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K Y B E R N E T I K A ČÍSLO 6, R O Č N Í K 6/1970 

Statistical Data Reduction via Construction 
of Sample Space Partitions* 

J A N B I A L A S I E W I C Z 

The statistical data reduction problem is presented as a problem of construction of sample 
space partitions. Then, the algorithm for synthesis of an e-sufficient partition of a sample space 
is derived and its modification from the view-point of applications is formulated and discussed. 

1. INTRODUCTION 

Let the triple (Q, 91, P ?) be a probability space: here Q is a set whose elements 
are called co's, 91 denotes the c-algebra of all subsets of Q, P c is a probability measure 
defined on the (measurable) space (Q, 91). Let £(a>) be the random variable cor­
responding to P c and with range Q. We shall call (Q, 91, Pc) the parameter space. 
This name will be used also in refering simply to Q. 

We shall call (X, X, Q, P4((0) the sample space, where (X, X) is the measurable 
space of outcomes of an experiment and P«((B are conditional probability measures 
defined on (X, X) for each given parameter value coe Q. Elements of the real space X 
are called x's, X denotes the a-algebra of all subsets of X. The set Q can be also con­
sidered as an index set of probability measures P^a on (X, X). £(co) is a random 
variable defined on the space Q and taking its values in X. The name "sample space" 
is also used when refering only to X, its first element. 

Let Ybe a proper subset of X and let (Y 9)) be the measurable space with 9) being 
the o--algebra of all subsets of Y We define the problem of data reduction as the 
problem of finding a partition j / r of X defined by some measurable transformation 
Tfrom (X, X) onto (Y 9)). In other words, the problem of data reduction may be 
considered as the problem of searching the new experiment to be performed which 
is nothing different than the determination of a new random variable tj(co) defined 

* Results presented have been obtained when the author was with the Department of Mathe­
matics, Oragon State University. 



on Q which may be expressed as a following composition: 

(i) nH = Toi(p) 

To each point y e Y corresponds some event Ay e % such that 

(2) Tx = y for all x 6 Ay 

and, of course, by definition Ay e s/T. 
The diagram below summarizes the principle notations to be used and gives the 

view of their relationships, where all the probability measures are generated in 
a standard way, provided P*, {P$\a, co e Q], Tare given and tj is defined by (l). 

P«. P( x Pt P<„, Pj x P, 

(a x X, 51 x x) 
I I (fl x Y, 51 x V) 

i(a,)Q(Q, 51) S£ -(X, X) T- -(Y, 5J) 

A. *V pu, p<- pa- p< 

It should be clear that usually some constraints are imposed on a class of transfor­
mations to which T belongs. These are constraints concerning preservation under 
transformation T of information about the unknown value of parameter co which is 
incorporated in events A e X. To be able to make it more clear we introduce now 
some additional notations. Let D be an arbitrary space of actions or decisions d, let L 
be a loss function defined on Q x D, let 38 be a class of ^-measurable decision func­
tions d with the range D. Further, let X' c X be the <r-algebra generated by the parti­
tion s/T and let J " c & be a class of ^'-measurable decision functions 8'. We are 
now in position to give the following definition. 

Definition 1. The space X and the partition s/T are said to be equally informative 
if there exists an element d'0 e 3)' such that 

(3) r ( P c . , ^ = infr(PK,<5) 

where 

(4) K-'ee.-O-f -*M(x))dPK. 
Jnx jr 

In the sequel we shall consider partitions stfT which are "as informative as" X, 
as well as, such which are not. We remark that in general case only the latter lead 
to the essential data reduction. This statement is clarified later. 



2. PARTITIONS WHICH ARE SUFFICIENT ON A SAMPLE SPACE 

In Backwell and Girshick [ l ] may be found the following definition of a suf­
ficient partition. 

Definition 2. Let (X, X, Q, P^\m) be a sample space. A partition si of X is said 
to be sufficient on (X, X, Q, P .^) if for every bounded function / defined on X and 
every A e si, the conditional expectation of/, given A and co 

is independent of co for those co 6 £2 for which P$\a,(A) > 0. 
Using the factorization theorem (see [ l ] for the formulation and proof) one can 

prove 

Theorem 1. Let si be a sufficient partition on (X, X, Q, P^\a)- Then X and s4 are 
equally informative. 

It follows from Theorem 1 that if si is a non-trivial sufficient partition (i.e. such 
a sufficient partition which does not exclusively consists of individual points of X), 
then instead of making precise measurements of the physical parameters of some 
objects represented by the vector x e X, one can check only to which A e si this 
vector belongs. If there exist non-trivial sufficient partitions si of X, the question 
arises how to construct the minimal sufficient partition. 

