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KYBERNETIKÍ —VOLUME 12 (1976), NUMBER 5 

Generalized Cooperative Games 
and Markets 

TRAN QUOC CHIEN 

In the last time, we are witnesses of an unprecendented development of mathematical ap­
plications in economy including the theory of games and markets. It is sufficient to name the 
works of Aumann, Peleg, Rosenmiiller, Hildenbrand, Vind and others. This paper is a con­
tribution to that field. It suggests a generalization of one part of theory of games and markets 
in which the existence of side payments is not assumed, and in which we suppose the validity of 
so called Direct democracy law. The presented work is restricted to games and markets with 
finite number of participants only. The theory, instituted on continuum or on countably infinite 
number of participants, is mathematically nice, though, hardly applicable, as the condition of so 
called absolute competition does not seem to be practically real. 

The paper is divided to three chapters. In the first chapter, some contributions to the game 
theory are given, the second chapter is devoted to market theory, and, eventually, in the last one, 
some relations between markets and their correspondent games are presented. 

ABBREVIATIONS AND NOTATIONS 

Q = { 1 , . . . . n} set of players participants 
exp Q class of all subsets of Q 
$C <= exp Q set of all available coalitions 
|S| number of all elements of set S 

vs = (y%s 

x >. y x' >. y' for all i 

vs = (v%s 

x > y x ^ y and x * y 
x > y xl > y' for all i 
S(yjx\ set of players from S which prefer 

y to x 
h(S) decision coefficient of S 
#Yjf) set of all mappings from Jf to (0, 1> 
h e tF(yT\ decision function 



S(x > y) = {i e S : x'' > / } 329 
R" n-dimensional real space; R = Rl 

Rm non-negative orthant of Rm 

>G ( S ) domination via S in game G 
> G domination in game G 
1(G) = {ieQ: {i} e J f} 
G = (Q, X , v, H, h) cooperative game 
dom G ( S ) P = {y:yeR"3xeP, x > G ( S ) y} 
dom G P = U dom G ( S ) P 

SeJf 

(£G(P) = P - dom G P P-core 
£ ( G ) = = e G ( i? ) core of game 
J(H) = {xeH :-\(3yeH; y> x)} 
fT(x) = max (xljx}) for such an x that x " _ T > 0 

iJell-T 

|H|s = |/||=max|y| 
[x, y] segment joining x with y 
<SG(P) P-solution 
S(G) = SG(A) solution of game 
A set of individually rational distribu­

tions in game 
E set of group rational distributions 

in game 
E = H, A = Ar\E 
^ preference* 
~ equivalence 
> pure preferences 
{> i)ie0 system of preference 
(a')ie!2 system of initial quantities of goods 
m = (Q, jf, Rm, (>t)ieSi, (a')ien, h) cooperative market 
m ( I0 = {(x%n : xl e Rm, i e Q and £ * ' ^ £a*} 

K K 

p = {P = ( P 1 ••• Pm)' 6 Rl, E P' = !} P r i c e s P a c e 

i = 1 

-*- = {(x')isfi : x ' 6 -i^m > i 6 ^ ' E P ' * ' = L V f l i } budget-set 

X ( x > y ) = {ieK:xi>iy
i} 

~>m(K) dominat ion via K in market 
>-m dominat ion in market 
d ° m m ( K ) P = {xexRm:3yeP:y > m ( K ) x} 

Si 

dom m P = U dom m ( K ) P 
KeJT 

* Symbol >j is used instead of more usual >- which was not typographically acceptable. 



330 em(p) = P - domm P P-core 
G(m) = dm(m(Q)) core of market 
Sm(P) P-solution 
S(m) = <Zm(m(Q)) solution of market 
Gm game corresponding to market m 
Am • set of individually rational distribu­

tions in market 
£m set of group rational distributions 

in market 
i = L n Em 

CHAPTER I: COOPERATIVE GAMES WITHOUT TRANSFERABLE 
UTILITY 

In this chapter, we present a generalized model of game without transferable 
utility. On establishing the concept of domination we suppose that in each admissible 
coalition the direct democracy law (it means each decision in each coalition certified 
by voting among all players of the coalition) holds. 

1. Fundamental definitions 

Definition 1.1. The triple (Q, Jf, v) is called characteristic function if Q is a finite 
set, J f <= exp Q, Q e Jf and v is a mapping from Jf to exp P | Q | which fulfills the 
following conditions 

(1) v(S) is convex for all SeJf, 

(2) v(S) is closed for all S e Jf, 

(3) t>(0) = RM 

(4) x e v(S), y e Rw, ys
 = xs => y e v(S) for all Serf. 

Definition 1.2. Let S e J f be an arbitrary coalition. Let x and y be two possible 
payment distributions among players from S. Let S(yjx) denotes the set of the players 
from S who prefer y to x. Then the number h(S), h(S)e(0, 1> is called decision 
coefficient, if coalition S accepts y if and only if 

&M>h(S). 
\s\ - w 

Let &(jtT) be the set of all mappings from J f to (0, 1>. h e ^ ( X ) is called decision 
function of Jf if h(S) is decision coefficient for all coalitions S e Jf. 



Definition 1.3. Cooperative game with characteristic function is a quintuple 331 
G = (Q, Jf, v, H, h), where (Q, Jf, v) is a characteristic function, H is a convex 
and compact subset of v(Q), and h e J*(jf) is a decision function. 

Definition 1.4. Cooperative game G is called guaranted if it fulfills 

(5) xei>(S ;), i = l,2,...,k; SinSJ=Q for » # / , S ; e X , 
k 

••-., -,: . i = l,2,...,k=>3yeRln-s^:(xs,y)ev(Q), where S = \JSt. 

;=i 

Definition 1.5. Cooperative game (7 is called ordinary if 

(6) x e v(Q) o 3y e H : x = y . 

2. Domination, rationality 

Definition 2.1. Let G be a cooperative game. Let x, y e H, S e Jf. We say that x 
dominates y via S and write x >-G(s) y if x e v(S), xs <t ys and 

l 5 ^ - ^ = h(S) , where S(x > y) = {. e S : x' > y'} . , . 
ISI 

Definition 2.2. Let x, y e H. We say that x dominates y and write x >-G y if there 
exists S e J f such that x dominates >> via S. 

Note. Let us denote 1(G) = {i:{i}edf}. It follows from Definition 1.1 that if 
i eI(G) then there exists vl e R such that »({/}) = {x e R|fi| : x'' = v'}. 

Definition 2.3. Let P c H, S e Jf, then we denote 

domG(S) P = {y : 3x e F, x >-G(S) y} , 

domG P = {>> : 3x e P, x >-G j } . 

Definition 2.4. Payments vector x e H is called individually rational if x' g: i/ 
for all i e 1(G). x is called group rational if there exists n o y e f f such that y >G(n) x-
We denote E = H, E the set of all group rational vectors from H, A the set of all 
individually rational vectors from H, A = A n E.lf 1(G) = 0 we put A = H. 

