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KYBERNETIKA — VOLUME 12 (1976), NUMBER 35

Generalized Cooperative Games
and Markets

TrRAN Quoc CHIEN

In the last time, we are witnesses of an unprecendented development of mathematical ap-
plications in economy including the theory of games and muarkets. It is sufficient to name the
works of Aumann, Peleg, Rosenmiiller, Hildenbrand, Vind and others. This paper is a con-
tribution to that field. It suggests a generalization of one part of theory of games and markets
in which the existence of side payments is not assumed, and in which we suppose the validity of
so called Direct democracy law. The presented work is restricted to games and markets with
finite number of participants only. The theory, instituted on continuum or on countably infinite
number of participants, is mathematically nice, though, hardly applicable, as the condition of so
called absolute competition does not seem to be practically real.

The paper is divided to three chapters. In the first chapter, some contributions to the game
theory are given, the second chapter is devoted to market theory, and, eventually, in the last one,
some relations between markets and their correspondent games are presented.

ABBREVIATIONS AND NOTATIONS

Q=1{1,..,n} set of players participants
exp Q class of all subsets of Q
H < exp Q set of all available coalitions
|SI number of all elements of set S
S =y
=y )ieS
zy x'z y' forall i
¥ = (s
X%y N x<yand x*y '
x>y x' >y forall i
S(ylx) - ) : set of players from S which prefer
ytox
h(S) decision coefficient of S
F(A) set of all mappings from " to (0, 1)

he #(X) decision function




S(x > yy={ieS:x' > )7}
R" n-dimensional real space; R = R!
R% non-negative orthant of R™
>6s) domination via S in game G
> domination in game G
I(G)={ieQ:{i}ex}
G = (2 4, ,v,H,h) cooperative game
domge, P ={y:yeR*Ixe P, x >¢ ¥}
domg P = | domgsy P

Sex”

GG(P) =P — domg P P-core
€(G) = = €%(H) core of game
JH)={xeH:(FyeH; y > x)}

f1(x) = max (x'/x’) for such an x that x*~7 > 0
i,je—1

Ills = ) = max |y

[x, ¥] =S segment joining x with y

S5(P) P-solution

&(G) = &%(4) solution of game

A set of individually rational distribu-
tions in game

E set of group rational distributions
in game

E=H, A=4nE

= preference*

~ equivalence

> pure preferences

(éi i . system of preference

(ai)ier) system of initial quantities of goods

m = (Q, H, R}, (Z)icer (@)icns 1) cooperative market

m(K) = {(x");p : '€ R, i€ Q and ;x‘ < ;ai}

P={p=(p'...p"YeR:, Y p =1} price space
i=1
B, = {(x)p: x' e R}, i€, Yp'x' < Yp'a'} budget-set
K K
Kx>y)={ieK:x' >y}
> m(K) domination via K in market

>m domination in market
domg,uy P = {xe xR} :3yeP:y > x}
Q

dom, P = dom,,, P
Kext

* Symbol Z is used instead of more usual z which was not typographically acceptable.
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€™(P) = P — dom,, P P-core

§(m) = Em(m(Q2)) : core of market

e&"(P) P-solution

S(m) = S"(m(Q)) solution of market

G, game corresponding to market m

A, set of individually rational distribu-
tions in market

E, set of group rational distributions
in market

A, =A,NE

CHAPTER I: COOPERATIVE GAMES WITHOUT TRANSFERABLE
UTILITY

In this chapter, we present a generalized model of game without {ransferable
utility. On establishing the concept of domination we suppose that in each admissible
coalition the direct democracy law (it means each decision in each coalition certified
by voting among all players of the coalition) holds.

1. Fundamental definitions

Definition 1.1. The triple (Q, ", v) is called characteristic function if Q is a finite
set, & < exp Q, Qe A and v is a mapping from X" to exp R!?! which fulfills the
following conditions
(1) »(S) is convex for all Se i,

(2) ©(S) is closed for all Se ',
(3) v(0) = R™,
(4) xe(S), ye R y5 < x5 = yeoS) forall Se A

Definition 1.2. Let S e 4 be an arbitrary coalition. Let x and y be two possible
payment distributions among players from S. Let S(y/x) denotes the set of the players
from S who prefer y to x. Then the number h(S), (S) € (0, 1) is called decision
coefficient, if coalition S accepts y if and only if

I%J 2 K(S).

Let # () be the set of all mappings from 2 to (0, 1>. h e #(X) is called decision
Sunction of A if h(S) is decision coefficient for all coalitions S e A",




Definition 1.3. Cooperative game with characteristic function is a quintuple
G = (Q, 4, v, H, h), where (@, o, v) is a characteristic function, H is a convex
and compact subset of (), and h € F(#’) is a decision function.

Definition 1.4. Cooperative game G is called guaranted if it fulfills
)] xeoS), i=12..,k; S;nS;=9 for i*j, Seud,

k
i=1,2..,k=3eR?5 (x5 y)en(Q), where S=US,.
i=1

Definition 1.5. Cooperative game G is called ordinary if

) xev(@)<IyeH: xS y.

2. Domination, rationality

Definition 2.1. Let G be a cooperative game. Let X, yeH, Se A. We say that x
dominates y via S and write x >gs, y if x € o(S), x° ¢ y° and

%‘yﬂgh(s)’ where S(x > y) ={ieS:x'>y'}. .

Definition 2.2. Let x, y € H. We say that x dominates y and write x >¢ y if there
exists S € A" such that x dominates y via S.

Note. Let us denote I(G) = {i : {i} e #}. It follows from Definition 1.1 that if
i € I{G) then there exists v' € R such that o({i}) = {x e R¥®! : ¥’ < ¢'}.

Definition 2.3. Let P < H, Se A, then we denote

domgsy) P = {y :IxeF, x >g) ¥} >
domg P = {y:3x€P, x >¢y}.

Definition 2.4. Payments vector x € H is called individually rational if x* = o'
for all i € I(G). x is called group rational if there exists no y € H such that y > gq) x.
We denote E = H, E the set of all group rational vectors from H, 4 the set of all
individually rational vectors from H, A = 4 n E. If I(G) = § we put 4 = H.