The appropriate algorithm may be readily written on the basis of Lemma 8.4.1 
and Lemma 8.4.3 given in [1] under the following assumptions: 

(a) the sample space (X, X, S3, P^) is auch that for each xeX there exists at 
least one co e Q with P^\m(x) > 0, 

(b) the parameter space Q is finite. 

The assumption (a) means that the space X is such that its points really occur 
as results of the experiment performed. It is clear that from the view-point of applica­
tions the assumption (b) can not be considered as a restriction. 

3. SUFFICIENT STATISTICS 

Classically the sufficient statistic Ton (X, X, Q, P$\w) is defined as a random vari­
able such that the partition siT of X determined by Tis sufficient on (X, X, Q, P4|m). 

Proposition 1. Let (X, 3c, Q, P^a) be a sample space, let (Q, 91, Pc) be a parameter 
space, and let T be a random variable defined on X and with range Ya y. Then 
T is a sufficient statistic on (X, X, Q, P/-\a) if and only if for each pair (x, y) such 



that 

(5) y = Tx 

the equality 

(6) PM = p«y(B) 

holds for all Be 21 such that JB P - ^ x ) P{(©) dco > 0. 

Proof. Suppose that T is a sufficient statistic on (X, 3E, Q, P?,ra) and j / r is the 
corresponding sufficient partition. Then for every x e Ay and each Ay e j</r 

Tx = .v 
Define 

PgJL*) » ( * ) -
£pili0(x)pç|» dю 

assuming that for each x the denominator is positive which is true by hypothesis 
(see Definition 2). This is also equivalent to the appropriate condition in Proposition 1. 
Then, from factorization theorem for sufficient statistics 

S<B(x) = KTx,co)g(x) = hjTXv) = r a { T x ) 

I h(Tx, co) q(x) P^co) dco j h(Tx, co) P^co) dco 
Jfl Jn 

and 

(7) P, | r a(x) = r M (Tx)P,(x). 

Using (7) we obtain 

( 8 ) I,CM(B) = ^ £ d x £ p , | a > ( x ) P c ( c o ) d a ) = 

1 

" PM). 
where A e 3€, B e 91. P;\A(B) may be also expressed as 

(9) P«JB)-W)LFamdP!lx)=i4oI/°W/',>)da> 

Now, assuming that A = AyestfT we conclude that for x e Ay ra(Tx) does not 
depend upon x. Moreover, the left hand sides of (8) and (9) become PQ„(B). Next, 
comparing the right hand sides of (8) and (9) we conclude that JB PQX^) do> does not 

j Pą(x) dx í rш(Гx) Pc(o>) dco 
Чл Jв 



446 depend upon x e Ay. This means that (6) holds for all xe Ay and B e 21 such that 
JB P{\J(X) P^i03) &<° > 0. Conversely, suppose (6) together with (5) holds. Since 

and 

p«(y) 

we obtain 

or 

• p - w - ^ p ^ 
which making appropriate definitions is equivalent to the necessary and sufficient 
condition (given by factorization theorem) for a random variable T to be a sufficient 
statistic. 

This completes the proof of the proposition. 

4. PARTITIONS WHICH ARE 8-SUFFICIENT ON A SAMPLE SPACE. 

GENERAL CONSIDERATIONS 

Let T be any measurable transformation from the measurable space (X, X) onto 
a measurable space (Y, 2)) as stated in Introduction. We have by definition 

1 -*-O0 P£A) 

where 

(11) A = r'y = {x:Tx = y} . 

From (10) 

(12) PM.&&4..-fal/om„, 
which is equivalent to (6), provided A is an element of a sufficient partition. Note that 
[P„] the following relations hold: 

(13) J j W _ > 0 , xeX, ysY 
Pn(y) " 
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(14) dP^ = 1 , A e X and A = T" 'y . 

p,(y)jA 

Let h be any concave function. Then, since (13) and (14) hold, we can apply to (12) 
Jensen's inequality. We get then 

(i5) ijkLp''-(B)'p')i^LKP"'(B),dP!-
Taking the integral of the both sides of (15) over the space Q x Y, we obtain 