3. Core 

Definition 3.1. Let G be a cooperative game, f c If be an arbitrary set. Then 
we call the set <£(GP) = PG- domG P a P-core. The set GG(H) is called game core 
and it is denoted also by £(G). 



Theorem 3 .1 . Let G, = (Q, Jfu »„ H, ht), G2 - ( „ , j f 2, »2, H, h2) be cooperative 
games that fulfil 

(3.1.1) Jf, _ J f 2 , 

(3.1.2) S e J f t => »t(S) c t)2(S) and ht(S) _ ft2(S) . 

Then £G2(P) c GG,(P) for arbitrary P - H. 

Proof. The statement of this Theorem obviously follows from the previous 
definitions. 

Theorem 3.2. Let G = (Q, Jf, v, H, h) be an arbitrary cooperative game and let 
A # 0 . Then€ G (£)c(X G (A ) . 

Proof. If 1(G) = 0 then A = £ and £G(£) = GG(A)- Let, hence, /(G) * 0 and let 
x e GG(£). If x $ A then there exists i e 1(G) such that x'' < v'. Let z be an arbitrary 
vector from A, obviously z'' Si »'. There exists y e H such that >• _ z for G is ordi­
nary. Let >i lie on the segment [x, y~\ so near to x that v' _ >i > x ' . > t e £ for 
convexity of £. Then yt >-G({i}) x; that contradicts to x e (£G(£). Hence x e GG(A). 

Theorem 3.3. Let G be an ordinary and guaranted cooperative game. Then A =i= 0 
and GG(£) = GG(A). 

Proof. If 1(G) = 0 then GG(A) = GG(£) for A = £. Suppose that /(G)'#= 0. 
By (5) there exists x e Rlfi-/<G>I such that (v1(G\ x) e v(Q). By (6) there exists y e H 
such that y _ (i/ (G), x). Hence, >• 6 A => A =)= 0. By the foregoing Theorem is 
GG(£) c GG(A). It remains to prove GG(A) c G6(£). Let z e GG(A). Then obviously 
z e £. If z £ GG(£) then there exists z t e £ and S e Jf" such that z t >G$) *• We set 

z _ ( /<«)-« zSu(fl-/(C))\ 

then evidently z2 e »(S) and z2 e «({i}) for iel(G) — S. Hence, by (5), there exists 
x i e P J f l - ( I ( G ) u S ) l s o t h a t 

z3=(zs^G\Xl)ev(Q). 

By (6) there exists weH such that w ^ z3. Obviously, 

and 

wSn/(G) > zSnI(G) _ zSnI(G) _ zSni(G) > zSnI(G) > ^Sn/iG) 

thus we A. Let Wj lie on the segment [z, w] so near to z that 

z? ( Z l > z>_ w? ( z , > 2>> zS(z,>*> 



(evidently z\ S(Zl>z) = ws S(z,>z) = 2s-
s(*>>z>). WIBA as A is convex. Further, 333 

by (4), Wj e t>(S), hence w. >G(S) z. It contradicts to z e GG(A). Hence, z e GG(E). 

Theorem 3.4. Let G = (£2, Jf, u, H, /I) be an ordinary cooperative game, let 
h(S) = 1 for all S e Jf and let H be a polyhedron. Then 

dG(£) = <IG(E) and GG(A) = dG(A) . 

Proof. See the proof given in [3], Theorem 8, page 546. 

Theorem 3.5. Let G be an ordinary and guaranted cooperative game, let h(S) = 1 
for all S e JT and let H be a polyhedron. Then 

C£G(£) = <£G(E) = £G(A) = dG(A). 

Proof. The assertion follows immediately from Theorems 3.3 and 3.4. 

Corollary 3.1. Let G be an ordinary and guaranted cooperative game, let H be 
a polyhedron and let h(S) > (\s\ - l)/|s| for all SeJf,S * 0. Then £G(£) = 
= <£G(£) = GG(A) = £G(A). 

Let H e R", we denote 

J(H) = {x e H : -|(3_v e H : v > x)} . 

Further, for arbitrary T c Q w c define 

/T(x) = max (x'jxJ) for such x that x f l -T > 0 . 
i,je!i - T 

Lemma 3.1. Let x, y e Rn, xn~T > 0, vfi~T > 0. Then 

/T(x + y)< max {jT(x), jT( v)} . 

Proof. Let c = max {/TO^/TOO}- Then x;/xJ < c, yljyJ < c for all i,j e Q - T. 
Hence 

(x! + yl)j(xJ + yJ) < (cxJ + cyJ)j(xJ + yJ) = c 

for all i,jeQ -T, so thatjT(x + y) ^ c. 

Lemma 3.2. Let H be a closed polyhedron in R" and let it fulfills the following 
condition 

(7) xeH, yeH, yr < xT , T cz Q , \T\ < max |s|(l - h(S)) => 

=>(x°-T ,vT)eH. 



334 Then there exists for arbitrary T c O a number K > 0 such that for each xe H — 
- J(H) there exists x' e H for which x'n~T > xn~T, x'T = x r a n d / r ( x ' - x) = K. 

Proof. Let H = {x e R": Lt(x) = bu ..., Ljx) = bm}, where Lh ie M = 
= { 1 , . . . , m}, is a linear functional in R", and let Q <= M. We define 

HQ = {x e H : L,(x) > bt for i e Q and L,(x) = bt for i e M - Q } . 

Nonempty sets HQ are mutually disjoint and 

H = \)HQ. 
Q^M 

For such a Q for which ffQ - J(H) 4= 0, we choose xQeHQ- J(H). Then there 
exists y'Qe H such that j>Q > xQ. If we set 

yQ = (yTT>4) 

then, by (7), yQ e H. Now, let xeHQ- J(H), S > 0. We define 

yd = x + S(yQ - xQ) . 

For sufficiently small 8 > 0 we have 

(3.2.1) L,(y a)> bt for i e Q , 

and for arbitrary 8 > 0 

(3.2.2) L ^ ) ^ for i e M - < 2 . 

We fix such a <5 > 0 for which (3.2.1) and (3.2.2) hold. It means that yseH and 
obviously yn~T > xn~T, yT = xT. Let x' = ys. Then x' — x = 5(>>Q — xQ), hence 

jr(x' - x) = fT(yQ - xQ). 

We put 

K = max fT(yQ - xQ) . 
Qc:M 

Then jr(x' - x) = K for all x e JT - J(H) because 

H - J(H) = U (HQ - J(H)) . 

Lemma 3.3. Let H c R" be a compact polyhedron fulfilling condition (7). Then 
there exists a number K > 6 such that VT <= &, Vx e H - J(H), ~x" e / (H) such 
that x" f i - r > x53-7 , x" r = xT andfT(x" - x) = K. 

Proof. For xe H — J(H), we denote 

Fx = {x'eH : x' fulfills Lemma 4.2} 



and define 

g(y) = m a x 1/ ~ A = h - *L- r for yef,. 
fl-T 

Fx is bounded, hence there exists 

(3.3.1) L = sup g(y). 
Fx 

L e t {yk\k=\> yk e I^x for all k s uch that g(jfc) converges to L and y t -> x". 

