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KYBERNETIKA — VOLUME 28 (1992), NUMBER 4, PAGES 309-324

ON M-DIMENSIONAL UNIFIED
(r,s)-JENSEN DIFFERENCE DIVERGENCE MEASURES
AND THEIR APPLICATIONS

MARIA L. MENENDEZ, LEANDRO PARDO AND INDER J. TANEJA

During past years the Jensen difference divergence measure (Sibson [18], Rao [12]) has found its
importance towards applications in various statistical areas. In this paper, we have presented three
different ways to generalize this measure by using two scalar parameters. These generalizations have been
put in unified expressions. Some connections with income inequality, generalized mutual information,
Markov chains, deflation factor etc., have been made.

1. INTRODUCTION

Let
A= {P = (P, [ P> 0, Y pi= 1}
=1
be the set of all complete finite discrete probability distributions. For all P € A, the
Shannon’s entropy is written as

H(P)= - pilog;p:- @

i=1

Concavity of Shannon’s entropy gives the following inequality :

M M
S MH(P)< H (Dﬁ,—), )

=1
where Py, Pa, ..., Py € A, i€, P = (p1j,P2js- -+, Pnj) € A, for each j =1,2,...,M;
and \; > 0, ZZI A= 1.

The Jensen difference divergence measure (cf. [12]) or Information radius (cf.{18]) for
M-probability distribution is given by

M M
R(P,, Pyy...,Pu)=H (Z A,P,) =S \H(P). ®

=t j=1
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We can write o ”
R(Phpza---aPM)ZZ’\jD(Pj” ZMPI:)» 4
=1 k=1

where D{P||Q) is the Kullback-Leibler’s directed divergence given by

. pi
D(PQ) =Y pilog, . (5)
i=1 '
for all P, @ € A,.
We shall call the measure (3) or (4), the M-dimensional R-divergence. We shall now
present some different ways to generalize this measure. In order to do so, first we shall
give a unified two parametric generalization of (5).

1.1. Unified (r,s)-directed divergence

Taneja [20] wrote some of the known generalizations of the measure (5) in a unified way.
This unification is given by

D:(PIQ) = (1 - 2'=)! {(}f:lp:q}") o 1} Cr#lLs#1

Di(PI|Q) = (1 —2#)™" (26~ _ 1), r=1,s#1
FAPIQ) = n (6)

DPIQ) = 7 og, (L ptal ™). AL sz

D(P"Q):—i;l’;log,%:, r=1s=1

for all r € (0,00) and s € (—00,00). F3(P||Q) is called unified (r,s)-directed divergence.
It includes in particular the measures studied by Sharma and Mittal [17], Rényi [14]
and Kullback and Leibler {7]. It has many interesting properties (cf.{21]). In particular,

when Q = U, where U = i,.%) € A,, then we can write
FPHQ) = n* (£2(U) ~ £2(P)) (1)

where

Hy(P)= (21~ — )7 {(}":p;)':' - 1}. rEl s#1

i=1

Hy(P)= (27— )7 (20-2)H(P) _ ) | =1, s5#1
£xp) = R boorEhetl
HY(P) = L5 log, (_2;):), r#l s=1
=1

H(P)=—§Pilog,p‘, r=1,s=1
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and

2= _ )1 - 1), s#£1
g:((/):{( ) ), s# ©)

logn, s=1

for all r € {(0,00) and s € (~00,00). The measure £2(P) is named as unified (r,s)-
enlropy.

1.2. M-dimensional unified (r,s)-Jensen difference divergence measures

This section deals with three different generalizations of M-dimensional R-divergence
giveu by (4). The first generalization is based on the relations (4) and (6), while the
second is obtained directly. The third is based on the inequality (2) and the unified
(. s)-entropy (8).

