalization of the concept of the mutual information of two 
random variables. It enables us to characterize the level of the dependence of more 
than two random variables. 

Given a sequence of random variables 9n(co) and a non-degenerate probability 
distribution D we say that Bn(co) has asymptotic distribution D iff there exist constants 
a„ > 0, b„ such that a"1 . {&„(co) — b„} -> D in distribution. Correctness and 
uniqueness of this concept is shown in [2] (Lemma 1 of § 2 of Chapter VIII). More­
over, in case D = N(0, 1) we say that 9„(co) has asymptotically distribution N(bn, a

2
n) 

and that a2 is its asymptotic variance. 
In the present paper we shall study possibility of the estimation of multiinformation 

on the basis of empirical data. The investigated estimator is called the empirical 
multiinformation; it is simply the multiinformation of the corresponding joint 
empirical distribution. We are dealing with the asymptotic behaviour of this esti­
mator. The results are derived for the case of non-degenerated finite-valued random 
variables. Note that this assumption seems to be essential (see remark in the third 
section). The obtained results are a generalization of the results reported in [5]. 
The asymptotic behaviour of empirical information (of another type) was studied 
also in [8]. 
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In the first section we define a numerical characteristic of a probability distribu­
tion, P, denoted by R[P]. As it will be shown later, this number is very important 
for the asymptotic behaviour of the empirical multiinformation. If R[P] > 0 (we 
call it the ordinary case), then the asymptotic distribution is normal and « _ 1 . R[R] 
is its asymptotic variance (Proposition 3, n is the sample size). If R[P] = 0, then 
the asymptotic distribution is not normal. But this case takes place only if the measure 
P is a "truncated product measure" (Proposition 1). Then, the asymptotic distribu­
tion is the distribution of a weighted sum of squares of independent N(0, l)-distributed 
random variable. The weights are given as the eigenvalues of a matrix which is 
explicitly obtained. It depends only on the probability distribution P. Note that 
some of the weights can be negative and that explicit formulas for densities of such 
distributions are given in [4]. 

Throughout the paper we make the following general assumption. 

Let Tu ...,Tm be nonempty finite sets, where m > 2. We put T = T. x ... 
... x Tm and consider T as a measurable space with cr-algebra of all its 
subsets. Let (Q, s4, Q) be a probability space and 

[A] \ &: (Q, s/, Q) -> (T exp T), / = 1,2,... , 
be a sequence of i.i.d. T-valued random variables defined on Q and, more­
over, their common distribution P on T is not concentrated in a single 
point of T 

2. NOTATION 

N denotes the set of natural numbers, ft the set of real numbers; 3ab is the well 
known Kronecker symbol; card A denotes the cardinality of a set A, f „ g the com­
position of functions / and g. 

If t e T and ie {I, ..., m], then tt denotes the ith component of the point / e T. 
If P is a probability measure on T and i e {1, ..., m), then P ; denotes its marginal 
measure on T{. 

Let S and R be finite sets; by S-vector we shall understand a real function on S 
(i.e. element of Ws), by (S x R)-matrix a real function on S x R (i.e. element of 
RSxR). Since later we shall multiply vectors by matrices, we shall regard them as 
column vectors, i.e. an S-vector is an (S x {l})-matrix. We shall denote matrices 
by capital bold faces, vectors by lower case bold faces and their elements or compo­
nents by lower case light faces. Further, elements of matrices and components 
of vectors will be denoted by the corresponding letters, i.e. matrix A has always 
elements a(t, v), vector f has always elements f(t) and so on. The transpose of the 
matrix A is denoted by AT, the identity matrix by /. If a set is indicated by a lower 
index i e { l , . . . , m}, as for example S;, then the corresponding Srvector and its 
components have the same lower index. So the S;-vector f; has components / ( s ) , 
s e S;. An analogous principle holds for matrices and their elements. 
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Finally, N(a, b) denotes normal distribution with expectation a and variance b, 
N(0, A) multivariate normal distribution with zero expectation and covariance 
matrix A. 