/ r ( j , - x) ^ K =>/ r(x" - x) ^ K => x" f i-T > x f i - T . 

If x" $ J(H) then there exists / e H such that / n _ : r > x"n~T, y'T = x" r and 
fT(y' — x") gl i£ according to Lemma 3.1. 

fr(y' ~ X) = / r ( / - x" + x" - x) ^ max {fT(y' - x"), / r (x " - x)} ^ K . 

Thus y' e Fx. But 

# ( / ) = 1 / - X\U-T = \\(y' - *") + (x" - x ) | | 0 _ r > ||x" - x | 0 _ r 

and it is a contradiction with (3.3A). Hence x" e J(H). 

Lemma 3.4. Let H c R be a compact polyhedron fulfilling condition (7). Then 
there exists a number K > 0 such that 

VT c i_, Vx E /J - J ( H ) , 3x" e J(tf) : x"T = 

= x T & x"n-T > xn~T& V(i e fi - T) : x'"' - xl ^ (||x" - x| |Q_ r)/K . 

Proof. The assertion follows immediately from Lemma 3.3. 

Theorem 3.6. Let G = (Q, X, v, H, h) be a cooperative game. Let H be a poly­
hedron fulfilling condition (7) and let y e J(H). If there exist z e H and S e JT such 
that z >-G(S) y then there exists w e J(/J) such that w >-G(S) ?• 

Proof. Suppose, without loss of generality, that y — 0. Let V = R+ = {x £ R" : 
: x ^ 0} and V° be the interior of V. 0 = y e J(H) => H n V° = 0. As H is a compact 
polyhedron, there exists a hyperplane a(x) = J^c'x' = 0 which separates H from V. 

Without loss of generality we suppose that g(x) <; 0 for x e JJ and fl(x) ^ 0 for 
x e V. Thus c' ^ 0 for all i. Note that 

(3.6.1) xeH, g(x) ^ 0 => x e J(H) . 

If z e J(H) then there is nothing to prove. Let z $. J(H), z >-C(S) 0 => s * Q, other­
wise it leads to contradiction with z $ J(H). Set 

f(x) = _ _ c V , 
a-s 



then the implication 

(3.6.2) x > G ( S ) 0 , /(x) > 0 => x e J(H) 

follows from (3.6.1) and 

£c'x , = Y jc
,x'+/(x). 

-Q S 

z$J(H)=>f(z) < 0. Put 

(3.6.3) k = min z'/2 > 0 
S(z>0) 

and 

M = {x E H : xS(z>0) < 0, xs"S( l>0) = 0 and ||xS(z>0)|| = k} . 

As H is convex, there exists a point of the segment [z, 0] which lies in M, thus M + 0. 
For M is compact and/is continuous, there exists xt e M such that 

(3.6.4) f(xx) = max/(x) . 

If x t £ J(H) then there exists x2 eH,x2 > xt. We have 

(3.6.5) | | 4 ( 2 > 0 ) | | > |K (2>0) | | = fe . 

(3.6.6) f(x2)^f(Xl). 

Put 

*3=W||4(2>0,||)*2. 

Obviously, ||xf(z>0)| = k and xf(z>0) > 0. x3 e H for convexity of # . Set w3 = 
= (x(3«-s)uS(z>o)os-s(z>o)- ) T h e n w^eR for ^ h e n c e W 3 e M _ I t f o l l o w s f r o m 

(3.6.4) that 

(3.6.7) f(Xl) > f(w3) . 

Obviously, zS(l>0) > xf(z>0) = ws
3

(z>0) > 0, so w3 6 c(S) according to (4), and 
w3 >-G(S) 0. If w3 e J(H), proof is finished (w = w3), otherwise (3.6.2) implies/(w3) < 
< 0. But it follows from f(w3) = (7c/||xf(z>0)|)/(x2) and ic/|x!(z>0)| < 1 that 
/(x2) < /(w3) what contradicts to (3.6.6) and (3.6.7). We conclude x t e J(H). 
Obviously 0 > xS(z>0) < zS(z>0) and xs

1-
S(z>0) = 0, so x t ev(S) according to (4). 

If xf(z>0) > 0 then x t >-G(i) 0 and proof is finished (w = x t). Therefore, it remains 
only to deal with the case in which one of the coordinates of xS(z>0) vanishes. Then 
we construct x4 such that x4 = ax0 + a2Xj + a3z, where a1 + a2 + a3 = 1, 
a; > 0, i = 1, 2, 3, and x4 is so near to xx that 

(3.6.8) |x4 - XI|O-T = s . where 6 = fc/(X + 1) , 



where K is the constant from Lemma 3.4 for T = S — S(z > 0). Convexity of H 337 
implies that x 4 ef f . Further, * T S ( r > 0 ) = 0, xS ( z > 0 ) < zS(z>0). So, x4ev(S) and 
x4 >-G(S) 0- If *4 e I(II)> the proof is finished (w = x4). If x4 e H — J(H), we 
choose x4 for T = _2 — S(z > 0) according to Lemma 3.4. It may have two cases. 

(i) | x 4 — x 4 | Q _ T > KS, then x4 ' — x4 > 5, i e Q — T according to Lemma 3.4. 
Hence, 

x4 — x\ = x4 ' — x4 + x4 — x\ > 5 — |x 4 — X j l a - j __ 0 , 

for ieQ - T, according to (3.6.8). If x4
S ( z > 0 ) __ zS(z>0) then x^ e »(S) and 

x'i >~Gis) 0 and proof is finished (w = x4). Otherwise we set x5 = ax t + 
+ (1 - a) x4 which is so near to x± that 0 < x | ( z > 0 ) < zS(z>0). Obviously, 
x5 >-G(S) 0. x5 __ xx so x5 e J(H) and proof is finished (w — xs). 

(ii) | x 4 — x 4 | Q _ r __ KS. Then from 

||*4 - * i | o - r = \\x'i ~ x4\\Q_T + ||x4 - X i | Q _ r __ X^ + ^ = fc 

follows that 

||*4||s(->o) = ||*4 - *i||s(->o) + ||*i|s(Z>o) __ 2fc = min z ' . 
S(z>0) 

Thus xf ( z > 0 ) __ zS(z>0). So x 4 £»(u) and x 4 > G ( S ) 0 . By setting w = x4 the 
proof is complete. 

Theorem 3.7. Let G be a cooperative game and let H be a polyhedron fulfilling 
condition (7). Then 

(1G(J(H)) = e c (H) n J(H) . 

Proof. Let j ; e (£e(J(H)). Obviously y e J(H). If y £ £G(/J) then there exists 
z e H such that z >-G j . According to the foregoing Theorem, there exists w e J(H), 
w>Gy and it contradicts to y e Q,G(J(H)). On the other hand, if y e £G(H) n J(H) 
then obviously y e CG(J(ff)). 

Similarly we derive the following statement. 