1.2.1. First generalization

In (4) replace D by F?, we can write

M M
WP, Py Pu) = N f,’(Pj I Zxkpk), (10)
k=1

=1

for all r € (0,00) and s € (—o00,00), where F? is as given by (5). More clearly, the
measure (10) stands as follows:

'R:Pr,... Pu), 7#1, 8#1
'R{(Py,...,Py), r=1,s4#1
TR (P Py)y £ s=1
R(Pyy...,Py), r=1,s=1

WiP,...,Pu) =

where
Y n M 1-r] 5=
YRUPL G Pu) = (0=2170) T SN | PG (2)%13-1:) -1,
= = k=1
g s#1
r#l, s# (1)
TRY(Pr,..., Pa) = (1= 2179)7 {26-1R(PPa) _ 1) s# 1

M n M 1-r
RYU(Pry.. Py) = (r = 1) 1 ) log, {ZP.’-J- (Z /\kP-‘k) ] , o T#,
=1 i=1 k=1

for all » € (0,00) and s € (—00, 00).
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1.2.2. Second generalization
In particular, when r = s, we have

afafM M 1-s
'R(P, Py .., Pu)=(1~2'%) > ;,\jpgj (g,\kpik) -11, (12)

i=1

s#1,s>0.

We shall use the expression appearing in (12) for defining the second generalization of
M-dimensional R-divergence. It is given as follows

2R:(P],Pg,...,P)\,,), r#l,s#1

RPL Py Pyy), r=1, s # 1
2Py, Py, Pu) = (P P P, ? (13)
PRMPL Py Py), r AL s=1

R(P\,P2,...,Pu), r=1,s=1,

where

w (M M 10735
TRy, Py Pa) = (121707 { [2 (E )\J'PIJ‘) (Z )‘kl’:") } - 1} .
i=1 \ ;=1 k=1 )

r#l s#l
2RHP, Pay. . Pry) = (1= 279)  expy [(s — ) R(Py, ..., Pu)] — 1}, s # 1,

n /M M 1-r
RN P, Pyy... s Py) = (r—1)"log, {E] (z:‘ /\jpfj) (kzl z\kp,-k> } ,r#E
=1 \i= =
(14)

for all » € (0,00) and s € (—o0, 00).
In particular, when r = s, we have

Wi (P, Pay Pu) = V(PG Py Pu), s >0
1.2.3. Third generalization
In the inequality (2) if we replace H by & as of expression (8) we get
M M
YoNEP)<E (Z u;-) :
=1 =1

The validity of the above inequality depends upon the concavity of £. This holds, when
(r,s) € T (cf. [20]), where

[={(rs)|s>2-1/r, > 0}.
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Thus, the difference

M M
Vi(PL Py Pu) = € (Zw) - Y NE(R), (15)

=1 =t

for all (r,s) € T can be considered a third generalization of Jensen difference divergence
measure (3). The particular case of (15), when r = s has been extensively studied by
Burbea and Rao [2,3], Kapur [6], Sahoo and Wong [15]. And the case, when s = 1
has been studied by Rao [12]. We see that the nonnegativity of (15) is restrictive with
respect to parameters, while this is not so for the measures (10) and (13). The measures
(10) and (13) are presented for the first time in this paper.
In this paper, our aim is to study properties of the measure *V? (P, P, ..., Py)

(e = 1 and 2) such as convexity, Schur-convexity, monotonicity with respect to the
parameters, generalized data processing inequalities etc. Some applications towards
income inequality, deflation factor, generalized mutual information, Markov Chains etc.
are specified.

2. PROPERTIES OF M-DIMENSIONAL UNIFIED (r,s)-JENSEN DIFFERENCE
DIVERGENCE MEASURES

The definition of convexity for M-probability distributions is well known in the literature,
while, the Schur-convexity for M-probability distributions is not very much known. It
is defined as follows:

Definition 1. Let P; = (p1j,...,pn;) € Ay and Q; = (qujs---4qn;) € An, j =
1,2,..., M. A function F: A, x A, x -+ x A, — R (reals) is Schur-convex on
Apx Ay x Ay if (P, Pa) = (G, ...,Qm) implies F (Py,...,Py) < F(Qr,....Qum),
where (Py,..., Py) < (Qi,...,Qu) means that there is a doubly stochastic matrix

{ai}, i, t=1,...,n, with
n

n
E @y = E ap =1
i=1 t=1

such that
n

pij = Za,-,q,_,, Vi=1,2....M i=1L2.. . .n
t=1
Now we shall study some relations in the measures appearing in the expressions (10)
and (13).