3. BASIC CONCEPTS 

As was mentioned in the introduction the assumption that £J' are finite-valued 
random variable seems to be essential. For example, let us consider two independent 
[0, l]-valued random variables the distribution of which is given by the Lebesgue 
measure. Obviously, the multiinformation (mutual information) is zero, but on 
the other hand it can be proved (but we shall not perform it here) that the em­
pirical multiinformation has expectation In (n) where n is the sample size. 

The definition of multiinformation for general case is contained in [6] (the multi-
information is called the dependence tightness there). But we shall use its version 
for finite measurable spaces only. 

Definition 1. Let P be a probability measure on T. The multiinformation (of P) 
is the following value: 

/ [ p ] = £ pyt).\n(p(t).p;\tl) p-\tn)). 
teT 

i>«)>0 

Further, we introduce: 

m = I Pi*) • !*2 (IV) • IrVi) f.-'W) - 'W • 
tsT 

P(t)>0 

Proposition 1. The inequalities /[P] ^ 0 and R[P~\ = 0 hold for all probability 
measures P. 

/[P] = 0 iff P is a product of its marginal measures. 
R[P] = 0 iff there exists a. ^ 1 such that for each t e T 

either P(t) = 0 or P(t) = a . P t ( ^ ) Pm(tm). 

Proof. The statement about /[P] can be proved by similar way as an analogous 
statement about mutual information (see [3]). Now we put 

F = {teT,P(i)>Q} and 

6.(0 = -ln(p-\t). Pfa) Pm(Q), teV. 

So, the well-known inequality 

CZb(v).P(v)Y^Zb2(v).PKv) 
veV veV 

with equality only for b constant implies the statement about R[P]. • 

Definition 2. For every n e N we define a real function on T x Q (see [A]): 

p"(t, co) = n _ 1 . card {j ^ n, &(a>) = t}, t e T; oi e Q . 
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We call it the empirical probability. Indeed, p"(-, co) is a probability measure on T 
for every coeQ. So, the function coi-> '[p"(-, coj] will be called the empirical multi-
information (see Definition 1). Moreover, we shall use vector notation for the 
empirical probability: 

p"(co) = [p"(t, co)]leT eRT, coeQ . 

Analogously for i e {, ..., m] and 77 e N we define the function p" on T, x Q by 

p"(s, co) = n~l . card {j g 77, £,i(co) = s}, seTt;coe Q . 

Note that the empirical multiinformation is a random variable (it can be seen 
from Lemma 3). 

4. AUXILIARY CONCEPTS 

Definition 3. We introduce the T-vector p = [T(t)]fer
 a n d t h e (T x T)-matrix 

A (see [A]): 
a(t, v) = P(t). {8tv - P(v)}, t,veT. 

Analogously we introduce the (T, x T;)-matrix A, by 

a{r, 5) = P,(r). {<5„ - P,{s)}, r, s e Tt; i e ( 1 , . . . , m] . 

It is easy to verify that 

(1) a{r, s) = I I a(t, v), r, s e T, ; 7 6 (1, ..., m} . 
teT veT 

Lemma 1. The mapping co 1—> p"(co) is a random T-vector on Q with expectation p 
and covariance matrix n~l . A. 

Proof. For every j e N and ( e T w e define the function co H* xJ(t, co) as the 
composition of <Jj and the indicator of the set {t}. [A] implies that the random 
vectors co 1—> xJ(co) e RT are i.i.d. It is easy to see that xJ has expectation p and 
covariance matrix A (see Definition 3). Obviously 

(2) p"(t, co) = n" 1 . £ xJ(t, co), coeQ; teT; ne N . 
j = i 

Now we can easy derive expectation and covariance matrix of p"(co). • 

For study of the asymptotic behaviour of the empirical multiinformation it will 
be useful to restrict the set Q. 