3. Core

Definition 3.1. Let G be a cooperative game, P < H be an arbitrary set. Then
we call the set §(GP) = P®— domg P a P-core. The set C€6(H) is called game core
and it is denoted also by €(G).
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Theorem 3.1. Let G, = (2, o'y, v, H, h,), G2 = (2, &5, v, H, h,) be cooperative
games that fulfil

(3.1.1) A, S Ay,
(3.1.2) Sed | = v,(S) < v,(S) and hy(S) = hy(S).
Then €%(P) < €¥(P) for arbitrary P < H. '

Proof. The statement of this Theorem obviously follows from the previous
definitions.

Theorem 3.2. Let G = (@, o', v, H, h) be an arbitrary cooperative game and let
A # 0. Then €5(E) = €°(A4).

Proof. If I(G) = 0 then A = E and €%(E) = C€%(4). Let, hence, I(G) + @ and let
x € €%(E). If x ¢ A then there exists i € I(G) such that x' < v'. Let z be an arbitrary
vector from A4, obviously z' = v’. There exists y € H such that y 2 z for G is ordi-
nary. Let y; lie on the segment [, y] so near to x that v' = y} > x*. y, € E for
convexity of E. Then y; > g, ¥; that contradicts to x € €(E). Hence x € €%(4).

Theorem 3.3. Let G be an ordinary and guaranted cooperative game. Thén A+0
and €%(E) = €(4).

Proof. If I{(G) = 0 then €%(A) = €%(E) for A4 = E. Suppose that I(G) + 0.
By (5) there exists x & RI?1@1 such that (v/9, x) € o(Q). By (6) there exists y ¢ H
such that y = (v"®,x). Hence, ye A=A + 0. By the foregoing Theorem is
C%(E) = G°(A). It remains to prove €%(4) < C¥(E). Let z & €%(). Then obviously
ze E. If z ¢ C%(E) then there exists z, € E and S € A such that z; >gs) z. We set

2y = (O3, So@I@)

then evidently z, € o(S) and z, € o({i}) for i € I(G) — S. Hence, by (5), there exists
x; € RI#"UOW 54 that

z3 = (%19, x ) e v(Q).
By (6) there exists w € H such that w Z z;. Obviously,
WHO=5 3 @5 _ ;165
and .
anI(G) g zgnI(G) = zir\l(G} = zinI(G) g ZSnI(G) g "ShJ(G) S
thus w e A. Let w, lie on the segment [z, w] so near to z that

Zf(“>z) g w.}(z|>z) > zs(z,>z)’




(evidently z775¢:79) = yi~5e1>) = ;S=SG1>2) ¢ 7 as 4 is convex. Further, 333

by (4), w, € oS), hence wy ¢ z. It contradicts to z € €(A). Hence, z € C%(E).

Theorem 3.4. Let G = (Q, A',v,H,h) be an ordinary cooperative game, let
I(S) = 1forall Se o and let H be a polyhedron. Then

CY(E) = €%E) and €%(4) = €5(4).
Proof. See the proof given in [3], Theorem 8, page 546.

Theorem 3.5. Let G be an ordinary and guaranted cooperative game, let h(S) =
for all Se o and let H be a polyhedron. Then

CY(E) = €%(E) = C%(4) = €(A).

Proof. The assertion follows immediately from Theorems 3.3 and 3.4.

Corollary 3.1. Let G be an ordinary and guaranted cooperative game, let H be
a polyhedron and ]et h(S) > (|S] — 1)/|s| for all S, S + 0. Then C%(E) =
= C%E) = €%(4) =

Let H € R", we denote

JH)={xeH:1@FyeH:y > x)}.

Further, for arbitrary T = Q we define

fa(x) = max (x [x7) for such x that x?~7 > 0.
i,jeR ~

Lemma 3.1. Let x, ye R, x*™7 > 0, y*"T > 0. Then

So(x + y) £ max {fr(x), fr(»)} -

Proof. Let ¢ = max {f{x), fx(y)}- Then x'/x/ < ¢, yi[y’ S cforalli,jeQ —~ T
Hence

(& + P + ) S (o + e + ¥ =¢
for all i, je @ — T, so that f(x + y) S c.

Lemma 3.2. Let H be a closed polyhedron in R" and let it fulfills the following
condition

() xeH, yeH, =¥, Tea, |< mu [sfi - Hs)~

= ("7, y)eH.
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Then there exists for arbitrary T < € a number K > 0 such that for each xe H —
— J(H) there exists x" € H for which x'*~7 > x?77, x'T = x7 and fo(x' — x) £ K.

Proof. Let H ={xeR":Li(x) = by, ..., L,(x) = b,}, where L, ieM =
= {1, ey m}, is a linear functional in R”, and let Q = M. We define

Hy={xeH:L{x)> b, for ie @ and L{x) = b, for ieM — Q}.
Nonempty sets H, are mutually disjoint and

H= Hg.
oM

For such a Q for which Hy, — J(H) + 0, we choose xo € Hy — J(H). Then there
exists yp € H such that yg > x,. If we set

yo =" xg)

then, by (7), yo € H. Now, let xe Hy — J(H), 6 > 0. We define
ys =x + 8y — xp) .
For sufficiently small 6 > 0 we have
(3.2.1) : Lys) > b; for ieQ,
and for arbitrary J > 0
(3.2.2) Liy) 2 b, for ieM—-Q.
We fix such a & > 0 for which (3.2.1) and (3.2.2) hold. It means that ys€ H and

obviously y§ =T > x?77T, y7 = x. Let x' = y,. Then x’ — x = 8(yq — Xg), hence
frx" = %) = frlyg = xo) -
We put
K = max fr(yg — xg).
QcM

Then f7(x' — x) < K for all xe H — J(H) because

H ~ J(H) =Y (Hy — J(H)).

=M

Lemma 3.3. Let H = R" be a compact polyhedron fulfilling condition (7). Then
there exists a number K > Osuch that VT < Q, Vxe H — J(H), 3x" € J(H) such
that x"?°T > x27T, x'T = xT and f1(x" — x) £ K.

Proof. For xe H — J(H), we denote

F,={x"eH:x' fulfills Lemma 4.2}




and define ) 335
9(y) = r!1;13_11;|yi - xi| = H} - XHQ,T for yeF,.