We can write

M M
TRE(P,... Py) = ZAJ-(.',(D:(}HlEAkPk)) (16)
k=1

=)

PRE(P,.. . Py) = G (CRUP.... Py) (17)
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YR (Py,y. .-, Pu)

I

ix,. G, (D (P,. I EM:/\,,P,,)) (18)

=1 k=1

R (Pyy..-,Pu) = G,(R(Py...,Pu)) (19)
where

Gi(z) =

_ 91-s\"1 (o(s—1)z _ s
{(1 21-5)7" (2 1), s#1 (20)

z, s =1

The function G, given by (20) satisfies many interesting properties given in the following
result,

Result 1. For z >0, —o0 < 5 < 00, the followings are true:
(i) G4(x) > 0 with equality iff z = 0;

(i1) G,(z) is an increasing function of z;

(iii) G4(z) is an increasing function of s;

(iv) G.(z) is a convex function of z for s > 1;

(v) Gs(x) is a concave function of z for s < 1.

We shall now present some interesting properties of the M-dimensional unified (r, s)-
Jensen difference divergence measures given by (10) and (13), i.e., for *V: (Py, Ps,..., Pu)
(o =1 and 2). From now onwards, it is understood that Py, P;,..., Py € Ay, 1 € (0,00)
and s € (~o00,0).

Property 1. We have, *V! (P, Py,...,Pu) 2 0 (@ = 1 and 2), with equality iff
M
pij = Ep,-,-)\j foralli=1,...,n,7=1,.... M.
=

Proof. In view of the relations (16) - (19) and the result 1, it is sufficient to prove the
nonnegativity of 2R} (P, Py, ..., Py), because the measures D}, D and R are already

nonnegative. The nonnegativity of 2R! (P, Py, ..., Pu) can be proved by using Jensen’s
inequality. u]
Property 2.

IA

2V:(Py,...,Py), s<r
> V(P Pu), s>

Wi (P, Ps,..., Pu) {

Proof. In view of the continuity of the measures *V? (a = 1 and 2) with respect to
the parameters, it is sufficient to prove the result for °R? (a =1 and 2), r # 1, s # 1.
The result for *R? {a = 1 and 2) can be derived using Jensen’s inequality. o
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Property 3. *V? (P, P:...,Py) (a =1 and 2) are increasing functions of r
(s fixed) and of s (r fixed). In particular, when r = s, the result still holds.

Proof. In view of the relations (16)-(19) and the result 1 (iii), the measures
V¢ (P, P2, ..., Pu) (a =1 and 2) are increasing functions of s (r fixed). Now we shall
prove the increasing character with respect to r. For all Py, P,,..., Py € A, let us
consider

M 1-r] 2%
T (Pj I E«\'J’k) Zp., (Z /\kp.k)
k=1 k=1
1-r F{T
Pii | = r#l
[Z ’ (Ek— )‘kp-*) ] ’
for each j = 1,2,..., M.
We can write,
;]
T, (Pi||F;) = qun } . i=12.,M,
where F; = (fij,-.., faj) With fi; = -iM—L—— foreveryi=1,2,...,n, j=1,2... .M.

For each j, T, (P;]| F;) is an increasing function of r (cf. [1]). Since ]og2(~) is an increasing
function this gives that

M
~log, (T,(Fy||F;) = D} ( Pl me)
k=1

is an increasing function of r for each j = 1,2,..., M. In view of the relation (16), we
conclude that the measure 'R2 (P, ..., Py) is increasing in r (s fixed). Again using the
fact that T,(P;]| F;) is increasing in r, for each j, we conclude that Zfil XTI (P|IFy) is
increasing in 7. Since log,(-) is increasing we get that

M
L log, (Z AjTr(le!P})) = (P, Pa)

J=1

is increasing in r. In view of the relation (17) we conclude that 2R2(P,,..., Pm) is
increasing in r (s fixed). Now we shall consider the particular case, i.e., when r = 5. In
this case, we have

“Ry(Pyy..., Py)

il

i=1 \j=1

""" -1, s#1, a=1,2

i
—
8,
I
-
L
v}
T
g
2
5
X
X
L
=

Using the result 1(iii), we conclude that R(Py,..., Py) is increasing in s. O
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Property 4. “V?(P,,P,,...,Py) (=1 and 2) are convex functions of
(P, Pyy...,Py)foralls >r>0,with LeD,, t=1,...,n

Proof. In view of continuity of *V? (a = | and 2) with respect to the parameters r
and s, it is sufficient to show the convexity of “RI(Py, Pa, ..., Py) (o = | and 2), for all
s2r>0,r#1, s#IL