Corollary 3.2. Let G be a cooperative game, let H be a polyhedron fulfilling (7) 
and let A + 0. Then 

£G (J(I ) ) = HC(A) n J (A ) , 

Theorem 3.8. Let all assumptions of Theorem 3.7 hold. Then 

<£G(H) = £G(J(H)) . 



If, in addition, A + 0, then 

(£G(A) = (£G(J(A)). 

Proof. We show that £G (#) c J(H). y e £G(H) => n(3z : z >G ( f i ) y) => 
=> "1 (3z e H : z > y) => y e J(H). Now, using Theorem 3.7, we obtain the assertion. 
Similarly we proceed for the second equality. 

The following theorem follows from Theorems 3.3 and 3.8. 

Theorem 3.9. Let G = (Q, 2f, v, H, h) be a cooperative guaranted and ordinary 
game, and let H be a polyhedron fulfilling (7). Then 

aG(E) = (£G(J(E)) = eG(A) = e G O ( A ) . 

Remark 3.1. Without condition (7), Theorem 3.6 can fail. We show the following 
counter-example. Let G = (Q, X , v, H, h), where Q = {1, 2, 3, 4}, $T = exp Q, 
v(Q) = {x e R4 : x!' < 100, i = 1, 2, 3, 4}, v(S4) = {x e R4 : (x1, x2, x3) < (1, 1, 0)} 
S4 = {1,2,3}, »(S) is arbitrary for other S e exp Q. 

H = {xe v(Q) : x!' ^ -100 , i = 1, 2, 3, 4, x4 < 0, x1 + x2 + x4 - x3 < 0}, h e 
e J ^ J f ) such that h(S4) e (1/3, 2/3). Obviously, 0 e J(tf). Set z = (1 ,1 , 0 , - 2 ) 
then z eH, z >G ( S 4 ) 0, but z £ J(H). If there exists w e J(iJ), w >-G(S4) 0, then w e 
e «(S4). It means w3 = 0 and 0 < w1, w2 < 1. But w E H, hence w1 + w2 + w4 — 
— w3 :2 0, x4 ^ 0 => w4 < - ( w 1 + w2) < 0. It follows that we can construct 
y eH such that y > w and it is in contradiction to w e J(H). 

Remark 3.2. Without the assumption that H is a polyhedron, Theorem 3.6 can fail, 
too. Conter-example (see [3]). 

Q = {1, 2, 3}, J f = exp Q, h s 1, His the convex hull of sets C and D, where 

C = {x : x1 ^ 0, x2 ^ 0, x3 = 0, (x1)2 + (x2)2 ^ 1} , 

D = {x : x1 ^ 0, x2 ^ 0, x3 = 1, (x1)2 + (x2)2 < 4} . 

Then J(H) = D u {x : x1 = 0, x2 = 1, 0 < x3 < l} . We define 

»(0) = {x : 3y e H, y >, x} , vQ = 0 , 

.,({*•,/}) = {X ; xi < 1/2, XJ ^ 1/2} , i , / 6 O . 

Then obviously (1/2, 1/2, 1/2) e F , (0, 1, 0) e J(H) and 

(1/2, 1/2, 1/2) >G ( ! 1 ,3 ) ) (0 ,1 ,0 ) , 

but there exists no y e J(H), y >-G (0, 1, 0). 

Theorem 3.10. Let G = (Q, tf, v, H, h) be a cooperative game. Then <S,G(J(H)) c 
c <£G(E). If, in addition, A * 0 then CG(J(A)) c GG(A). 



Proof. Let x e &G(J(H)) then x e £. If x £ £G(£) then x §. £C(J(H)) for £ c J(fl) 
what is a contradiction. Analogically for the second inclusion. 

Theorem 3.11. Let G be a cooperative game, let £T fulfil condition (7) and let the 
following inequality 

(3.11.1) Ifll h(Q) > max |S| 
K-{0) 

holds. Then <ZG(J(H)) = GG(£); in addition, if A * 0 then «G(J(A)) = (£G(A). 

Proof. Let x e GG(£). We prove that x e £c(J(ff)). Suppose that x 9. £% ! (#)) . 
Then there exists y e J(H) - E, Se Jf, y >G ( S ) x. Set 

Mx = {ze J(H) : zs = ys} . 

As Mx is nonempty, closed and bounded, there exists yt e Mx such that 

(3.11.2) E (>'i - / ) = maxX (z ; - / ) . 
fi-S Mxfi-S 

If j>, <£ £ then there exists >2 e 7J, y2 >G(Q) >'I- It follows from (3.11.1) that there 
exists ke Q - S such that y\ > y\. Set y3 = (ys, y""s). Then >3 e H, according 
to (7), and obviously y3 e J(H). So >>3 e Mx. But, 

Z OS - / ) > I Oi - yl) 
n-s n -s 

what contradicts to (3.H.2). Hence yteE and y1 >G ( S ) x, what contradicts to 
x 6 GG(£). Consequently, xG s G(J(H)). We have proved that £G(£) c eG(J(H)). 
Using Theorem 3.10, we obtain GG(£) = (£G(j(H)). For the second equality we can 
proceed analogously. ' 

Lemma 3.5. Let G be a cooperative game. Then 

£ = J(H) - domG(n) J (H) , A = J(A) - domC(n) J (A). 

Proof. Lemma follows from the respective definitions. 

Lemma 3.6. Let G be a cooperative game. Then 

domC(n) £ = dom G(n) J(H) 

and 

domG(n) A = dom c ( n ) J(A) . 

Proof. It follows from Lemma 3.5 immediately that 

domG(n) £ c domG(n) J(H). 



340 it remains to show that 

domG(fi) J(H) <= domG(fi) E . 

Let x e domG(fi) J(H) then there exists xx e J(H), xx >G ( f i ) x. 

MXi={yeJ(H):y>Xl}, 

9{y) = W-x1)-

a 

MXi is compact and nonempty, hence there exists z e MXi such that 

g(z) = max g(y). 

It is easy to verify that z e E, so x e domG(fi) E. Analogically for the second equality. 

Theorem 3.12. Let G be a two-person cooperative game. Then £C(A) = £G(J(A)). 

Proof. Note that in two-person game only the domination via Q can be realized. 
Hence, by lemma 3.6 and Lemma 3.5, 

GG(A) — A — domG A = A — domG(fi) A = A — domG(fi) J(A) = 

= [J(A) - domG(fi) J(A)] - domG(fi) J(A) = 

= J(A) - domG(fi) J(A) = <£G(J(A)). 