F, is bounded, hence there exists
(3.3.1) L=supg(y).
Fu
Let {y,}i%+, yx € F, for all k such that g(y,) converges to L and y, — x".
fT(yk _ x) <K :fT(X” _ x) LK = x"?T 5 x2°T

If x"¢ J(H) then there exists y' e H such that y®™T > x"?"7, y'T w= T ang
fr{y" = x") £ K according to Lemma 3.1.

Sy = %) =12y’ = %" + x" — x) £ max {f(y’ — %), fo(x" = x)} < K.
Thus y" e F,. But v
() = |

and it is a contradiction with (3.3.1). Hence x” € J(H).

Y = o = [0 = ¥ 4 (= s > [~ Kar

Lemma 3.4. Let H = R be a compact polyhedron fulfilling condition (7). Then
there exists a number K > 0 such that

VT Q, VxeH — J(H), 3" eJ(H):x"" =
=xT&x"? T > x?T&V(ieQ - T):ix" —x' = (“x" — x||o-1)/K .

Proof. The assertion follows immediately from Lemma 3.3.

Theorem 3.6. Let G = (Q, A, v, H, h) be a cooperative game. Let H be a poly-
hedron fulfilling condition (7) and let y & J(H). If there exist z € H and S € & such
that z > g, ¥ then there exists w € J(H) such that w >, .

Proof. Suppose, without loss of generality, that y = 0. Let ¥ = R = {x e R":
:x 2 0} and V° be theinterior of V. 0 = y e J(H) = H 0 V° = . As H is a compact
polyhedron, there exists a hyperplane g(x) = Y.¢'x’ = 0 which separates H from V.

2

Without loss of generality we suppose that g(x) < 0 for x& H and g(x) Z 0 for
x e V. Thus ¢ = 0 for all i. Note that

(3.6.1) xeH, g(x)=0=xeJ(H).

If z € J(H) then there is nothing to prove. Let z ¢ J(H), z > ¢, 0 = S * €, other-
wise it leads to contradiction with z ¢ J(H). Set

f(x) :nz_:sc‘xi ,
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then the implication
(3.6.2) X a0, f(x)Z0=xeJ(H)
follows from (3.6.1) and
Yeixt = Yeix' + f(x).
2 s
z¢ J(H) = f(z) < 0. Put
(3.6.3) k=minz{2>0

5(z>0)
and

M= {xeH :x*>% £ 0, x> = 0 and |x**>?| = k}.

As H is convex, there exists a point of the segment [z, 0] which lies in M, thus M + 0.
For M is compact and f is continuous, there exists x, € M such that

(3.6.4) flxy) = m;xf(x) .
If x, ¢ J(H) then there exists x, € H, x, > x,. We have
(36.5) [0 > 277 = &,
(3.6.6) FIESESIENE
Put
x3 = (k27 %, -
Obviously, [|x3*”?|| =k and x3¢” > 0. x, € H for convexity of H. Set w; =

= (xFHSE==0) 55=5E>0) Then w, e H for (7), hence wy e M. It follows from
(364 3
3.6.4) that

(3.6.7) f(xy) > flws) .

Obviously, z5¢7® > x3¢” = Wi % 0, so w, e v(S) according to (4), and
W3 > g 0. If wy € J(H), proof is finished (w = w,), otherwise (3.6.2) implies f(w3) <
< 0. But it follows from f(ws) = (k/|x3%"V|) f(x,) and K[|x5**7| <1 that
f(x2) < f(w;) what contradicts to (3.6.6) and (3.6.7). We conclude x, e J(H).
Obviously 0 3 x{>9 < 5679 and x]7%¢>9 = 0, so x, € o(S) according to (4).
I X3¢ > 0 then x; ¢, 0 and proof is finished (w = x,). Therefore, it remains
only to deal with the case in which one of the coordinates of x3¢~ % vanishes. Then
we construct x, such that x, = a,0 + ayx; + &3z, where oy + o, + o3 = 1,
a; > 0,1 = 1,2, 3, and x, is so near to x, that

(3.6.8) [%s = xi|g~7 £ 8, where & =k[(K + 1),




where K is the constant from Lemma 3.4 for T =S — S{z > 0). Convexity of H
implies that x, e H. Further, x{™5¢>% =0, x%¢>9 < 5629 o, x, € o(S) and
X4 >e) 0. If x, € J(H), the proof is finished (w = x,). If x,e H — J(H), we
choose x} for T = Q — S(z > 0) according to Lemma 3.4. It may have two cases.

(@) |Jxi — xaflo-r > K&, then x;' — x} > §, ie @ — T, according to Lemma 3.4.
Hence,

ni

b —x;=x1'—x3+x;——x;>6—"x4——x1||9_.rgo,

for ie @ — T, according to (3.6.8). If x;°*>® < 25> then x}, € o(S) and
X4 >6i) 0 and proof is finished (w = xj). Otherwise we set X5 = ax; +
+ (1 = «) x4 which is so near to x, that 0 < x3¢”% < z5¢>9, Obviously,
X5 > 0. X5 2 X4 50 x5 € J(H) and proof is finished (w = x;).
(i) ”xﬁ{ - x4”ﬂ_T < Ké. Then from
bt = sl % [t = selor + [ — 5 laer S K645 = %
follows that

[x3lse>0) < %5 = xiflse>0) + [%1]se>0) S 2k = min 2’
S(z>0)

Thus x;5¢79 < 25679, 80 x e v(u) and xj >g 0. By setting w = x§ the
proof is complete.
Theorem 3.7. Let G be a cooperative game and let H be a polyhedron fulfilling
condition (7). Then
€S(J(H)) = €5(H) n J(H).
Proof. Let ye C%(J(H)). Obviously ye J(H). If y¢C%(H) then there exists
z € H such that z >¢ y. According to the foregoing Theorem, there exists w € J(H),

w > y and it contradicts to y € €%(J(H)). On the other hand, if y € €5(H) n J(H)
then obviously y e €5(J(H)).

Similarly we derive the following statement.

Corollary 3.2. Let G be a cooperative game, let H be a polyhedron fulfilling (7)
and let A # 0. Then

C(J(a) = GG(Z) n J(A4).
Theorem 3.8. Let all assumptions of Theorem 3.7 hold. Then

C%(H) = €°(J(H)) .