For o = 1. It can easily be checked that the function given by

Kf(plj’ .y Pnj) = Z ]’:J (Z AIcpck)

i=1

is convex for » > 1 and concave for 0 < r < 1, foreach j = 1,2,..., M. This is equivalent
to say that the following inequalities hold

r =1

- 17 5

L/u Z Pl (Z /\u).A) + 12 Z i (Z )‘Aqu)
i=1 i=1

n M 1-r\ ¥
2 <Z (mipij + p2gi) [m (Z /\szL) + 2 (kE Akq;k)] )
i=1 =1

l

r>1, ﬁ010<1 <1, ——<0
. (21)
n M 1-r\ =1
< (E (mpij + 12gi;) [M (Z )‘kl’m) + 12 (Z /\A‘lxk)] ) >
i=t
0<r<y, =t >, o

foreach j =1,2,....M; iy, 12 20, 3 +p2 = 1.
We know that the function f(x) = #' is convex for £ > 1 or { < 0 and is concave for
0 < t < 1. Using this, we have

s=1 a=t
1-r7 51

M

157 =3 . M
Z Pl (Z /\Lm) + p2 Z‘I.‘rj (Z /\kflik)
i=1 k=1

fi

n M 1-r n M 1-r]¥ .
Z {lh > pij (Z /\kl’ik) o (E /\w‘k) ] . E>lorslco
=1 k=1 i=1 k=1

n M 1= 7. —r]
< {lh 2 pii (Z /\L-Pik) + 12 Y 4% (Z /\um> ] L0<E <
i=1 k=1 =1 k=
foreach j = 1,2,....M; jy 220, pu +p2= 1.

Joining the inequalities (21) and (22) and multiplying the resultant inequality by A;,
adding for all j = 1,2,..., M, subtracting 1 ou both sides and multiplying by (1 —21-#)-!
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(s # 1), we get the convexity of 'R (P, Py,..., Py) for all s > r > 0. In particular
when r = s, the inequalities (21) still hold. This completes the result for a = 1.

For a = 2. To prove the convexity of 'R2 (Py,..., Pp) we used the functions
Ke(p1jy-..,pai) (7 = 1,2,..., M). Instead, using it again, if we use the fact that the

M M n M 1-r
DMK (rjse o) = 3N B (Z Akp,-k) (23)
=t j=1 i=1

function

k=1
is convex in AM for r > 1 and is concave in AM for 0 < r < 1, and proceeding on the
similar lines as before we get the required result. a

Property 5. °V:(P,P,,...,Py) (o = 1 and 2) are Schur-convex functions of
(P, Pay...,Pu) € AM,ie., (P, Pay..., Py) < (@1,Q2 - .., Qn) implies
V(P Pay..., Pu) S°VHG1, Q2. .., QM) (¢=1and 2)
Proof. By the definition of (P, P, ..., Pr) < (@1, Qa,...,Qa) implies that

n

P.'j=zanqu' Vi=12,...,M;i=1,2,... n,

t=1

where a;;, are as given in Definition 1. This gives,

M 1-r n T/M n I-r
P (Z /\kpik) = <Z a; q:,') (Z Z @i Ax qu:) ) (24)
=1

=1 k=1 t=1
forallj =1,2,...,M; i=1,2,...,n.

For « = 1. From Holder inequality, we have

. 1-r
M 1-r 2Zv:a.~¢q"j (%'\k‘hk) , 0<r«i,
Pij (z )\kP-’k) =1 k;l .

t=1 k=1
forallj=1,2,...,Mandi=12,...,n.

Summing over all i = 1,2,...,n, using the fact that 3.0 a; = 1 for all t = 1,2,...,n
and raising both sides of the resultant inequality by =1 we have

. M 1-r] 5
2 {Z 9% (Z Ak ‘Illc) ] ,
t=1 k=1

=550 0<r< o=l <0, r>1

2=l
=

T

n M 1-r
> (Z Ae Pu:)
i=1 k=1

n M -] 5
< [E @ (Z *km) ] .
t=1 k=1

<0 0<r<iorz=ls0,r>1
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for each j = 1,2,..., M.

Multiplying by A;, summing over all j = 1,2,..., M, subtracting 1 on both sides, mul-
tiplying by (1 — 2'7*)7! (s # 1) and simplifying, we get

'R (P, Pay. .y Py)) < 'RI(Q1, Q2 .., QM) r#1, s# 1.