(16) [ dco [ P,(y) h(P«y(co)) dy = [ dco [ P.(x) h(PQx(co)) dx . 
Jn JY Jn JX 

If we denote 

£ ' = [ dco [ P,(y) h(P^y(a>)) dy - [ dco [ P,(x) h(P?,») dx 
Jn JY Jn Jx 

and if we choose 

(17) h(P)= - P l o g P 

where the basis of logarithms is equal to 2, then, from (16) we get 

(18) - [ dco [ P^(a>, y) log P c | » dy + 

+ \ dco\ P^(co, x) log Pax(co) dx g e 

where e = e' is a non-negative number. 
Definition 3. The measurable transformation T from the measurable space (X, X) 

onto a measurable space (Y 9)) is s-sufficient if the inequality (18) holds with e > 0. 
The partition jrfT of X determined by such T is said to be e-sufficient on (X, X, Q, 

*V)-
Remark 1. It is obvious that if and only if e = 0 in (18) then Tis sufficient. 
The concept of s-sufficient transformation was in the different way first introduced 

by Perez [2] and was studied by him in [3, 4, 5]. The equivalence of both definitions 
is straightforward. 

Equality (3) defines the Bayes risk. As stated by Theorem 1 the Bayes risk remains 
unchanged if X is replaced by its sufficient partition s/T. This is, however, no longer 
the case if stfT is an s-sufficient partition. This means that in the case of s-sufficient 
data reduction we do need an estimate of the Bayes risk increase. Such an estimate 



is given by the Perez's theorem to be found in [3]. See also Perez [4, 5] for further 
considerations. 

5. e-SUFFICIENT DATA REDUCTION. CONSTRUCTIVE RESULTS 

The class of sample spaces to be considered in this section is that with finite para­
meter space Q; a member of this class is denoted by (X, £, Q, P^|mi). Let M be the 
number of points a>; in Q. We will give an algorithm for constructing an e-sufficient 
partition. This partition turns out to be finite. The considerations of this section 
extend the earlier results of the author presented in [6] and [7]. 

Let us assume, for a moment without any motivation, that in the case of finite 
parameter space it is possible for any positive value e to construct an e-sufficient 
partition of X which is finite. This implies the finiteness of the space Y. Let K be the 
number of elements As in J</T (or the number of elements y>j in Y). With these assump­
tions we can replace the inequality (18) by 

(19) - I ZP>,A>gPCM» 
a j = i 

£ Í P e , » l o g P { , » d P . ( x ) < ; 
я Jx 

Now, we give an information-theoretic interpretation of the problem of searching 
an s-sufficient transformation in the case considered. Let (Q,X, 3E, Paa) and (Q, 91, P c) 
be a semicontinuous channel and a source of information, respectively. The average 
amount of information per transmission received through the channel is given by 

R = H(Q) - H(Q j X) 

where 

H(G) = - £ P c ( o ) l o g P ? ( » , 

H(Q | X) - ~ X f PQx(a>) log P . , » dPt(x). 
« Jx 

It was proved by Feinstein [8] that for any e > 0 one can replace the semicontinuous 
channel defined above by a discrete one which assures the decrease of the average 
amount of information per transmission not greater than e. This means that one can 
find the transformation T defined above for which 

(20) R - R' S s 

with 

R' = H(Q) - H(Q | sfT) 



where 

H(Q | r f r ) = - I Z Гá<»> Aj) Ьg P ? W И • 
n J = l 

Clearly, (20) is equivalent to (19). This leads us to the following assertion: 

Theorem 2. // the parameter space Q is finite, then for any positive e there exists 
an e-sufficient measurable transformation T from the measurable space (X,X) 
onto a finite measurable space (Y, 3£). This means that the corresponding E-sufficient 
partition of X is finite. 

We propose an algorithm for constructing an e-sufficient partition s/T of X This 
algorithm is based on the proof of Feinstein's theorem, given in [8]. 

To construct an appriopriate set $fT = {Aj} we explicitly put 

(21) -logPC |x(a> ;) = 0 for PQx(co.) = 0 , o>; e Q . 

Then, denoting by m any positive integer, we define the following sets: 

(22) Am(o>.) = {x : - l o g PC|x(co;) < m) , co; e Q , 

(23) Ara = (1 Am(cot) . 
a 

Algorithm 1 

1° Find the smallest subscript m = m0 such that 

(24) - lPc«(co;, X \ Amo) log Pjxa>h X \ Amo) 
n 

+ Pi(X\Aj\ogPs(X\Aj<:y 
where 

(25) Pc«(co, X \ AJ = Pitm(X \ Amo) Pfa) , 

(26) Pi(X \ Amo) = ZP^co,, X \ A J 
n 

and y is a positive number such that 

(27) y < e 

where s is a positive number chosen before. 
As a result of this step of the algorithm we obtain the set A,„a. 