Remark 3.3. We show an example in which £G(A) + &C(J(A)). Q = {1, 2, 3}, 
JT = {{1}, {2}, {3}, {1, 2}, Q}, v1 =v2 = v3 = 0, t<{l, 2}) = {x e R3 : x2 + x3 < 
<. 2, x2 + 2xl

 =2, x3 + 2xx < 2}, H = {x e R3+ : x2 + x3
 = 2, x2 + x1

 = 2, 
x3 + x1

 = 2}, v(Q) = {xeR3:3yeH:y>,x}, h(Q) = 1/3, h({l, 2}) = h({i\) = 
= 1. Game G = (Q, X~, v, H, h) is guaranted and ordinary. H is a compact poly­
hedron fulfilling (7). Let x = (0, 0, 2), obviously x e A = E. Let 0 < e < 0,1 and 
y = (e/3, e, 2 - e). We can easily verify that y e J(A) = J(H) and y e v({l, 2}), 
thus y >cai,2)) x- We conclude x $ £G(j(A)). We show that x e (£G(A) by contra­
diction. Let there exists z e A such that z >Gx. We see that z dominates x only 
via {1, 2}. Hence 0 < z1, z2 < 2, z2 + 2Z1

 = 2, z3 + 2zx
 = 2. Set z, = (2z \ z2, z3) 

then obviously z t E H = A, zt >G(0) z what contradicts to z e A. So x e GG(A). 

4. Solution 

Definition 4.1. Let G = (Q, tf, v, H, h) be a cooperative game and let P <= H. 
Then a set V c P is called P-solution iff 

V=P- d o m G F . 

We denote it by SG(P). 



Remark 4.1. If SG(P) exists then £G(P) e SG(P). 

Remark 4.2. Suppose that 

(4.2.1) x e P n domc P => 3j; e P - dom c P : y >-G x . 

Then ttG(P) = SC(P). 

Proof. GG(P) = P - dom G P. It follows from (4.2.1) that 

P n domG P c P n domG GG(P) ^ P n domG P = P n domG (£G(P) 

for domG GG(P) c domG P. Hence, P - domG £G(P) = P - Pn domG GG(P) = 
= P - P n domG P = P - dom c P = GG(P) => GG(P) is P-solution. 

Theorem 4.1. Let G be a cooperative game. Then for every xe H — E there exists 
y e E such that y >-C(n) x. In addition, if A 4= 0 then for every x e A - A there 
exists ye A such that j >~G(n) x. 

Proof. Let x e H - £. If x e / ( # ) then, according to Lemma 3.5 and Lemma 
3.6, there exists y e E, y >G(n) x. If x <£ J(H), we set 

Mj = {z e H : z > x} , f(z) = min (z ; - x;) for zeH . 
ie!l 

H is compact, consequently there exists y^eH such that 

/ (y . ) = max/(z) . 

Mx 4= 0 ^ ^ i ) > 0 => yj e M„ i.e. y, > x. Obviously yt e J(H) and, applying 
the foregoing reasoning, we obtain the assertion. Analogically for the second 
assertion. 

Theorem 4.2. Let G be a cooperative game and let A 4= 0. Let A c P cz A be an 
arbitrary set. Then a set JC is A-solution if and only if it is P-solution. 

Proof. Let K be A-solution. We show that 

(4.2.2) P - A c z d o m c i C . 

According to Theorem 4.1 

x e P - A = > 3 j > e A , y >Gm x . 

If y e K then x e domG K. If y e dom c K then 3z e K, z >G y => z > G x => x e 
e domG X. It follows from (4.2.2) that 

P - domGK = A - domGK = K. 

So, K is really P-solution. Let, now, K be P-solution. Then, applying the same rea­
soning, we obtain (4.2.2), and, consequently, K c A; hence K is A-solution. 



Definition 4.2. <2G(A), provided that it exists, is called a solution of game G and 
is denoted by ®(G). 

Theorem 4.3. Every two-person cooperative game has its unique solution and it is 
the set A. 

Proof. Theorem follows immediately from foregoing definitions and theorems. 

Definition 4.3. Cooperative game G = (Q, tf, v, H, h) is called a constant-sum 
game if if is a subset of the set 

{x : TV = e} 
n 

where e is a constant number. 

Theorem 4.4. Let G be a three-person cooperative constant-sum game. Let h(S) > 
> 1/2 for all two-person coalitions from Jf. Then ^ ( A ) exists. 

Proof. If C/f 4= exp Q then for all Seexpfl - 1 " we define «(S) such that 
»(S) n H = 0. It is easy to verify that in such game the relation of domination may 
be realized only via two-person coalition. Now, we can use the result given in [4] 
for the game Gt = (Q, exp Q, v, H, 1), where l(S) = 1 for all S e exp Q, and the 
solutions of Gy are identical with the ones of G. 

Remark 4.3. Without the condition h(S) > 1/2 for all two-person coalitions from Jf 
Theorem 4.4 could fail. We give the following counter-example. X = exp Q, Q = 
= {1, 2, 3}, ij = 0; H = {x = 0 : x1 + x2 + x3 = 1} = A, v(Q) = {x : 3y e H, 
y ^ x} = v({i,j}), i,j = 1, 2, 3; h = 1/2. Then x, y e A => x ~>G y or y >-G x, hence 
there exists no solution of G. 

CHAPTER II: COOPERATIVE MARKET WITHOUT 
TRANSFERABLE UTILITY 

In this chapter we shall deal with markets with possibility of cooperation among 
participants but without any transferable utility. We shall define the concepts of core, 
solution, optimum and equilibrium in general sense. We shall derive some relations 
among these concepts and Theorem about the existence of equilibrium. 

5. Preference, Utility Function 

Definition 5.1. Linear relation ^ on R+ x R+ is called a preference if it fulfills 
the following conditions 



1. Reflexivity x e R + => x ^ x. 

2. Transitivity x,y,zeRm
+, x ^ j> and ,> ^ z => x g= z. 

3. Completness x, j> e R + => x £: j> or j> ^ x. 

Further we denote 

x ~ j> if x ^ j> and j> ^ x, 

x >- j> if x ^ j> and n(j> ^ x). 

Definition 5.2. Let ^ be a preference on R+ x R"+. A function u : R"+ ~* R is 
called utility function corresponding to ^ , if x ^ j> <*• «(x) ^ w(j>) for all x, y e R + . 

Definition 5.3. Let >_ be a preference on R + x R™. For every x e R + we set 

G s (^ ) = {x e R+ : x ^ _} , 

F*(h) = {x 6 R + : x ^ x} . 

Then gr is called continuous if Gs(_~) and Es;(_") are closed for all x e R + . 

Theorem 5.1. A preference ^ is continuous if and only if there exists a continuous 
utility function corresponding to k . 

Proof. See [1], page 4.2, Theorem 2.1. 

Definition 5.4. A preference ^ is called convex if 

x h y , 0 < a ^ 1 => ax + (1 - a) j> ^ y for all x, y e R+ , 

strictly convex if 

x _: >', x + j>, 0 < a < 1 => ax + (l - a) j> >- y , 

monotonous if 

x =_ J> => x _t j>, 

strictly monotonous if 

x # j>, x ^ j> => x >- j>, 

and positively monotonous if 

x > j> => x >- j>. 

6. Definition of Market 

We suppose that there are altogether n participants (players) and m sorts of goods 
(commodities). Every participant has certain initial quantity of goods and values it 
according to his preference. Participants barter their goods in order to make the 



344 consequent distribution as advantageous as possible for all of them. There are only 
some permissible coalitions in which we suppose so called direct democracy law 
(see Chapter I). 