337
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If, in addition, 4 + 0, then
) €%(A) = €5(J(4)) .

Proof. We show that C%(H) = J(H). ye®%H)= 1(Fz:z >gq y) =
= 1(3ze H : z > y) = y e J(H). Now, using Theorem 3.7, we obtain the assertion.
Similarly we proceed for the second equality.

The following theorem follows from Theorems 3.3 and 3.8.

Theorem 3.9. Let G = (Q, ', v, H, h) be a cooperative guaranted and ordinary

game, and let H be a polyhedron fulfilling (7). Then
C%(E) = C(J(E)) = €%(4) = C(J(4).

Remark 3.1. Without condition (7), Theorem 3.6 can fail. We show the following
counter-example. Let G = (@, A, v, H, h), where @ = {1,2,3,4}, & =expQ,
o(Q) = {xeR*:x' 100, i = 1,2,3,4}, o(S*) = {xe R*: (x', x% x*) < (1, 1, 0)}
§* = {1,2,3}, v(S) is arbitrary for other S € exp Q.

H={xevQ):x'z -100,i =1,2,3,4x* 20, x' + x> + x* ~x* < 0}, he
€ # (A7) such that h(S*)e(1/3,2/3). Obviously, 0e J(H). Set z =(1,1,0, —2)
then z € H, z > g4y 0, but z ¢ J(H). If there exists we J(H), w > g+ 0, then we
€ o(S*). Tt means w* = 0 and 0 < w', w? < 1. But we H, hence w' + w? + w* —
—wlZ0, x*<0=w*< —(w' + w?) < 0. Tt follows that we can construct
y € H such that y > w and it is in contradiction to w € J(H).

Remark 3.2. Without the assumption that H is a polyhedron, Theorem 3.6 can fail,
too. Conter-example (see [3]).

Q={1,2,3}, 4 =expQ, h =1, H is the convex hull of sets C and D, where
C={x:x'20,x220,x*=0, (x)* +(x*)* =1},
D={x:x'z20,x*20,x* =1, (x") + (x> £4}.

Then JH) =Du{x:x' =0,x2 =1, 0 < x> £ 1}. We define
v(Q) ={x:3dyeH, yzx}, ¥ =0,
o{i,j}) ={x:x' <12, ¥ £ 12}, i jeQ.

v

Then obviously (1/2, 1/2, 1/2) e H, (0, 1, 0) e J(H) and
(12,112, 1/2) >61,2 (0, 1, 0),
but there exists no y € J(H), y > (0, 1, 0).

Theorem 3.10. Let G = (@, A, v, H, h) be a cooperative game. Then C%(J(H)) =
< GS(E). If, in addition, 4 #+ 0 then €%(J(4)) = €%(4).



.

Proof. Let x € €5(J(H)) then x € E. If x ¢ €%(E) then x ¢ C°(J(H)) for E < J(H) 339
what is a contradiction. Analogically for the second inclusion.

Theorem 3.11. Let G be a cooperative game, let H fulfil condition (7) and let the
following inequality

(3.11.1) |2} h(Q) > max)lS]
K—-{2

holds. Then C%(J(H)) = C(E); in addition, if 4 4 @ then €(J(4)) = €5(A).

Proof. Let x € €%(E). We prove that x e €°(J(H)). Suppose that x ¢ ES(J(H)).
Then there exists y e J(H) — E, S€ A, y >gs) x. Set

M, ={zeJH):z* = y%}.
As M, is nonempty, closed and bounded, there exists y, € M, such that

(3.11.2) nzs(yi —y) = n:zézs(zf - 9.

If y, ¢ E then there exists y; € H, y; g ¥~ It follows from (3.11.1) that there
exists ke @ — S such that y5 > »{. Set y; = (%, ¥§75). Then y; e H, according
to (7), and obviously y; € J(H). So y; € M,. But,

!;Z:s(y; B yi) >szs (y; - y')

what contradicts to (3‘11.2). Hence y; € E and y; >g x, what contradicts to
x € €(E). Consequently, xe €(J(H)). We have proved that €5(E) = CE(J(H)).
Using Theorem 3.10, we obtain €%(E) = €%(J(H)). For the second equality we can
proceed analogously.

Lemma 3.5. Let G be a cooperative game. Then
E = J(H) — domgoy J(H), A = J(A) — domg, J(A).

Proof. Lemma follows from the respective definitions.

Lemma 3.6. Let G be a cooperative game. Then

domgg E = dom gay J(H)
and
domgg, A = domgg, J(A) .
Proof. It follows from Lemma 3.5 immediately that

domgg) E < domg) J(H).



It remains to show that
domgg, J(H) = domgg E .

Let x € domg, J(H) then there exists x; € J(H), x; >go) X-
M, ={yeJH):yzx},

a(y) = ;(y‘ ~ x%).
M, is compact and nonempty, hence there exists z € M, such that
z) = max g(y) .
9(2) = max g(y)
It is easy to verify that z € E, so x € domgg) E. Analogically for the second equality.

Theorem 3.12. Let G be a two-person cooperative game. Then €%(4) = €%(J(4)).

Proof. Note that in two-person game only the domination via £ can be realized.
Hence, by lemma 3.6 and Lemma 3.5,

€¥(4) = A — domg A = A — domg A = A — domg, J(A) =
= [J(A) — domg g, J(A)] ~ domgq, J(4) =
= J(A) — domgq, J(4) = C%(J(A)) .

Remark 3.3. We show an example in which €(4) + 6%(J(4)). @ = {1,2,3},
Aa={1}, {2}, 3L, {12}, @}, vt =0 =0® =0, o({L,2}) = {xeR:x* + x* <
£2, XX +2x' 2, ¥ +2x'£2}, H={xeRy x> +x* £2, x> + x! £2,
2+ x' €2}, o@) ={xeR*:IyeH:y = x}, Q) =1/3, h({1,2}) = K{i}) =
= 1. Game G = (@, ', v, H, h) is guaranted and ordinary. H is a compact poly-
hedron fulfilling (7). Let x = (0,0, 2), obviously xe 4 = E. Let 0 <& < 0,1 and
y =(g/3,62 — &). We can easily verify that ye J(4) = J(H) and yeu({1,2}),
thus ¥ > (1,2 x. We conclude x ¢ €%(J(4)). We show that x e €9(4) by contra-
diction. Let there exists z € A such that z >4 x. We see that z dominates x only
via {1,2}. Hence 0 < z%, 22 < 2, 2% + 22! £2,2% + 22! £ 2. Set z, = (22, 2%, 7°)
then obviously z; € H = 4, z; > g, z what contradicts to z € 4. So x € €%(4).