Lemma 2. There exists a measurable set Q' c Q such that Q(Q') = 1 and for 
every coe Q',n e N and t e Tit holds: 

P(t) = 0 implies p"(t, co) = 0 . 
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Proof. We put 

Q'= n nra", 
tsT n 

P(0 = 0 
where 'Qn = {coeQ, p"(t, co) = 0}. 

According to Lemma 1 all sets 'Q" are measurable. Further 

Q(Q\'Q") = Q{co, 3/ 5S » ^(o) = (} = £ e{cy, ^(a») = t} = 0 
J' = I 

since P is the distribution of & and P(<) = 0. Hence all sets 'Q" have Q('Q") = 1. D 

Definition 4. The symbol Q' will denote the set from Lemma 2. Further, we denote 

V= {teT,P(t)>0} , V{ = {seTi,Pi(s)>0}, ie{l,...,m}. 

According to Lemma 2 it is possible to interpret p"(co) as a random V-vector defined 
on Q'. Further, the lemma says: 

Pt(s) = 0 implies p"(s, co) = 0, n e N ; coe Q' ; s e T(; i e {1, ..., m}. 

So, p"(co) is a random Vrvector defined on Q'. In addition, p, A and A; from Definition 
3 are V-vector, (V x V)-matrix and (V x V)-matrices respectively. Since we are 
interested in the asymptotic behaviour of a random variable, the restriction to Q' 
is not essential. 

Definition 5. Normalized empirical probability is a real function on V x Q': 

f"(t, co) = 7 " • {p"(t, co) - P(t)}, / e V; OJ e Q' ; n e /V . 

Analogously we define: 

f"i(s, a>) = s/n. {p"(s, co) - Pt(s)} , s e Vt ; co e Q' ; n e N ; ie {1, ...,m} . 

The corresponding random V-vector (resp. Vrvector) is f"(co), (resp. fi(co)). 

The following proposition summarizes properties of f"(co) which we shall use later. 

Proposition 2. The normalized empirical probability f"(co) is a random V-vector 
on Q' with zero expectation and co variance matrix A (see Definitions 3 and 4); 
f"(co) is a random Vrvector on Q'. Further, the following formulas hold: 

(3) ^f"(t, ©) = 0, coeQ'; neN 
tsV 

(4) f"i(s,co) = YJf
n(t,co), coeQ' ; neN; s e V ; i e { l , . . . , m} . 

t | = S 

Finally, f"(ot)) -> N(0, A) in distribution and f"(co) -> N(0, A;) in distribution. 

Proof. The first part is a consequence of Lemma 1. Lemma 2 implies ]P p"(f, co) = 
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= X P"(t> w ) = 1 f° r every coeQ' and n e N. Hence (3) is evident. Since p"t(', co) 
teT 

is the marginal measure of p"(-, co) on T;, we conclude, using Lemma 2 that 

p1(s, co) = Y, P"(t> w ) f° r every co e £2', s e V,, n e N . 
teV 

Analogous expression holds for Pt(s), hence (4). 

The statement concerning f"(co) is a consequence of the multivariate central limit 

theorem (see [2] or [7]). Indeed, (2) says p"(co) = n~l . £ xJ(co), where xJ are i.i.d. 
j = i 

By Lemma 2 it is possible to understand xJ as V-vectors on Q'. 
Now we introduce the (V-, x V)-matrix K, by 

k/s,v) = 5„t, s e V , ; u e V . 

According to (4) f"(w) = K ; . f"(co) and hence we derive (see [1]) that f"(co) -* 
-> N(0, Kt.A. Kj) in distribution. However (1) implies K,. A . K] = A{. Q 

5. ORDINARY CASE 

Proposition 3. Let assumption [A] hold and R[P] > 0 (see Definition 1). Then 
the empirical multiinformation (see Definition 2) has asymptotically normal distribu­
tion N(I[P], n - 1 .R[P]), i.e. 