Definition 6.1. A cooperative market is the sixtuple 

m=(Q,X,Rm
+,(>%n,(a

i)l£Q,h), 

where iQ = {1, 2,..., n} is the set of participants, X c exp Q, QeJf, is the set of 
available coalitions, >i, ieQ, is the preference of participant i, a'eRm, fl'<tO, 
is the initial quantity of goods of player i, h e ^(X~) is a decision function (see 
Chapter I, Definition 1.2). 

Further we denote 

m(K) = {(x%B : x' e Rm
+ for all i e Q, T V ^ TV} 

X K 

for K e Jf, 

m(0)= xRm ={(x%n:x'eRm, ieQ}. 
si 

Definition 6.2. The set 

& = {p = (pl,p2,...>pm)'eRl, f > . = 1} 
f = i 

is called the space of price vectors. 

For p e &, K e J f we denote B" = m(Q) and 

BK = {(x%EQ : x< e Rm
+, i e Q, Y> '" = ^pa'} , 

x x 

and we call it the budget-set of coalition K according to price vector p. 

Definition 6.3. A pair (x, p), where x e m(Q), pe^,is called market state. 

7. Core, Solution, Optimum and Equilibrium 

Definition 7.1. Let m be a cooperative market, let x, y e xRm. Then we say that x 
n 

dominates y via K e J f and write x >m(K) y, if x e m(K), xK > yK; it means xl >i yl 

for all i e K, and 

\K(x>yJ*h(K), 
\K 

where K(x > y) = {ieK : xl >i y1}. Further, we say that x dominates y and write 

x >m y if there exists KeJf such that x >miK) y-



Definition 7.2. Let P e m(Q). We define 34S 

domm(K) P = {xe xRl :3ye0: y >-m(K) x} , 
13 

domm P = U domm(K) P . 
K 

The set £m(P) = P — domm P is called P-core; the m(£2)-core is called the core of 
market and we denote it by (£(m). A set Q c P is called P-solution and denoted 
by Sm(P) if Q = P — domm Q. m(iQ)-solution is called a solution of market. 

Definition 7.3. Let (x, p) be a state of market m. Then (x, p) is called optimum 
of m if there exists no KeJtT with y e BK, yK i> xK and \K(y >- x)|/|K| = h(K). 
In addition, if x e BK for all K e X then (x, p) is called an equilibrium of m. An 
optimum resp. equilibrium (x, p) is strong if 

2>'-2>'. 

Theorem 7.1. Let (x, p) be an optimum of m, then x e G(m). 

Proof. If x £ e(m) then 3K e Jf 3y e m(K), yK ^ xK and [K(y >- x)\j\K\ = h(K). 
m(K) c BK for all p e ^ => j> e BK. It contradicts the property of optimum (x, p). 
So xee(m). 

Theorem 7.2. Let m be a market and let (x, p) be an optimum of m. If there exists 
at least one player from Q with monotonous preference then there exists x e m(Q) 
such that (x, p) is a strong optimum of m. 

Proof. Let k e Q, _:ft is monotonous. We set 

x'' = x1', i #= fc, x* = x* + £a ' - £ x ' . 

Then we can easily verify that (x, p) is a strong optimum of m. 

Definition 7.4. Let Sf <= exp £2. Then we set 

\Sf\ ={K:3K1,...,Kre#', K = (J Kt} . 
i = i 

y is a coalition structure if all coalitions from ^ are disjoint and U !^ = &• 

Theorem 7.3. Let m be a market. Let y <= .5f c [^] where 5" is a coalition 
structure in which each coalition has at least one player with monotonous preference. 
Let (x, p) be an equilibrium of m. Then there exists x such that (x, p) is a strong equi­
librium of m. 



Proof. Set 

* = £«'-!*'. 
Q fi 

Suppose that z -t 0 as otherwise there is nothing to prove. Let 

<? = {Kpj = 1,2,..., r}. 

If p'z > 0, we set 

Ej = sup {e : p'(£x' + ez) ^ p' TV} , ; = 1, ..., r . 
Kj K; 

If p'z = 0, we set 

1 . 3 - 1 • 

Let kj e Kj be the mentioned player whose preference is monotonous; we set 

x' = x' for i #= kj, ; = 1, ..., r , 

xtj' = x*J' + 8j-z, j = 1, ..., r . 

Then 

Xx ! = Yx ; + z X £; = 5 V => x e m(„) , 
« fi j = i fi 

V^'x' _ Y j V for K e 6? => x e fif for X e l 
K K 

and x ^ x for the monotonity of iikj, j = 1, ..., r. So (x, j?) is a strong equilibrium 
of m. 

Remark 7.1. Suppose, in addition, that for every j = 1, 2, ..., r there exists K * _ K, 
such that |X*|/|Kj-| =? ^(JKJ) and ^ ; , ieKj, are strictly monotonous. Then every 
equilibrium is already a strong equilibrium. 

Theorem 7.4. Let m be a market. Let X fulfil condition 

(7.4) VS e X 3S l5 ..., Sr e Jf, S, S1 ; ..., S, are mutually disjoint, S u S t u S2 u . . . 
... u Sr = Q and 3S* <= S, |S*|/|S| ^ fc(S) such that _:„ i e S*, are positively 
monotonous. 

Then every optimum of m is also an equilibrium of m. 

Proof. If (x, p) is an optimum and it is not equilibrium then there exists S e Jf 
such that x £ 2?f, it means 

(7.4.1) ZP'X1 > YP'a1 • 



Let Si, S2, ..., Sr e J f fulfil (7.4). Since 

x E m(Q) => £ * ' ^ £ a ' => p' ___xl ^ p' £ a ; 

o n Q A 

then also 

(7.4.2) Yp'x'' + Vp 'x' + .. . + lip'x' S ZP'a' + V>'a'' + ... + V> ' a ; . 
S Si Sr S Si sr 

It follows from (7.4.1) and (7.4.2) that there exists S, = K among S1( ..., Sr such 
that 

(7.4.3) £p'3c' < Vj>V . 
K K 

Let K* = {ieK: >:( positively monotonous} then, according to (7.4), | X * | / | K | ^ 
^ h(K). We choose z > 0 such that 

p'z = £ p V - £ p ' x ' > 0 . 
K K 

Set 

xl = 33' for i $ K* , 

x' = xl + - -z for ieK*. 
\K*\ 

Then obviously xeBK, x' >-(3c' for ieK*, and it contradicts to the property of 
optimum (3c, p). Hence (3c, p) is an equilibrium. 

Theorem 7.5. Let m, and m2 be markets, 

mx = (Q, #>, Rm
+, (>j()i6f2) (a%a, lH), 

m2 = (Q, X, Rm
+, (>:()teOJ (a')feQ, / i2) . 

Let #e - {£2} include only mutually disjoint coalitions, X c [ j f ] , h2(S) ^ hx(S) 
for S e Jf n J5f and h2(S) ^ max {/^(Si), • • •, !!i(Sr)} for S e X, S = Sx u . . . u Sr, 
S;e^f, i = 1, ..., r. Further, we suppose that for all Se JT is |S*|/|S| > hx(S) 
where 

S* = {i e S : >:,• is positively monotonous} . 