4. Solution

Definition 4.1. Let G = (Q, A, v, H, h) be a cooperative game and let P < H.
Then a set V < P is called P-solution iff

V=P—domgV.
We denote it by S%(P).
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Remark 4.2, Suppose that
(4.2.1) xePndomgP=3yeP —domgP:y>¢gx.
Then C°(P) = G(P).
Proof. €%(P) = P — domg P. It follows from (4.2.1) that
P ndomg P = P ~ domg €(P) = P n domg P = P n domg €%(P)
for domg €“(P) = domg P. Hence, P — domg €%(P) = P — P n domg €%(P) =
=P — Pndomg P =P — domg P = C(P) = €%(P) is P-solution.

Theorem 4.1. Let G be a cooperative game. Then for every x € H — E there exists
y € E such that y g x. In addition, if 4 % @ then for every xe 4 — A there
exists y € A such that y > g x.

Proof. Let xe H — E. If x € J(H) then, according to Lemma 3.5 and Lemma
3.6, there exists y € E, y >gq) x. If x ¢ J(H), we set

M,={zeH:z>x}, f(z) =min(z'— x') for zeH.
ieo

H is compact, consequently there exists y, € H such that
f(y,) = maxf(z).
H
M, £ 0=f(y;)>0=>y,eM, ie. y, > x. Obviously y, € J(H) and, applying

the foregoing reasoning, we obtain the assertion. Analogically for the second
. assertion.

Theorem 4.2. Let G be a cooperative game and let 4 # 0. Let A = P < A4 be an
arbitrary set. Then a set K is A-solution if and only if it is P-solution.

Proof. Let K be A-solution. We show that
(4.2.2) P~ A cdomgK.
According to Theorem 4.1
xeP—-—A=3dyed, y>gaX-

If yeK then xedomgK. If yedomgK then 3z€K, z>gy =z >gXx=>XxE€
€ domg K. It follows from (4.2.2) that

P — domgK = 4 — domgK =K.

So, K is really P-squﬁon. Let, now, K be P-solution. Then, applying the same rea-
soning, we obtain (4.2.2), and, consequently, K < 4; hence K is A-solution.
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Definition 4.2. GG(Z), provided that it exists, is called a solution of game G and
is denoted by €(G).

Theorem 4.3. Every two-person cooperative game has its unique solution and it is
the set 4.

Proof. Theorem follows immediately from foregoing definitions and theorems.

Definition 4.3. Cooperative game G = ({2, A, v, H, h) is called a constant-sum
game if H is a subset of the set

{x:3x" = e}
2
where e is a constant number.

Theorem 4.4. Let G be a three-person cooperative constant-sum game. Let h(S) >
> 1/2 for all two-person coalitions from . Then G(4) exists.

Proof. If & + exp Q then for all SeexpQ — # we define v(S) such that
o(S) N H = 0. It is easy to verify that in such game the relation of domination may
be realized only via two-person coalition. Now, we can use the result given in [4]
for the game G; = (@, exp Q, v, H, 1), where 1(S) = 1 for all Seexp @, and the
solutions of G are identical with the ones of G.

Remark 4.3. Without the condition h(S) > 1/2 for all two-person coalitions from %~
Theorem 4.4 could fail. We give the following counter-example. 4 = exp Q, Q =
={1,2,3}, vV=0; H={x20:x' +x*+x> =1} =4, o(Q) ={x:3yeH,
yzx}=vo{i,j}),i,j=1,23h =12 Thenx,ye A= x >¢y or y >¢x, hence
there exists no solution of G.

CHAPTER II: COOPERATIVE MARKET WITHOUT
TRANSFERABLE UTILITY

In this chapter we shall deal with markets with possibility of cooperation among
participants but without any transferable utility. We shall define the concepts of core,
solution, optimum and equilibrium in general sense. We shall derive some relations
among these concepts and Theorem about the existence of equilibrium.

5. Preference, Utility Function

Definition 5.1. Linear relation 2 on R% x RZ is called a preference if it fulfills
the following conditions :




1. Reflexivity xeR% =x = X. : 343
2. Transitivity x,y,zeR%, xZyand yZz=>x2xz
3. Completness x, yeRL =xzZy or y =z x.
Further we denote
x~yifxzyand yzZx,
x>y if xzyand (y = x)

Definition 5.2. Let > be a preference on R} x R%. A function u: R’ - R is
called utility function corresponding to 2, if x 2= y < u(x) 2 u(y) for all x, y € R%.
Definition 5.3. Let > be a preference on R”; X R’. For every X € R"} we set
Gz) ={xeR}: X = x},
Fy(z) ={xeR}:xx=x}.
Then 2 is called continuous if G¢(>) and F¢(2=) are closed for all X € R},
Theorem 5.1. A preference = is continuous if and only if there exists a continuous
utility function corresponding to .

Proof. See [1], page 4.2, Theorem 2.1.

Definition 5.4. A preference = is called convex if
xzy, 0fasl=sax+(1—a)yx=y forall x,yeR},

strictly convex if

xzZy, x*+y, O<a<l=ax+(1l-0)y>y,
monotonous if
xZy=>xZy,
strictly monotonous if
XFy, xZ2y=>x>y,
and positively monotonous if

X>y=>x>y.
6. Definition of Market
We suppose that there are altogether » participants (players) and m sorts of goods

(commodities). Every participant has certain initial quantity of goods and values it
according to his preference. Participants barter their goods in order to make the
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consequent distribution as advantageous as possible for all of them. There are only
some permissible coalitions in which we suppose so called direct democracy law
(see Chapter I).

Definition 6.1. A cooperative market is the sixtuple
m= (Q, A, R':_, (;i)isﬂa (ai)ien’ h) )

where Q = {1, 2,..., n} is the set of participants, #" < exp Q, Qe &, is the set of
available coalitions, >, i€ £, is the preference of participant i, a’e R%, a’ < 0,
is the initial quantity of goods of player i, hsg"(.}if ) is a decision function (sec
Chapter I, Definition 1.2).