For a = 2. From relation (24) proceeding on the similar lines as before we get the
required result. o

Property 6. If P;(B) = (z:‘:, Pii bir e M s b,,k) € A, for each
7=12,...,M,where B = {by}, bx >0, ¢ =1,2,...,n; k=1,2,..., M is a stochastic
matrix with Y1, by = 1 for each k =1,2,..., M, then

i=

V; (P(B),...,Pu(B)) < V! (Py,...,Pu) (e =1 and 2).
Proof. Follows on the lines similar to Property 5. [u]

Property 7. If the stochastic matrix B given in Property 6 is such that exists an i
for which by 2 ¢>0, Vk=1,2,..., M, then

VI (PUB), - Pu(B)) £ (1 —¢) VI (Pry..., Pu) (e =1 and 2),

foralls >7r>0.

Proof. For given B, fix By such that

B=(1-¢)B +cBy,

2, - 1, ifi=iq,
0, otherwise.

Using convexity property of *V:(Py,..., Py) (o = 1 and 2) and the property 6, we have

where

VIHAB),. -, Pu(B)) < (1 =) VI(P(B1),.... Pu(Bi)) + VI (P(By),..., Pu(Br))

<
< (1=¢)*Vi(P,...,Pu) (a=1and?2)
for all s > » > 0, since *V? (P(By),..., Pu(B2)) =0 (a=1and 2).
3. APPLICATIONS
In this section, we shall specify some applications of the unified (r, s)-divergence measures

given in Section 1. The applications are given towards income inequality, deflation factor,
generalized mutual information and Markov chains.
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3.1. Generalized measures of income inequality

Following the approach of Nayak and Gastwirth [10], the generalized measures of income
inequality are defined as:

- “ViP,...,Pu)

‘L (P, Pry...,Pu) (25)

M
& (E )‘jP]>

j=1

for all » € (0,00) and s € (—00, ) when a =1 and 2, and (r,s) € I, when a = 3.
Following the approach of Theil [23,24], the generalized measure of income inequality
is written as

I (PIV) = —55“2,(‘U5)" #) (26)

where U is uniform distribution and P € A,,. Some particular cases of measure (26) are
studied by Kapur [5].
3.2. General mutual infermation

Let us consider a bidimensional random variable (X, Y') taking the values (z;, ¥i)
i=1,...,n; j=1,2,..., M with joint and marginal probability distributions given by

Pxy ={plzi y))}, Px={p(=:)} and Pr={p(y;)}
foralli:=1,2,...,n; 7=1,2,..., M.
The conditional probability distributions are given by
Pxpy=y, = {p(xily;)}  and  Prixes, = {ply;]2:)}
foralli=1,2,...,n; j=1,2,..., M.
Let us also denote

Px x Py = {p(z:)p(y;)}, i=1,2,...,n J=1,2,..., M.

Let us take \; = p(y;) and pi;; = p(zi]y;), then from (11), we have

M
RI(Py Pu) =3 p(ys) D} (Pxjyay, | Px) -

j=1
Hence

M
WX Y) =Y plu) Fr (Pxyyay, I Px),

for all » € (0,00) and s € (~00, 00), where in this particular case
WX Y) = "WE(P,. .., Py), and F?is as given in (6).
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Similarly, we can write
WX Y) = F(Pxy || Px x Pr)

for all r € (0,00) and s € (—o00, 00).
Again making the same substitutions as above, we have

3R (Pr,..., Py) =

= @-17 { [Z (ZP(W)P(I-’!%‘)) ] - 1} = H}(X) - H}(X]Y).
=1 \j=1
Hence
WX Y) = E(X) - E(X]Y), (27
for all (r,s) € T.

In particular, when » = s = 1, we have

M
WHX;Y) = IX;Y) = VHXY)=RX;Y) =3 py;)D( Pay=y, || Px)
=1

D(Pxy || Px x Py) = H(X) — H(X]Y),

where H(X) and H(X|Y) are the Shannon’s entropy and Shannon’s conditional entropy
respectively.

The measure R(X;Y) is famous in the literature on Information Theory as mutual in-
formation between the random variables X and Y. We call the measures *V3(X;Y) (a =
1,2 and 3), the unified (r, s)-mutual information.

