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KYBERNETIKA — VOLUME £8 (1992), NUMBER 3, PAGES 213-226

NONNEGATIVE MULTIVARIATE AR(1) PROCESSES

Jiki ANDEL

Conditions for nonnegativity of a p-dimensional AR(1) process X; = UX,_; + e; are investigated
in the paper. If all the elements of the matrix U are nonnegative, a new method for estimating U
is proposed. It is proved that the estimators are strongly consistent. Small-sample properties of the
estimators are illustrated in a simulation study.

1. INTRODUCTION

A one-dimensional AR(1) process is given by X, = 86X,y + ¢, where e, is a white
noise and b € (—1,1). Assume that b € [0,1) and that e, are nonnegative independent
identically distributed random variables with a distribution function F. Then, of course,
X, > 0for all t. Let a realization X, ..., X, be given. Then Bell and Smith [9] proved
that
b = min X,/ X,
2<t<n

is a strongly consistent estimator for 4 if and only if
F(d)—-F(e) <1

lolds for all 0 < ¢ < d < co. Andél [2] derived the distribution of * when e, have an
exponential distribution. Some moments of 5* in this case were calculated by Andél and
Zviéra {8]. Turkman [11] presents a Bayesian analysis of the model. A generalization to
the autoregressive processes of a higher order can be féund in [5]. This method was also
applied to nonlinear AR process (see [4] and [6]).

In the present paper we deal with multivariate AR(1) processes. First, we derive
conditions under which the process is nonnegative. Second, we propose a method for
estimating parameters of a nonnegative AR(1) process. It is proved that the estimators
are strongly consistent.

2. PRELIMINARIES
Let X, = (Xu,..., Xyp)' be a p-dimensional process given by

X, =UX\ 1 +e (2.1)
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where U = (u;;) is a p X p matrix and e; = (eq, ... ,et,,)' are random vectors. We make
the following assumptions.

Al. All the roots of the matrix U lie inside the unit circle.

A2. The random vectors e, are independent identically distributed with a distribution
function F.

A3. The random vectors e; have finite second moments.
Our assumptions ensure that there exists a stationary solution X, of the equation
(2.1) and that it can be written in the form
Xi=e+Ue_;+Ue;z+... (2.2)

where the series converges in the quadratic mean. If we denote U* = (ug-‘)), then (2.2)
can be also expressed as

o P
Xii= e+ Z Z u.(f) €k t=1,...,p). (2.3)
k=1 j=1

Let us remark that under Al - A3 we have
Z z Z 'uf]k)l < 0. (2.4)
k i K

We denote p; =EXy, t=1,...,p.

3. CONDITIONS FOR NONNEGATIVITY

If all the elements u;; of the matrix U are nonnegative and all the components ey are
also nonnegative, then it is clear that X;; > 0 for all ¢ and 7. On the other hand, these
sufficient conditions for nonnegativity of X are not necessary (cf. Remarks 3.3 and
3.4). It is possible to generalize the results concerning one-dimensional case introduced
in Lemma 10.2 in (3] to multidimensional models.

Theorem 3.1. Assume that the distribution of e, has the property that

P(ZC(C:;<E) >0 . (3.1)

i

holds for every € > 0 and for every reals ci,...,c,. If there exist numbers ¢ > 1 and
¢ > 0 such that
P (Z ug‘) e < ——c) >0 (3.2)
7
for an ¢ € {1,...,p}, then with probability 1 there exist infinitely many subscripts ¢ such

that X, < 0.
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Proof. For m > ¢ introduce the events

m P
Qem1 = {w: en+zzuﬁf’e¢_,‘,]-<—§},

k=1 j=1
© P
. (k) c
Qimz = {w, Z Zuij €k, < 30
k=m+1 j=1

From A3 and (2.4) we get that P (Qumz) — 1 a5 m — co. Moreover, P (Qunz) does not
depend on ¢. Denote M,,, = {1,2,...,9—1, ¢+ 1,...,m} for m > q. We have

P(Qum1) 2 T
c c
i i

P (e,,- < ﬁ) H P ( j ug‘) et—kj < i;) .

kEMing

P (Z u'(j-') €1—gj < ——c) > 0.
i

Let wy, be the smallest integer such that wy, 7., > 1. Introduce the subsets Sg42, Sg43,- - -

of positive integers in the following way. Let Sy+2 contain the elements of we+1 (g+ 2)-

tuples (1,...,q+2), (¢+3,...,2¢+4), ..., (1 + (W2 ~ 1) (g +2),...,2+ g+ (wg41 = 1)

(g +2)). Let 5,43 contain the elements of wy42 (g + 3)-tuples starting with
Btg+(werr—1) (g+2),...,5+2¢ 4 (wpya — 1) (g +2))

and so on. The last terms of (g + 2)-tuples, (g + 3)-tuples etc. denote t1, t3,.... If

t, € S, then we use the decomposition

Xipi=Us + Z,,

where

Tm

i

where
m-1 p
— . (k)
U = ewit Y D ouli ens,
k=1 j=1
o p
(k)
2, = Z E“ij Etrkyje
k=m j=1
Denote
Ar = Qtom-11, B, = Qtm-1,2-