7 « . R[P]""1/2 . {I[p"(-, co)] - ;[P]} -»• N(0, 1) in distribution . 

Proof. Let us introduce & = <0, oo)F and a real function . / defined on 6: 

Ax)--lLXtM*t.(hru{x))--), xe&, 
teV ; = i 

where 
rit(x) = J^xv, ie{\, ...,m} ; teV. 

veV 
Vi = tt 

Note that 0 . In (•) is defined by 0. We see that '[p"(co)] is the composition of p"(co) 
and J (since co e Q', see Definition 4). We compute that 

A In rit(y) = 8t . r~\l(y) , v, t e V; i e {1, ..., m} ; y e (0, oo)F 

dxv 

and further 

— J(y) - In yv - f In ritI(>>) + (1 - m), » e V; >> e (0, oo)F . 
dxv i=i 

So, p (see Definition 3) is an inner point of <S and J has the Frechet differential at p. 
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Finally, we introduce the V-vector g by: 

g(t)= ±J(p) = ln(P(t).P;%) p-i(tm)) + (l-m), teV. 
oxt 

Since g T . A . g = R[P] > 0 (as it can be seen from Definitions 1 and 3) and 
<Jn. {pn(co) — p] ->JV(0, A) in distribution (see Proposition 2) it is possible to use 
the known theorem (see [7], Theorem II in 6.a.2). So ^Jn ,{Jo p"(oS) - / « f } - > 
-> N(0, R[P]) in distribution. D 

6. CASE OF "TRUNCATED PRODUCT MEASURE" 

In this case we can describe the asymptotic behaviour of the empirical multi-
information by means of eigenvalues of the matrix defined below. 

Definition 6. We introduce the (V x F)-matrix £ by 

e(t, v ) - i . 8 t e - i P(v). t 8tlVi. P7\ti), t,veV. 
i = i 

It is easy to verify that 

(5) £ e(t, v) = 4(1 - m) for every I e V. 
vsV 

In particular, 

(6) E (e(t> v) ~ e(z> u)} • y ~ ° f o r e v e r v t, zeV and y e R .. 
veV 

Proposition 4. Under assumption [A] let us suppose R[P] = 0. Then 
n.{/[p"(-, OJ)~] — /[P]} tends in distribution to a random variable 

ca rd (K) - l 

eH = Z h- ifa). 
J = I 

where {tj(co), j — I,..., card (V) — 1} are independent Ar(0, l)-distributed random 
variables and Xi are the eigenvalues of £ (see Definition 6) with the exception that 
the multiplicity of 10 = ^(1 — m) must be reduced by 1. Moreover, all eigenvalues 
of £ are real. 

The proof is based on the following three lemmas. 

Lemma 3. For every coeQ' and ne N 

n . {/[/(•, co)] - /[P]} = V"(a>) + U"(co) - £ U1(co), 
; = i 

where 
F » - » . £ {p"(t, o) - P(t)} . In (P(0 . P~x %) P-1(Q) 
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and (cf. Definition 5) 

U"(co) = i I / - ' ( t ) • {j"(t, oo)}2 + n-V*Z <P% co) . {f% co)}3 

U%co) = iZ P~\s). {/f(s, co)}2 + n~ »21 <Pl(s, co). {f»(s, co)}3 

seVi seVi 

where <P"(t, co) and <P"(t, co) are measurable functions bounded by constants which 
are independent of co e Q' and n e N. 

Proof. Since co and n are fixed we shall write p(t) instead of p"(t, co) and pt(s) 
instead of p"(s, co). Further we denote h(u) = u . In (u) for u > 0; /;(0) = 0. 

I) We introduce L = {t e V p(t) > 0} and put 

k(t) =\n(p(t).p;1(tl) p--(tm)), teL 

K(t) = ln(P(t).p-\t1) p-\tm)), -teV. 