Further we denote )
m(K) = {(xVico : x' e R} forall ie @, Yx' < Ya'}
F3 K
for Ke A,
m0) = xR} = {(x")n:x'€RY, icQ}.
2

Definition 6.2. The set
m
P = {P = (P1, P2seos pm)'ER':, AZKP.' = 1}

is called the space of price vectors.
For pe 2, K e & we denote BY = m(Q) and

Bf = {(xi)isrz :x'eR%, i€ Q, pri < Zpai} ,
S K
and we call it the budget-set of coalition K according to price vector p.

Definition 6.3. A pair (x, p), where x € m(Q), p € 2, is called market state.

7. Core, Selution, Optimum and Equilibrium
Definition 7.1. Let m be a cooperative market, let x, y € x R}, Then we say that x
2

dominates y via K € A" and write X >, »» if xem(K), x* = y%; it means x' 2, y!
for all i e K, and .
[K(T > ) > h(K) ,
K

where K(x > y) = {ieK: xi >; y'}. Further, we say that x dominates y and write
X > y if there exists K € " such that x > V-




Definition 7.2. Let P e m(Q). We define o 345
dom,,, P ={xe xR% :3ye0:y >, X},
2

dom,, P = U dom,,, P.
K

The set €"(P) = P — dom,, P is called P-core; the m(Q)-core is called the core of
market and we denote it by €m). A set Q < P is called P-solution and denoted
by €™(P) if 0 = P — dom,, Q. m(Q)-solution is called a solution of market.

Definition 7.3. Let (%, ) be a state of market m. Then (X, p) is called optimum
of m if there exists no K e # with ye B, y* = x¥ and |K(y > x)|/|K| = h(K).
In addition, if X B} for all K € " then (%, p) is called an equilibrium of m. An
optimum resp. equilibrium (%, p) is strong if

;xi = ;ai .

Theorem 7.1. Let (%, p) be an optimum of m, then X € €(m).
Proof. If ¥ ¢ €(m) then 3K & # 3y e m(K), y* = x¥ and [K(y > x)|/|K| 2 h(K)-

m(K) < B for all pe # = ye BY. It contradicts the property of optimum (&, p).
So % e E(m).

Theorem 7.2. Let m be a market and let (%, p) be an optimum of m. If there exists
at least one player from Q with monotonous preference then there exists £ € m(Q)
such that (2, 1‘1) is a strong optimum of m.

Proof. Let ke Q, =, is monotonous. We set

=%, i+k, #=3+Ya Y%
Then we can easily verify that (55, p) is a strong optimum of m,

Definition 7.4, Let & < exp Q. Then we set

[#] ={K:3K,, ... K,e %, K = UK}.

i=1

& is a coalition structure if all coalitions from & are disjoint and U K = Q.
Kes
Theorem 7.3. Let m be a market. Let & < o < [#] where & is a coalition
structure in which each coalition has at least one player with monotonous preference.
Let (X, p) be an equilibrium of m. Then there exists £ such that (£, p)is a strong equi-
librium of m.
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Proof. Set
z=Ya — yxi.
] Q2
Suppose that z <« 0 as otherwise there is nothing to prove. Let
S ={K;, j=1,2..,1}.

If p'z > 0, we set
gg=sup{e:p(XF +e) S p Ya}, j=1..,r.
Iy K;

If p'z = 0, we set

Let k; € K; be the mentioned player whose preference is monotonous; we set
£ =% for i*k;, j=1..,r,
=5+ gz, j=1,..,r.

Then

Y= F+z)ye =pad=%2em@),

) 2 =1 a2
Y& =Ypa for Ke¥ =>%eBf for Ked
X K

and £ = X for the monotonity of Z;,j = 1,...,1. So (%, p) is a strong equilibrium
of m.

Remark 7.1. Suppose, in addition, that for every j = 1,2, ..., rthere exists K} < K;
such that |K}|/|K;| 2 h(K;) and =, i€ K}, are strictly monotonous. Then every
equilibrium is already a strong equilibrium.

Theorem 7.4. Let m be a market. Let ¢ fulfil condition

(7.4) VSe " 38y, ..., S5, € A, S, Sy, ..., S, are mutually disjoint, SU S, U S, U ...
.. US, =Qand 35* < S, |S*|/|S| 2 K(S) such that =, ie S*%, are positively
monotonous.

Then every optimum of m is also an equilibrium of m.

Proof. If (%, p) is an optimum and it is not equilibrium then there exists Se o
such that X ¢ B3, it means

(7.4.1) SpE > Y pat.
N N




Let Sy, S, ..., S, € A fulfil (7.4). Since
Fem(Q)=35 < Ya' =p yx < pYa
Q2 Q2 2 Q

then also

(7‘4.2) Zp,x" + zpr)—cx + .+ Zﬁ/"?i < Zﬁ,ai + Zﬁ/a. o+ Zﬁ/ai_
B S Sr s S1 Sr

1t follows from (7.4.1) and (7.4.2) that there exists S; = K among S, ..., S, such
that

(7.43) Ypxi<Ypa'.
K K

Let K* = {i e K : z; positively monotonous} then, according to (7.4), |K*|/|K| =
2 h(K). We choose z > 0 such that
pz=ypa -3 >0.
I3 %

Set

2 =x" for i¢K*,

£ =% 4 *Lz for ieK*.

(x|

Then obviously £ e B, £/ >, %' for i e K*, and it contradicts to the property of
optimum (%, p). Hence (%, p) is an cquilibrium.

Theorem 7.5, Let m; and m, be markets,

my = (Q, #, RY, (2o (ai)isﬂ, ]11) s

m, = (Q, A, RY, (Zi)isﬂ: (ai)iefb hz) -

Let # — {Q} include only mutually disjoint coalitions, # <= [#7], hy(S) = h(S)
for Se A N # and hy(S) 2 max {h,(S,), ..., h,(S,)} for SeK,S =S, u...US§,
S;es#, i =1,...,r. Further, we suppose that for all Se# is |S*|/|S| = h(S)
where

S* = {ie S : xz, is positively monotonous} .
Then every optimum, resp. equilibrium, of m, is the one of m,.