Then every optimum, resp. equilibrium, of mt is the one of m2. 

Proof. Let (x, p) be an optimum of m1. If (x, p) is no optimum of m2 then there 
exists KeJf and y e BK so that yK >: xK and |X(y >- 3c)|/|K| ^ h2(K), where 
K(y>x) = {ieK-.y'^iX1}. Let K . , . . . , Kre tf such that K = K 1 u . . . u X „ 
Kj * O. Then: 



348 (i) Either y e BKi, i - 1,..., r. Then there exists Kj among Kt, ...,Kr such that 
\Kj(y > x)\j\Kj\ <t ht(Kj) for h2(K) = max {ht(Kt),..„ h2(Kr)} and 'it contradicts 
to the assumption that (x, p) is optimum ofmt. 

(ii) Or there exists Kte {Kt>..., Kr} such that y $ BKi; y £ B
K => 3Kj e 

e{Ku ...,Kr} such that 

Z/jy < EP'0 ' • 
Kj Kj 

Let us choose z > 0, z e R+ such that 

p'z = 'Zp'a' - EPV 
Kj KJ 

and set 

y' = y1 for i ̂ K* = {i eK ; : >:; positively monotonous} , 

y' = y + { ~ z for ieK*. 

Obviously j> e B?', j?K > xK and (jRT/j? >- x)\l\Kj\ = hi(K,) and it is a contradiction 
with properties of the optimum (x, p). Hence, (x, p) is an optimum of m2. In the 
same way we may prove the statement for equilibrium. 

Remark 7.2. Let us denote 

tR(m) = {x : 3p e 3P, (x, p) is an equilibrium of m} , 

D(m) = {x : 3p e 9, (x, p) is an optimum of m} . 

We know that 9?(m) <= D(m) c G(m) and 5R(m) = £>(m) under relatively weak 
assumptions. But, if the set of players is finite then C(m) #= <S,(m) even if m fulfills 
much stronger assumptions. We testify it by the following example. 

Q = {1, 2} , Jf = exp £2 , a1 = Z'1') , a2 = (2 

ut,u2 are utility functions corresponding to >.t, >2, 

Ut(x) = M2(x) = Xl . X 2 . 

We can easily verify that _tj, i «= 1, 2, are positively monotonous and convex. Let 
h e ̂ (X) be an arbitrary decision function. Let 

*-N* -й- *-G:ð--«•«-



We show that x e C(m); let, on the contrary, x $ G(m). Then there exists y such that 349 

.V >mx. 

u 1 ( x 1 ) = V 2 - V 2 = 2 = u 1 (a 1 ) , 

« 2 ( x 2 ) = ( 3 - V ) 2 > 2 = « 2 (a 2 ) . 

Consequently, y dominates x only via {1, 2}. Without loss of generality we suppose 
that 

yl >-, xl => y\ . y\ > 2 => y\ + y\ > 2 J2 

and 

y2 ^2x2=>y\y2
2 > (3 - V2)2 => y\ + yl = 2(3 - V - ) . 

Hence, y\ + y\ + y\ + y\ > 2V2 + 2(3 - V2) = 6. It is not possible, as j e 
e m(Q) => y\ + y\ = 3 and y2

2 + y\ S 3. It means that 3c e £(m). Now, we show that 
x <£ £>(m), it means that there exists n o p e f such that (x, p) is an optimum of m. 
We divide the proof into three cases: 

(i) P = (Pi, P2)' e &, Pi = 0 or p2 = 0. 
We choose yt =• 1, y2 > 2 resp. yt> 2,yt = \ for p2 = 0 resp. px ~ 0. We 
may easily verify that 

(*) JPi-Vi + P2y2 = Pia\ + p2a2 = jPj + 2p2 , 

I.V1.V2 > 2 = i/.fx1) , 

what means that (5c, p) is not optimum of m. 

(ii) Pi * 0, i = 1, 2, p2 + i . We set yt = (1 + p2)/2pl5 >>2 - (1 + p2)/2p2. 
Obviously 

JPi-Vi + p2J2 = 1 + P2 = Pia\ + jP2al, 

yiy2 = (i + P2)
2l4Plp2 = (px + 2p2)

2j4PlP2 > 2. 

So the pair (,>., .y2)' fulfills (*), hence (x, p) is not optimum of m. 

(iii) p! = | , p2 = i: 

Let us choose 

y2 = I , .vi = I • 

Then 

P1.V1 + P2y2 = 4 . J + i . 1 = 1 + | = a2p! + a2p2 , 

JWa * i . i - V- > 11 - 6V2 = «2(%
2) 

and it means (x, p) is not optimum of m. 



8. Competitive Equilibrium, Existence of Equilibrium 

Definition 8.1. Let m be a market. Market state (x, p) is called a competitive 
equilibrium if 

1) jcef i i for all i = 1, ..., n, 

2) ye xR™, yl >t xl => y $B\ . 
n 

A competitive equilibrium (x, p) is called strong if 

3) I* ! = LV. 
ft ft 

Theorem 8.1. Let m be a market, let > ; , i e Q, be monotonous and let (x, p) be 
a competitive equilibrium of m. Then there exists x such that (x, p) is a strong com­
petitive equilibrium of m. 

Proof. The proof is analogous to the proof of Theorem 7.3. 

Theorem 8.2. (Existence of competitive equilibrium.) Let g: f, i e Q, be continuous 
and convex. Then there exists a competitive equilibrium of m. Moreover, if >h ie Q, 
are monotonous, then there exists a strong competitive equilibrium of m. 

Proof. See [1], page 54, Theorem 4.8. 

Theorem 8.3. Let m be a market. Let ">: t be positively monotonous for all i e Q. 
Then every (strong) competitive equilibrium of m is a (strong) equilibrium of m. 

Proof. Let (x, p) be a (strong) competitive equilibrium. Suppose that (x, p) is not 
(strong) equilibrium. Then there exists Ke Jf, y e BK such that 

yK >i xK and \K(y > x)\j\K\ = h(K) . 

According to Definition of competitive equilibrium we have 

(8.3.1) p'y' > p'a1, i e K(y > x). 

Then there exists j eK such that p'y3 < p'aJ for y e BK and (8.3.1). Let us choose 
z > 0 such that p'z = p'aJ — p'y1 > 0 and set yJ = yJ + z. Obviously, p'yJ = p'aJ 

and yJ >j xJ what contradicts to the assumption that (x, p) is competitive equi­
librium. 

Previous Theorems 8.2 and 8.3 imply the following one. 

Theorem 8.4. (Existence of equilibrium) Let m be a market. Let >.t, i e Q, be 
continuous, convex and positively monotonous. Then there exists an equilibrium 



of m. In addition, if _tj, i e Q, are monotonous then there exists a strong equilibrium 351 
of m. 