Since L c V(see Lemma 2) it holds 

'M- ' [p] = IKO-fc(0-EP(0-K(0 = 
teL teV 

= i (KO - m • m +1 KO • m - m • 
teV teL 

The first term is n _ 1 . V"(co), the second one can be written as 

£ KO • 1" I?' l(0 • KO) - I I KO •ln
 (P." '('.) • P^) . 

teL 1 = 1 teL 

Since co e fl' it holds p(t) = 0 for every teV\L. Thus 

(7) j>(0 • l n (p"(0 • KO) = 1/(0 • HP-K') • KO) 

(8) X K O . In (p-%) . Pi(tl)) = £ Pt(s) . h(p-\s). Pi(s)) . 
teL seVi 

To show (8) we divide L into groups with the same ith components and compute 
sums over these groups. We denote the expression in (7) as « _ 1 . U"(co), the expression 
in(8)as«-1 .U?(co). 

II) Using the Taylor expansion of h at the point u = 1 we see, that there exists 
a Borel measurable function T: [0, OO) -> [0, 1) such that 

(9) h(u) = (u - 1) + K« - l ) 2 - i x(u). (u - If, u £ 0 . 

Indeed, for the remainder we have (Cauchy's form) 

$i(u) = i(M - -)' • (u ~ 1) • h'"(ff) where w < a < 1 or I < a < u . 

Putting 0 = (u - I)'1 . (a - 1) and T(M) = (1 - 9)2 . {1 + 0 . (u - 1)}~2 it is 
easy to see that 0 < 0 < 1, 1 - 9 ^ 1 + 9 . (u - 1) and thus 0 < %(u) ^ 1. 
By substituting (9) in (7) we obtain: 

u%) = n. E (KO - P(0} + in z p-\t). (KO - P(0}2 -
teV teV 

- in . I T(P-%) . KO) • P'Z(t) . {KO - P(t)}3 • 
teV 
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According to (3) the first term is zero. Putting <P"(t, co) = - i r ( P _ 1 ( . ) . p"(t, co)). 
. P'2(t) we obtain the first formula. Analogously it is possible to prove the second 
one. • 

Lemma 4. Let A and C be real symmetric (fc x fc)-matrices with A positive definite. 
Let us consider the quadratic form H on Rk defined by H(x) = xT . C . x for x e Rk. 
Let X(co) be a fc-dimensional random vector with distribution iV(0, A). Then all 
eigenvalues of C . A are real and we can describe the distribution of H o X(co) as the 

k 

distribution of Q(CO) = £ A,-. tj(a>), where Xj are the eigenvalues of C . A and 
; = i 

{tj(co),j = 1, ..., fc} are independent 7V(0, l)-distributed random variables. 

Proof. Since A is positive definite there exists a real nonsingular matrix Q such 
that A = Q . QT. It is possible to choose Q in such a way that G = QT . C . Q is 
a real diagonal matrix. In the opposite case we find an orthogonal matrix F such that 
FT . G . F is diagonal and use Q . F instead of Q. It is easy to see that G and C . A 
are similar, hence they have the same spectrum. Since G has its eigenvalues on 
a diagonal, the eigenvalues are real. Let us put Y(co) = Q _ 1 . X(co). It is easy to 
verify that Y(co) is an N(0, ^-distributed random vector. Moreover 

H o X(co) = XT(co). C . X(co) = YT(co). G . Y(co) = £ A,.. Y,2(o/), 
J = I 

where Xj are the diagonal elements of G, i.e. the eigenvalues of C . A. • 

Lemma 5. Given z G V we put K = V\ {z} (see Definition 4). Note that K 4= 0 
(P is non-degenerate - see [A]). Let us introduce the (K x _K)-matrix D by (see 
Definition 6): 
(10) d(t, v) = e(t, v) - e(z, v) , t,veK. 