2° Choose the smallest positive integer n such that 

(28) LpjAjZe-j. 
n 



450 3° Find 

(29) Pmax = sup Pc|x(a>,.) 
fix Amo 

and then 

(30) fcmin = [1 - n log Pmax] . 

4° For each co; e Q construct the following sequence of sets 

(31) Afr,mi = {x : 2-«" < P c l > 0 S 2- ( fc- lw"} n ^m o 

k — kmin,..., nm0 , 

(32) Ao.o,, = {* : P(\M = °) 0 ^m o • 

5° Construct all the following sets: 

(33) A(k1,k2,...,kM) = f)Aku!0i 
i = l 

where 

(34) k, = 0, fcmin, fcmin + 1, ...,nm0. 

It is proved in the sequel that as a result of this step we obtain the set 

(35) s/T = {Aj} = {{A(ku k2, ..., kM)} , X N Ama} . 

Now we make some remarks which will be found helpful in proving that the formulat­
ed algorithm possesses the desired properties. 

Remark 2. The sequence Am is a non-decreasing sequence of sets. Therefore 

(36) lim Am = U K = X . 
m = l 

Remark 3. It follows from relations (29), (30), (31) and (32) that 

(37) U Ak<a)t = Amo, a>tGQ, 
k = 0 ,kmin,...,nmo 

(38) U A.k,m, = 0 , cot e Q. 
k = 0 ,kmi0,...,nmo 

The same assertions are clearly true for the sets A(kx, k2,..., kM). 

Remark 4. The set s/T given by (35) is a partition of the space X (it is motivated 
by Remarks 2 and 3). 

Remark 5. Since 0 < y < s and y may assume any value from this interval, then 
for the fixed value E we can obtain uncountably many partitions siT of the space X. 

We formulate now the theorem concerning Algorithm 1. 



Theorem 3. Let (X, 3£, Q, P^a^) be a given sample space with the parameter space 
Q which consists of M points, and let also the a priori probability measure P^oo) 
be given. Then a partition siT = {A,.} of the space X obtained as a result of Algo­
rithm 1 is e-sufficient. 

Proof. Taking into account Remark 2 and lim a log a = 0 we conclude that it is 
«->o 

possible to find m — m0 such that for the chosen positive y < e and any e < 0 we 
will have 

(39) - I P « K X \ Amo) log Fe |z. Amo(oo{) = 
coiefl 

= - I P«K * N 4 j log P«K X N Am) 

+ Pi(X\Am[)logP,(X\Amo)Sy 

where the set Amo is defined in the step 1° of Algorithm 1. 
If r > 0, then 

(40) 2~rl" < P c l > , . ) < 2 - ( r - 1 ) / n 

for all x belonging to any A(ku k2,..., feM) for which kt = r, where « is defined 
by (28) and the sets A(ku fc2,..., kM) are defined by (33). Since 

(41) Pçи(*1,*2,...,*M)K = , г; ГTч ľ p«i-(ш') 
P^Җfcj., fc2, . .., fcMJ) J Л(fc, ,kг k„) 

d p , 

the same inequality should be true for PQA^M * M ) K e x cept those cases when 
Pl(A(ku k2,.,., kM)) = 0, which means that P K (G>., A(ku fc2,..., fcM)) = 0. 

Further, if fc, = 0, then 

(42) P(i(cot,A(kuk2,...,kM)) = 0 

for all corresponding sets A(ku fc2, ..., kM). 
Define on Amo for each cot the following function (recall Remark 3): 

f- logPcK*.,*, kM)(o0i) if xeA(kl,k2,...,klt) 
(43) g(cot, x) = < such that Pci(co„ A(ku fe2,..., few)) > ° > 

[ any value at all other points of Amo • 

Thus 

(44) |-logPea»0-8K*)l-S-M 



452 on Amo, i = I, 2,..., M. Since -log PC|*K) and g(coh x) are positive [PCJ, we have 

(45) f log PC|XK) d P « K x) ^ - f «(£»,, x) d P K K x) -
JAmo vAmo 

- i p c í (co ť , Arao). 