Proof. Let (%, p) be an optimum of m,. If ()“c, P) is no optimum of m, then there
exists Ke#' and ye By so that y¥ = x* and |K(y > %)|/|K| Z h,(K), where
K(y > %) ={ieK:y >;x}. Let K;,..,K,e # such that K =K, u...UK,
K; # Q. Then: '

347
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(i) Either ye BY', i = 1, ..., 7. Then there exists K, among K, .. K, such that
tKj(y > i)ij‘ 2 hy(K;) for hy(K) 2 max {h(K,), ..., h,(K,)} and it contradicts
to the assumption that (X, j) is optimum of m,.

(i) Or there exists K;e{K,, ..., K} such that y¢ By yeBF= 3K, e
e{K,, ..., K,} such that

Zl—,/yi < ZI—J/ai .
K K;
Let us choose z > 0, z € R such that
Pz = Zﬁrai _ Zl—jryi
X, x5
and set

=y for i¢Kj = {ieK;: =, positively monotonous} ,

?"=y"+]K—1?—|z for ieK}.

Obviously j € By, 7% = %* and (K;(7 > X)|/|K;| = h:(K;) and it is a contradiction
with properties of the optimum (X, p). Hence, (X, p) is an optimum of m,. In the
same way we may prove the statement for equilibrium.

Remark 7.2. Let us denote
R(m) = {x :3pe 2, (x, p) is an equilibrium of m},
O(m) = {x:3pe P, (x, p) is an optimum of m} .

We know that R(m) < O(m) = €(m) and R(m) = O(m) under relatively weak
assumptions. But, if the set of players is finite then O(m) = €(m) even if m fulfills
much stronger assumptions. We testify it by the following example.

Q={1,2}, A =expQ, a1=(1>, az=(i),

2
u,, U, are utility functions corresponding to =, =,,
uy(x) = uy(x) = x; . %,

We can easily verify that >ni=12 are positively monotonous and convex. Let
h € F(') be an arbitrary decision function. Let

(-G e




We show that X e €(m); let, on the contréry, % ¢ €(m). Then there exists y such that
Y X

uy(*') = /2.2 =2=uya),
uy(%2) = (3 — /) > 2 = uy(a?).

Consequently, y dominates X only via {1, 2}. Without loss of generality we suppose
that

YR > 2yl 4y > 242
and

VE =y 2z -V =i+ 2203 -2).

Hence, yi + y2 + i+ ¥3 > 22+ 2(3 — /2) = 6. It is not possible, as ye
em(Q) =y} + yi < 3and y} + y; < 3. It means that X e G(m). Now, we show that
% ¢ O(m), it means that there exists no p € 2 such that (X, p) is an optimum of m.
We divide the proof into three cases:

@ p=(ip)e? p,=0o0rp, =0
We choose y; =1, y, > 2 resp. y; > 2, y, = 1 for p, = 0 resp. p; = 0. We
may easily verify that

(= {plyl + p2yy = piai + p,ay = p;y + 2p,,
Y1y, > 2= “1(’?1) s

what means that (X, p) is not optimum of m.

(i) p+0, i=1,2 p,+4 We set y, =(1+ )20, ¥2=(1 + p,)[2ps.
Obviously

Piyi + paye = 1+ py = piai + pyas,
y1¥2 = (1 + p)/4psp> = (ps + 2p2)*[4p,p2 > 2.
So the pair (y1, ¥,)' fulfills (+), hence (%, p) is not optimum of m.
(i) py=%p. =%
Let us choose

Then
PiYi+ Py, =%.3+%.$=1+%=adlp, +alp,,
Yiya=4%.2=32>11-6,2=u,x?)

and it means (¥, p) is not optimum of m.
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8. Competitive Equilibrium, Existence of Equilibrium

Definition 8.1. Let m be a market. Market state (%, p) is called a competitive
equilibrium if
1) %$eB} forall i=1,..,n,

2) ye xRY, y' > X' =y¢B).
2

A competitive equilibrium (%, p) is called strong if
3) YEi=Yad'.
) e G}

Theorem 8.1. Let m be a market, let >, i € Q, be monotonous and let (X, p) be
a competitive equilibrium of m. Then there exists £ such that (%, p) is a strong com-
petitive equilibrium of m.

Proof. The proof is analogous to the proof of Theorem 7.3.
Theorem 8.2. (Existence of competitive equilibrium.) Let x;, i € Q, be continuous

and convex. Then there exists a competitive equilibrium of m. Moreover, if Z,, i€ Q,
are monotonous, then there exists a strong competitive equilibrium of m.

Proof. See [1], page 54, Theorem 4.8.

Theorem 8.3. Let m be a market. Let Z; be positively monotonous for all i e Q.
Then every (strong) competitive equilibrium of m is a (strong) equilibrium of m.

Proof. Let (%, p) be a (strong) competitive equilibrium. Suppose that (%, p) is not
(strong) equilibrium. Then there exists K € 2", y € B such that
Y= % and |K(y > x)|/|K| = K(K).
According to Definition of competitive equilibrium we have
(8.3.1) Pyl >pa’, ieK(y>x).

Then there exists j € K such that p'y’ < p’a’ for y e B;{ and (8.3.1). Let us choose
z > Osuch that p'z = p'a’ — §’y’ > 0 and set 77 = y/ + z. Obviously, p'y’ = p'a’

and 3/ >; %/ what contradicts to the assumption that (%, p) is competitive equi~
librium. '

Previous Theorems 8.2 and 8.3 imply the following one.

Theorem 8.4. (Existence of equilibrium) Let m be a market. Let =, ie Q, be
continuous, convex and positively monotonous. Then there exists an equilibrium




of m. In addition, if z,, i € 2, are monotonous then there exists a strong equilibrium
of m.

CHAPTER IH: APPLICATION OF GAME THEORY
IN MARKET THEORY

Letm = (2, A, R}, (Z)ico» (@')ics 1) be a cooperative market defined in Chapter
1L In this chapter we shall suppose that > are continuous for all i € Q. Let u’, i € 2,
be continuous utility functions corresponding to >, i € Q. Without loss of generality
we assume that

u(0) =0 forall ieQ.