Then D has the same spectrum as £ with exception that the multiplicity of A0 = 
= -£(1 — m) must be reduced by 1. (But (5) implies that A0 corresponds to constant 
eigenvector.) 

Proof. Given X 4= ^(1 — m) and s 6 N we consider the following statements: 
[B] X is an eigenvalue of E with multiplicity at least s 
[C] A is an eigenvalue of D with multiplicity at least s. 

I) [B] implies [C]. 

Indeed, let [j;(t)],eF i = 1, ..., s be a system of linearly independent eigenvectors of £ 

corresponding to A. By adding the constant vector fs+1(t) = 1 we preserve linear 

independence, because [L+i(t)]tev corresponds to A0 (see (5)). We put: 

9{i)=m-fi{z), teV;i = l,...,s. 

Let us suppose that £ c ; . fl,(t) = 0 for every t e K. If we put cs+1 = - JJ ct .j f(z), 
then i = 1 i = 1 

'l*, .f(t) = I * -fit) - I Ci -j;(z)." 1 = £ c, . flf(t) = 0 
l* SB | i = 1 J = 1 i = 1 
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for every t e K. This equality also holds for t = z. Linear independence of [/;(t)](eF, 
i = 1, ..., s + 1, implies cl = ... = c s + 1 = 0. So, we have proved that [fl;(t)],eK, 
i = 1, ..., s, are linearly independent. In particular, they are nonzero. Since [/;(t)],ev, 
i = 1, ..., s, are eigenvectors of £ corresponding to I we can take the respective 
equations and subtract from them the equation for t = z: 

Z{e(t,v)-e(z,v)}.fi{v) = X.{fi(t)-fi(z)} = X.gl{t) for teK and J = 1 , . . . , S . 
veV 

By subtracting the formula (6) for y = / ( z ) and considering glz) = 0 we can 
easily derive that Y,d(t,v). gfo) = X . gt(t) for teK and i = 1, . . . , s . So, we 

have proved that [o;(r)],eK, z = 1, ..., s, are linearly independent eigenvectors of D 
corresponding to A. 

II) [C] implies [B]. 

Indeed, let [g;(f)]teJj:, i = 1, . . . , s, be linearly independent eigenvectors of D corre­
sponding to X. We put o;(z) = 0. Since X 4= J(l — m) we can define: 

/ ;(z) = {A - 1(1 - m)}- 1 . ^ e(z, v) . 9i(v), i = 1, ..., s , 
t>eK 

(U) /;(t) = 0 ; ( t )+ / ; (z ) , f 6 F ; i = 1, .. . , s . 
Let us suppose 

(12) I > ; . / ; ( 0 = 0 , teV. 
;=i 

We substitute (11) in (12). Using (12) for t = z it follows that £ c ; . o;(i) = 0 
;=i 

for teK. So, [/,(t)],eF, i = 1, . . . , s, are linearly independent. Now we can rewrite 
the definition of/ ;(z): 

£ e^z, v). g/v) = (A - i ( l - m)} . / ( z ) for i = 1, . . . , s . 
eeF 

Using (11) and (5) for t = z we derive from it: 

(13) IJe(z,v).fi(v) = X.fi(z), i = l , . . . , s . 
veV 

Our assumptions concerning [o ;(r)] (sF imply that 

X {e(f, ») - e(z, o)} . 0j(o) = X . gi(t) for t e V and i = 1, ..., s . 
vsV 

We add up (6) to it, where y = / ;(z) and using (11) get: 

£ {e(f, w) - e(z, u)} . / (« ) = X . g^t) for ( e F and i = 1, ..., s . 
veV 

Finally we add up (13). So, we have proved that [/ ;(f)],eF are eigenvalues of £ 
corresponding to X. 