CHAPTER III: APPLICATION OF GAME THEORY 
IN MARKET THEORY 

Let m = (Q, jf, R™, (^ . ) f e n , (a')ieQ, h) be a cooperative market defined in Chapter 
II. In this chapter we shall suppose that _:,. are continuous for all i e Q. Let u\ i e Q, 
be continuous utility functions corresponding to ^ ; , ie Q. Without loss of generality 
we assume that 

M'(0) = 0 for all i e f i . 

Let M( .) be the mapping from x R™ to R", 
S3 

u:(x%Q^[u\xl),u\x2),...,u"(x")]. 
We denote 

u(M) = {x e R" : 3x e M, u(x) = x} for M c x R+ , 
n 

u'\L) = {x e xRl : u(x) e L) for L _ R", 
n 

and M(m(0)) = R". 

Further, M' is called nonnegative if u\x) = 0 for x e R + . 

9. Cooperative Game Corresponding to the Market 

Lemma 9.1. Let M' be concave and nonnegative for all i e Q. Then u(m(K)) are 
closed and convex for all K e Jf. 

Proof. Closeness: Let xv e u(m(K)), v = 1, 2 , . . . , xv, converge to xeR". Let 
xv 6 m(K), u(xv) = xv. m(K) is compact and, hence, we can choose a subsequence 
from {x, ,}^! which converges to a certain x e m(K). Obviously M(X) = x, so x e 
eu(m(K)). 

Convexity: Let x, y e u(m(K)), 0 g a, /? g 1, a + jS = 1. Let x, y e m(K), M(X) = 
= x, M(J') = y. ax + ^ j ; e m(X) and M(ax + fiy) = a M(X) + /? M(J^) = ax + py for 
concavity of u\ i e O. It follows from continuity of u\ ie Q that there exists such z 
that 0 g z1' ^ (ax + fiyf and w'̂ z*) = (ax + fry)1, i e Q. Obviously z £ m(K), 
u(z) = ax + [>y. Hence, ax + fly e u(m(K)). 

Definition 9.1. Let K e JT. Then we denote 

v(K) = {x e R" : 3y e u(m(K)) such that xK S }'K} • 

The next statements follow from Lemma 9.1. 



Theorem 9.1. Let u\ i e Q, be concave and non-negative. Then the triple (Q, Jf, v), 
where v is defined above, is a characteristic function and v' = u'(al) for all 

iel(m) = {i e Q: {i} e J f} . 

Lemma 9.2. Let u' be concave and non-negative for all i e Q. Then H = u(m(Q)) 
is convex and compact. 

Definition 9.2. Cooperative game Gm = (Q, Jf, v, H, h), where v and H are defined 
by Definition 9.1 and Lemma 9.2, is called the game corresponding to the market m. 

It is easy to verify the following theorem. 

Theorem 9.2. Let u\ ie Q, be concave and non-negative. Then Gm is guaranted 
and ordinary. If u\ i e Q, are monotonous, in addition, then H fulfills condition (7) 
from Chapter I. 

10. Connection between Games and Markets 

Definition 10.1. Let m be a cooperative market. Then we denote 

Am = {xe m(Q) : x1' >t a1 for all iel(m)} , 

Em = {xem(Q): ~l(3y : y> x, \Q(y > X)\/\Q\ ^ h(Q)} , 
Am = 4n n Em> ^m = m(Q) • 

Am, resp. £m , are called the sets of individually, resp. group, rational distributions 
of goods. 

Next theorem follows from Definition 10.1 immediately. 

Theorem 10.1. Let u' be concave and non-negative for all i e Q. Let A, E be the 
sets of individually and group rational payments distributions of the game Gm, 
E = H,A = EnA. Then 

M(Em) = E, u(Em) = E , u(Am) = A , u(Am) = A . 

u~1(E)nEm = Em, u~1(E)nEm= Em, 

u-\A)nEm= Am, u-\A)nEm= Am. 

Theorem 10.2. Let u\ i e Q, be concave and non-negative, let P c m(Q). Then 

u(^(P)) = ^(u(P)). 

Proof. We prove, first, that 

u((£m(P)) G eGm(M(P)). 

Let x c u(dm(P)) and let x £ £Gm(u(P)). Then there exists y e u(P) such that y >Gm x. 
Let x e <£m(P), y e P be such that u(x) = x and u(y) = y. Obviously y >m x, and 



it contradicts to x e Cm(P). Hence, x e &Gm(u(P)). Now, we prove that 

eG-(H(P))c:u(Gm(P)) . 

Let x e GGm(u(P)), and x e P, u(x) = x. Then x e em(P), otherwise it leads to con­
tradiction with x e <&Gm(u(P)). Hence x e ..(^(P)). 

Theorem 10.3. Let u;, i e £2, be concave and non-negative, let P c m(O). Then 

. V»(P) = Pnu-1(<£G»(u(P))). 

Proof. The inclusion 

( E ^ c P n u - 1 ^ ? ) ) ) 

follows from Theorem 10.2. It remains, therefore, to prove only the inclusion 

P n u-'^^P))) c £m(P) . 

Let i i e P n «_1(GGm(u(P))) and let x £ £m(P). Then there exists y e P , such that 
y >-mx. Let «(x) = x, u(j5) = _y. Then y >Gmx, but it is a contradiction with 
x e <S,Gm(u(P)). Hence, x e C£m(P). 

From Theorems 10.1 and 10.3 the next statement follows. 

Corollary 10.L Let u' be concave and non-negative for all i e Q. Then we have 

em(Em) = £m n «--((£*-(£)) , em(Em) = £m n u--(C°-(E)) , 

(£m(Am) = £m n u - ^ d ^ A " ) ) , Cm(Am) = £m n i T 1 ^ - ^ ) ) . 

Theorem 10.4. Let u' be concave and non-negative for all i e Q. Then Am 4= 0 
and Gm(Im) = <Xm(Am). 

Proof. The assertion follows from the foregoing corollary and from Theorem 3.3. 

Definition 10.2. Let M c x j?" . We denote 
fl 

J(M) = {x e M : ~](3y e M such that j> >- x)} . 

Theorem 10.5. Let u' be concave and monotonous. Let H b e a polyhedron. Then 

Cm(£m) = Gm(/(£m)) = Gm(Am) = < * W J ) • 

Proof. The assertion follows from Corollary 10.1 and from Theorem 3.9. 

Theorem 10.6. Let u' be concave and monotonous for all i e Q. Let m fulfil the 
condition 

\Q\ h(Q) > max \S\ . 
X-{Q} 



Then 

Gm(j(Em)) = £m(Em) and 67"(J(Am)) = e m (A m ) . 

Proof. The statement follows from Corollary 10.1 and from Theorem 3.H. 

Remark 10.1. Without the assumption of concavity of utility functions, v(K) may 

be nonconvex. Let us consider the following example. 

Q = {1,2} , X = exp Q, u^x) = u2(x) = (x,)2 . 

Let K)}-{(K)}<-

But, it is easy to verify that there exists no z e m(Q) such that 

Hence, v(Q) is not convex. 

•«-(£ 
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