The events A;, A,,... are independent,

SPA)Z Y wn = oo,

m=qg+1
P(B,;) = 1 as r — oo and the events A,, B, are independent. Theorem 8.1 yields that
with probability 1 infinitely many events A, N B, occur and thus also infinitely many
events { Xy < 0}. a0
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Corollary 3.2. Let e,...,¢y be independent nonnegative random variables. As-
sume that Pley <¢e) > Dforall i = 1,...,p and for every € > 0. Further assume
that Pley =0) < 1 fori = 1,...,p. Then the AR{1) process X, given by (2.1) has
all its components nonnegative if and only il all the elements u;; of the matrix U are
nonnegative,

Proof. Obviously, if all u;; are nonnegative, then X, has only nonnegative compo-
nents. Now, assume that there exists a pair (i, ) such that u; < 0. Our assumptions
ensure that (3.1) is fulfilled. Since e;; are nonnegative and P (e;; = 0) < 1, there exists
¢ > 0 such that

P (uy; €45 < —2¢) > 0.
Then we have

P (Z thipy € < _C) z P(“ijeij < —2¢) P (z Ui Cmy, < C) =1,

s
a}

Remark 3.3. [ all the elements e,; are nonnegative, then all Xy; can be nonnegative

even if some elements u;; of the matrix U are negative.

We can demonstrate this fact by the following example. Let p = 2, ey > 0 and
ey = €. Let ¢ and u be numbers such that 0 < ¢ < w and u 4 ¢ < 1, Consider the

matrix
u —cC
U= .
=C u

The roots of U are Az = u £ ¢, and thus {A] < 1, [A] < 1. Since

w_ L wif 1 =1\, Ll mfld
U'=zlute) (—1 1)*2( ) (11)

and e; = (en, en )’, we have
€t—n1
Uler, =(u—q)* il 1
gl
Thus U™ e,y is a random vector with nonnegative components. Taking into account

(2.2) we can see that the same is true for X,.

Remark 3.4. If all the elements w,; of the matrix U are positive, then all the
variables Xy can be positive cven if a component of the random vector e, is negative.

Choose again p =2, Let 0 < a < ey < band define ey = -:?u”. Let e € (0.%).

Consider the matrix
U=("“)
{ Y -
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The roots of U are A\; =0, A; = 2¢. Both of them lie inside the unit circle. Since

U = gt (i ;) w1

we get
Ute,, = 2" 2t ( €ren,1 ) , n>1,
€t_n,1
From (2.2) we have
oo
Xo = en+ Z 2E et €1—nly

n=1

g 1 = 7 I
Xig = _EEtI+Z2L 2" ermna-

n=1
It is clear that X;; > 0. If we take ¢ = 0.4, a =1, b =2, then

1 0
X >—§b+22"‘zc"a=0.

n=1

4. AUXILIARY RESULTS FOR ESTIMATION
Till the end of this paper we assume that not only Al - A3, but also the following
assumptions Bl — B4 are satisfied.
B1. All the elements u;; of the matrix-U are nonnegative.
B2. Random vectors e; have only nonnegative components.
B3. Pen < z,...,ep < z)>0forall z>0.
B4. There exists a number v > 0 such that for every 7 > 0 and for each 7 € {1,...,p}

Plea <7y yict <1y €0 > 7, €rip1 <7h.nvseyp <77) > 0.

It was already pointed out that Al - A3, B, B2 ensure nonnegativity of all variables

Xii.

Remark 4.1. Let p = 2. If Bl holds, then U has only real roots. Really, an easy

calculation gives

U= A1) = A% — (ugy + ga) A+ un uge — Upy Uy

and thus the roots are

}

1 .
Aiz = 3 {Un +up [(Un — ug)’ + dury "21]
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Remark 4.2. The assumptions B3 and B4 are independent. This can be shown in
an example with p = 2. If P (en =0, erp = 0) = 1, then B3 is fulfilled but B4 does not
hold. If P(ey =0,en=5) = P (en =5, en =0) = %, then B3 is not fulfilled but B4
holds. :

Remark 4.3. Consider the case p = 2. Let £ be i.i.d. random variables with
exponential distribution Ez()\) where i = 1,2,3 and t = ...,~1,0,1,.... Ifen =
& + &3, ey = 2 + €3, then the condition B4 is fulfilled, since

Pla+ba<néntbs>)2
P (ftl <Lta<l by >’7) =
2 2 2
Plea<]) P(ea<]) Plea>m>0
for every n > 0, v > 0. If ey = u + €, €2 = &n, then P (ba+ & <n,bu>7) =0
for every 0 < 7 < <, and thus B4 is not fulfilled.