III) So, I) and II) together yield the proof. • 
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Proof of P r o p o s i t i o n 4. Let us introduce the (V x V)-matrix B by 

(14) b(t,v) = i.8tv.p-\t)-i.ZSttVi.P?\tl), t,veV. 
; = i 

Let us further introduce the sequence of random variables (see Definition 5): 

(15) k"(co) = X E K*' v) • f% M) • f(v> m)> (oeQ'; n e N. 
teV veV 

(I) n . {'[p"(-, co)] — /[P]} — k"(co) -* 0 in probability. According to the Proposi 
tion 1 there exists a constant a = 1 such that for every r e V a = P(f). P ^ ^ t i ) • • • 
. . . . P~ 1(t,„). Hence in Lemma 3 V"(co) = 0 for co e Q' and neN (we have used (3)) 
According to Proposition 2 /"(i", co) tends in distribution (for fixed t e V). So (see 
Lemma 3) <P"(t, co). {f(t, ' ) } 3 is a stochastically bounded sequence (see [2] or [7]) 
It implies (see Lemma 3) 

^ H - 2 E p~ '(0 • {f{^ w)}2 -* ° i n probability . 
teV 

Similarly we can derive that 

U"(co) - i E -T X(s) • {/?(s> «)} 2 -> 0 in probability . 

But using (4) we easily verify that 

E P f^ s ) • { j?(s^)} 2 = E E &<„t • P7%) .f(t, CO) .f(v, CO) . 
seVt teV veV 

Combining these facts we get the desired statement (I). 

(II) Thus, we are now interested in the asymptotic behaviour of k"(co). We choose 
a fixed z e V, put K = V\ {z} and introduce the (K x K)-matrix C by 

(16) c(t, v) = b(t, v) - b(t, z) - b(z, v) + b(z, z), t,veK. 

We express f(z, co) according to (3), substitute it in (15) and get: 

fe"(co) = E Y,<t,v).f(t,co).f(V>m). 
teK veK 

So, k"(co) = H o f"(co), where f (co) is taken as a K-vector and H is a quadratic form 
on RK defined by H(x) = xT . C . x for x e #K . According to Proposition 2 f"(co) -+ 
-* JV(0, A) in distribution (A is a (K x K)-matrix here), hence Hof"(co) converges 
in distribution to N(0, A) transformed by H (see [1] Theorem 5.1). But this distri­
bution is described in Lemma 4. Since the (K x K)-matrix A has dominant diagonal, 
it is nonsingular and hence positive definite. 

(HI) It remains to characterize the spectrum of D = C . A. For t, reV fixed 
we shall express its element d(t, r). We substitute (16) in the definition of d(t, r) 
and use the following formula: E a(v, r) = 0 for r e V. So we get: 

veV 

(17) d(t, r) = J] b(t, v). a(v, r) - £ fo(z, ») . a(v, r), t,reK. 
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Now we compute 2 . £ b(t, v). a(v, r) for t e V and r e K. After substitution (see 
veV 

(14) and Definition 3) we get: 

X 5t.. P-I(t). S„ . P(r) - H 5,,.,. Rr'Oi) • &- • P(r) -
VBV VEV i = l 

- Y, 8„ . P~ l(t). P(v) . P(r) + X I StlVl. PT %) . P(v). P(r). 
veV vev i=l 

Obviously the first term is 5tr, the second one is ~P(r). ^ <5r.r.. Pf'('.)> t h e t h i r d 

one is —P(r). Further , = l 

E £ Kn • P:%) • P,V) = £P;
 l(t,) • Z *..-, • P(-) = 

UEK i = l i = l reF 

= £I jr1( t i ) .Jp ;O1-) = '«-
i= 1 

It means that the fourth term is m . P(r). Together we obtain (see Definition 6): 
Y b(t, v). a(v, r) = e(t, r) + £(m - 1). Pyr) for teV and reK. 
veV 

Thus (17) implies (10). By Lemma 5 it completes the proof. Q 

(Received February 18, 1986.) 
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