For the three discrete random variables X, Y and W, let us define the expressions
Y? (a = 1,2 and 3) as follows:

t
WVHXGYIW) =3 ) VXY |W = w),

=1

where for each value w; of W, we have

M
ZP(UJ’ |wi) F2 (P (y=y, w=up || Pxiw=uw)

i=1

F: (F){y[w:u,, ” Px]w:w X PK]W:w,) ’

WX Y [ W =w)

VAKX Y |W =w)
and
WXKYIW =w) = E(X|W=w)-E (XY, W =w),

with

M
EXIYW =w) =" p(y;|w) € (Peiyey,wew)

=1
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for all r € (0,00) and s € (—o0,00) when a =1 and 2, and (r,s) € [ when a = 3. The
expressions 2V? and 3V} can be also understood as follows :
WX Y [W) = F2 (Pxyw || Pxiw x Priw)

and

WAXY W) = E(X W) - E(X |V, W).

The following proposition holds.

Proposition 1.
(i) For all » € (0,00) and s € (—oo0,00), we have
(a) *V2(X;Y) 2 0 (e =1 and 2) with equality iff X and Y are independent;
(b) *V2(X;Y |W) > 0 (a =1 and 2) with equality iff X and Y are independent
given W.
(ii) For all (r,s) € ', we have
(a) *V?(X;Y) > 0 with equality iff X and Y are independent;
(b) *V2(X;Y | W) > 0 with equality iff X and Y are independent given W.

Proof. Part (i) (a) and (b) follows from the Property 1. In order to prove part (ii)
(a) and (b) it is sufficient to prove (b) part, i.e., equivalent to prove the following:

E(X|Y,W) < £(XY)
with equality iff X and Y are independent given W. It can be proved by using concavity
of £ for (r,s) € T (cf. [20}).
3.3. Markov chain
We shall now apply the concept of unified (r, s)-mutual information discussed above to

Markov Chains.

Definition (Markov chain). A sequence of random variables Xj, Xz,... forms a
Markov chain denoted by X; © Xz © ... if for every i, the random variable Xy is
conditionally independent of (X1, X2, ..., Xi_;) given X;.

Proposition 2. The random variables X, Y and W form a Markov chain, i.e.,
XoYoeWiff V) (X;W|Y)=0(a=1,2and3).

The proof is obvious from the definitions and Proposition 1.
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Proposition 3. If X 6Y & W, then
“VAX;Y)
VX W)

for all r € (0, 00}, and s € (—00,00) when a = 1 and 2, and (r,5) € T, when @ = 3.

(a) “VHX; W) < {

(b) E(X|Y) < E(X W), for all (r,s) € T

Proof. (a) For a =1 and 2 the result follows from Property 6. For a = 3, we have
the following identity :

WHXW) + PVAXY (W) = PVIX YY)+ VI WY

Since X, Y and W form a Markov chain, then by Proposition 2, 3V (X;W|Y) = 0.
Also, 3V2(X;Y | W) > 0. Thus, the required result follows immediately from the above
identity.

(b) From Proposition 2, we have

YAX; W Y) =0
for (r,s) € T. This implies that
E(X|Y)=E(X|Y,W) < E(X|W), (from Prop. 1(b))

for all (r,s) € ', whenever X,Y and W forms a Markov chain. u]

Proposition 4. f XYoo WoT, then
VHX;T) < 2V(Y; W)

for all r € (0,00), s € (~00,00) when e = 1 and (r,s) € ', when o = 3.

Proof. Since X, Y, W and T forms a Markov chain, then X, Y and T and Y, W
and T also form Markov chains. Applying Proposition 3(a) over these two sub-Markov
chains, we get the required result. s}

3.4. Deflation factor
Nayak [9], considered the following decomposition for the entropy of degree s

ENXY) = E(X)+ Y pla) wi(p(z)) EXY | X = 2:). s>0 (28)
=1

where w] (p(z)) is the “deflation factor” (cf. [11}) given by

wi(p(x:)) = pla:)*™".
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The expression (28) given in [9] is for one parameter. This can be generalized for two
parameter family of measures in the following way:

SEX) + N pe)wip@) E(Y X =2) r2s22-1/r21
£(X,Y)
2 E(X)+ L) wip@) E(Y [X =2)  12r2e22-1r
) (29)

where

La=1_

wi(p(ei) = plz) =", r#L
As specified in [9], here also the above expression (29) does not applies in the case of
Rényi’s entropy of order r. In particular, when r = s, the expression (29) reduces to
(28). For the proof of inequalities (29) refer to [13].
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