But 

(46) f 0(co,-, x) dPcc(coi, x) = 

J Amo 

= - £ A c K 4 ^ 1 ' fe2. •-, l<M))lOgPCM(,I;l2 *M)K) . 
(&l.t2,...,fcM) 

So that, taking into account the definition of conditional entropy #(0 | X) given 
above, and Eqs. (45) and (46), we obtain 

M (• 

(47) tf(fl|.X)2:-£ logP c | ; cK)dP c cK,x) 
1 * J ylmo 

M 

= - Z ( E p c c K ^(*i. fc2, • • •, fc*)) Jog P{M(t.,t2 **)K) -
; = i (*i,...,*M) 

- -P«K4j} . « 

Now, taking into account (28) and (39), we obtain from (47) the following inequali­
ties: 

(48) H(Q | X) £ - £ £ P K K 4 * i . *2, • •., kM)) log Pmki M kM>(cot) 
i = l (*i kM) 

- 1 Pc(Amo) - £ PKK * ^ 4 j log IVx^oK - y n ... 

= - n PC CK A,) log P C M J K ) - £ 
i = 1 AjejJT 

where .s/ r is defined by (35). One can very easily see that the inequality (48) is equi­
valent to the inequality (20). This proved e-sufficiency of the partition s/T of X. 

This completes the proof of the theorem. 
One can easily see that since 0 < y < e there exists some optimal y which mini­

mizes 

(49) A = nm0 - [1 - n log Pmax] , 



i.e., y corresponding to the minimal amount of the computational work to be done 
in steps 4° and 5° of Algorithm 1. The problem of this optimization, however, is in 
fact not very important from the view-point of applications of e-sufficient data 
reduction. 

In practical cases one will: 

1. Restrict the computation to some bounded space X. 
2. Assume some "regular" partition -9" = {S} of the space X, where the sets S e S? 

are "sufficiently small". 
3. Assign the values PC|S(a>;), i = 1, 2 , . . . , M. found experimentally, to all points 

xeS. This means that one will have in X only points x such that either Pax(co^) = 0 
or PJI^O),) > 0 with the condition 

(50) Pax(cot) > Q 

fulfilled for every x and each a>; for which P ^ c u , ) 4= 0, where Q > 0 is small. 
4. Construct sfT = {A,}, where every Aj e stfT will consist of at least one set 

Se£f, according to Algorithm 2, which is given below and is the obvious modi­
fication of Algorithm 1. 

Algorithm 2 

1° Find the smallest positive value of P?|S(co;), i = 1, 2 , . . . , M, 

Pmin = inf Pas(cot) 
flxy 

Pas(o>o*o 
and then choose 

m0 = [ - logP m i n ] + 1 . 

2° Choose the smallest positive integer n such that 

n 

where e is a positive number chosen before. 
3° Proceed as in Algorithm 1 with x replaced by S. 
4° Proceed as in Algorithm 1 with x replaced by S and the operations of intersec­

tion with Amo deleted. 
5° Proceed as in Algorithm 1. 

As a result of Algorithm 2 one obtains a partition 

s/T = {A(ku k2,..., kM)} . 

We remark that such a partition will be e-sufficient with respect to the computed 
probability measures P?|S(o>;), i = 1, 2, ..., M, Se ¥. 



4 5 4 E\en if {P^o,,} and P s are exactly known one can assume some "convenient" 
partition Sf of X and compute "how sufficient" is this partition, i.e., one can compute 
the number 

«*• = - E E P«K S;) l 08 paф.) 
i = l SjєSr 

M Л 

+ E iogPc l>,.)dP«K*) 
ä = l j д г 

Then, if a partition jrfT should be e-sufficient one can find 

EJ&T\$° = e — £y 

provided e > E?. Further, using Algorithm 2 one can find sfT being an e^^-sufficient 
partition with respect to £f and being e-sufficient on (X, £, £2, -P^,). 

(Received July 10,1969.) 
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Statistická redukce dat pomocí konstrukce rozkladů výběrového 
prostoru 

JAN BIALASIEWICZ 

V článku je problém statistické redukce dat formulován jako problém konstrukce 
rozkladů výběrového prostoru. Uvažují se suficientní a e-suficientní rozklady. Je 
uvedena nová definice suficientní statistiky, ze které plyne definice e-suficientního 
rozkladu, jež je ekvivalentní definici Perezově. Nová definice suficientní statistiky 
umožnila dokázat, že pro konečný parametrový prostor je problém syntézy e-sufi­
cientního rozkladu ekvivalentní problému redukce polospojitého kanálu na diskrétní 
kanál, nemá-li pokles průměrné informace na přenos překročit e. To umožnilo odvodit 
algoritmus pro syntézu e-suficientního rozkladu výběrového prostoru inspirovaný 
prací Feinsteina [8]. Je předložena a studována modifikace tohoto algoritmu. 

Dr. Jan Bialasiewicz, Industrial Institute for Automation and Measurements, AI. Jerozolimskie 
202, Warszawa, Poland. 
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