Let u(.) be the mapping from x R7% to R,
e

u: (xY)ieq = [ut(xY), w*(x2), ..., w"(x")] .

We denote

uM) = {xeR":3%e M, u(X) = x} for M < xR7,
o
u Y (L) = {¥e xR} :u(X)eL} for L<R",
o

and u(m(0)) = R".
Further, u' is called nonnegative if u'(x) = 0 for x € R%.

9. Cooperative Game Corresponding to the Market

Lemma 9.1. Let u’ be concave and nonnegative for all i € Q. Then u(m(K)) are
closed and convex for all Ke 4.

Proof. Closeness: Let x,eu(m(K)), v =1,2,...,x, converge to xeR" Let
%, e m(K), u(%,) = x,. m(K) is compact and, hence, we can choose a subsequence
from {%,}&; which converges to a certain % € m(K). Obviously u(%) = x, so xe
e u(m(K)).

Convexity: Let x, y e u(m(K)), 0 € «, f < 1, ¢ + B = 1. Let %, j e m(K), u(%) =
=x, u(J) = y. «f + Bfe m(K) and u(«X + ) = au(X) + fu(§) = ax + By for
concavity of u?, i € Q. It follows from continuity of #’, i € Q that there exists such Z
that 0 < 2' < (af + B7)' and w'(Z') = (ax + By), i€ Q. Obviously Zem(K),
u(Z) = ax + By. Hence, ax + By e u(m(K)).

Definition 9.1. Let K € . Then we denote
y(K) = {x e R": 3y e u(m(K)) such that x* < y*} .

The next statements follow from Lemma 9.1.
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352 Theorem 9.1. Let u', i € Q, be concave and non-negative. Then the triple (Q, A, v).
where v is defined above, is a characteristic function and v' = u(a’) for all

icellmy={ieQ:{i}ex}.

Lemma 9.2. Let u’ be concave and non-negative for all i € Q. Then H = u(m(Q))
is convex and compact.

Definition 9.2. Cooperative game G,, = (@, ', v, H, h), where v and H are defined
by Definition 9.1 and Lemma 9.2, is called the game corresponding to the market m.
It is easy to verify the following theorem.

Theorem 9.2. Let u', ie Q, be concave and non-negative. Then G,, is guaranted
and ordinary. If u’, i € Q, are monotonous, in addition, then H fulfills condition (7)
from Chapter I.

10. Connection between Games and Markets

Definition 10.1. Let m be a cooperative market. Then we denote

A, ={xem(Q):x' z,;a’ for all iel(m)},
E,={xem(Q): @3y :y = x, |0 > »)|/|@| = HQ)},
Ap=A4,NnE,, E,=mQ).

A, resp. E,, are called the sets of individually, resp. group, rational distributions

of goods.
Next theorem follows from Definition 10.1 immediately.

Theorem 10.1. Let u be concave and non-negative for all i e Q. Let 4, E be the
sets of individually and group rational payments distributions of the game G,
E=H,A=En A4 Then

wEp) = E, w(Bp) = E, wdp) =4, u(,)=4
wE)nE, = E,, u(E)nE,=E,
wi(A) A E, = 4,, u(4)nE

Theorem 10.2. Let v, i € Q, be concave and non-negative, let P = m(Q). Then
u(€(P)) = CS(u(P)).
Proof. We prove, first, that
u(€(P)) = €m(u(P)) -
Let x = u(€™(P)) and let x ¢ €m(u(P)). Then there exists y € u(P) such that y > g, x.
Let £ €"(P), e P be such that u(%) = x and u(j) = y. Obviously 7 >, %, and




it contradicts to % e €(P). Hence, x & GG"'(u(P)). Now, we prove that 353
Cn(u(P)) = u(C€"(P)).
Let x € €°™(u(P)), and X € P, u(%) = x. Then % e €"(P), otherwise it leads to con-
tradiction with x e €%m(u(P)). Hence x € u(C™(P)).
Theorem 10.3, Let u', i € 2, be concave and non-negative, let P < m(€). Then
€™(P) = P nu~(CSm(u(P))).
Proof. The inclusion i
6(P) < P v uHE(u(P)
follows from Theorem 10.2. It remains, therefore, to prove only the inclusion
P~ u”H(GCCm(u(P))) = €™(P).

Let %€ P nu” (€% (u(P))) and let % ¢ G, (P). Then there exists § € P, such that
§>n % Let u(%) = x, u(§) = y. Then y >¢,x, but it is a contradiction with
x € €%m(y(P)). Hence, x € €™(P).

From Theorems 10.1 and 10.3 the next statement follows.
Corollary 10.1. Let u’ be concave and non-negative for all i € Q. Then we have
€™(Ey) = Ennu”Y(€(E)), C"(E,) = E, 0 u”(E€(E)),
€"(4,) = E,, nuT'(€m(A)), C(4,) = E, nu ' (Em(4)).
Theorem 10.4. Let u’ be concave and non-negative for all i€ Q. Then 4, + 0
and C"(E,) = €™(4,,).
Proof. The assertion follows from the foregoing corollary and from Theorem 3.3.
Definition 10.2. Let M < x R". We denote
o
J(M) = {xe M : 1(3y € M such that y > x)} .
Theorem 10.5. Let u' be concave and monotonous. Let H be a polyhedron. Then
C™(E,) = C(J(Ey)) = €(A") = €"(J(4,)) -
Proof. The assertion follows from Corollary 10.1 and from Theorem 3.9.
Theorem 10.6. Let u be concave and monotonous for all i e Q. Let m fulfil the

condition
{Ql h(Q) > max |S| .
x {0}



354 Then
C(J(E,)) = 6"(E,) and G™(J(A,)) = Co(d,).

Proof. The statement follows from Corollary 10.1 and from Theorem 3.11.

Remark 10.1. Without the assumption of concavity of utility functions, s(K) may
be nonconvex. Let us consider the following example.

Q={1,2}, A& =expQ ul(x)=u*x)=(x,).

oo ()
{0 OF {00
() 0-()

Su(x) + du(y) = (1/2)

12

Let

But, it is easy to verify that there exists no z € m(2) such that

1/2
u(z) =1 ' .
©=(ip)
Hence, v(Q) is not convex. .
(Received April 1, 1976)
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