\2

1l

Theorem 4.4. Define
ufy = ;gisﬂn(xu/xz-m)

fori,j =1,...,p. Then uf; — u;; a.s. as n — oo for each i, j € {1,...,p}
Proof. First, consider the case i = j = 1. Since

’
Xa=) wgXi1s+en,
B=1

14
0 .
ul, = u min g ug Xi—18+ € X1,
11 n+ zgtsn( 18 At-1,8 :1) /

=2

we obtain

Since Xi-11 2 €¢-1,1, it is sufficient to prove that

3
mix Xi- e er11 — 0 a.s.
2931" (;um t 1,ﬁ+f’n> [e1

Let € > 0 be a given number. Consider the events

Q= {w : (Zulﬂxt—l,ﬁ + fin) [ew11 < 5} :

B=2
Using (2.3) we can write

P m P
(k)
Q = {w: en + 2 Ui <e,-w,+ E Zum €t~k,r) +
B=2 k=2 r=1

P o

+ Z g Z i ”gi] Crkyr <E 8:—1,1} .

B=2 k=m+1 r=1
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Denote A = 2p[1 + (p — 1) (m — 1)]. It is clear that Q¢ D Qum1 N Qemz Where

Qe = {w: er1n>7, eq <ey/A, wmpeiyp <eyfAfor B=2,....p;
umug’?e:_k,r <ey/Afor =2,...,p, k=2,...,m, 1= 1v---vP}~

Qunz = {w: Zim <ev/2}

=Y s 30 Y uecchr.

p=2 k=m+1 r=1

with

From (2.4) we can see that there exists A > 0 such that

0<ul <A foralli,j k.

Therefore P (Qum1) > T where
€
Tm = P(ea <ey/A) P (e,_m >, eerp < A_j\ for B = 2,...,p) .

ey m—1
. [P (€z~2,r < Ve forr = 1,..‘,p)J
Qur assumptions imply that neither P (Q¢m1) nor m,, depend on t. The value of v can

be chosen in such a way that 7, > 0.
It is easy to show that E Z,,, — 0 and var Z,, — 0 as m — oo for every fixed ¢. Thus

P (Q¢m2) — 1. Moreover, P (Qm2) also does not depend on t.
Let w,, be the smallest integer such that wy, 7, > 1 (m = 2,3,...). Let the set 5;

contain elements of j; triples
(1,2,3), ..., (32 - 2, 352 — 1, 372),,
let S3 contain elements of j3 four-tuples
(3j2+1,372+2,372+3,352+4), ..., 32+ 455 =3, ..., 3j2+ 4j3)

and so on. The last numbers of the triples, four-tuples etc. denote t;,t3,.... If {; € Sp,
then we define
Ai = Qum1, B; = Qtm2-

The events Ay, A,,. .. are independent,

iP(A,') > iwm Tm = 00,

i=1 m=2
events A; and B; are independent for each ¢, and P (B;) — 1 as ¢ — oo. It follows from
Theorem 8.1 that with probability 1 infinitely many events A, N B; occur, and thus also

infinitely many events Q.
o

The proof for other estimators wf; is quite similar. a]
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Although u?j are strongly consistent estimators for u;;, our experience from similar
models (see [5]) leads to the suspicion that the convergence uf; — u;j a.s. as n — oo
is too slow and uf cannot be used in practical situations as reasonable estimators.

Simulations really confirmed this fact. In the next section we propose other estimators,
which are also strongly consistent, but which are good for moderate values of n.

5. ESTIMATING PARAMETERS

To simplify the notation and the proofs, we describe the estimating procedure in this
section only in the case p = 2. First, we introduce a motivation for our estimators. Let
€u1, € be independent random variables such that e;; ~ Ez (A1), ez ~ Ex (A;), where
Ex (A) denotes the exponential distribution with the density f(z) = A= e=*/* for = > 0.
Then the conditional likelihood of X,,...,X,, given Xy, is

/\f"“ exp {— Z (Xa —wrn Xec11 — 12 Xim12) /)\1} .

t=2
n
)\;nH exp {* Z (Xn = Un X¢~1,x — Uz Xz~1,2) //\2}
t=2
for
Xo —un Xyoig = up X2 20, (5.1)
Xig — s Xeiy —upn Xima2 20 (5.2)

(t = 2,...,n). The conditional likelihood reaches its maximum for such uy; and ujp
which maximize

Unzxtvm +u122Xt-1,2 (5.3)
=2 =2

under the conditions (5.1) with u;7 > 0, 133 > 0, and for such uy and wuy which
maximize

" "
u21zxz—1,1 +u222:X:-1,2 (5.4)
=2 t=2 .
under the conditions (5.2) with war > 0, ugy > 0. Define

. n n
0 _ . -1 g ) -1
Xnu=n Z Xa, Xa=n Z Xe.
(=1 t=1

. . . A - - .
I n is large then one can expect that the maximization of (5.3) and (5.4) is nearly the

™ L S, - T 0 ’ ' - .
same as the maximization of X2 wi -+ X% g, and X2 ug + X2, uze, respectively.
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Theorem 5.1. Let u}j, u}, be a solution of the linear program LP(n)
max (X9 v + X2, via) (5.5)
under conditions
Xy —va Xicig —v2Xe-1220 0 (6=2,...,n)

with v;; 2 0, viz >0, for ¢ = 1,2. Then uf; = u;; a.s. forall 4, j =1,2 as n — oo.
Proof. Let i = 1. Assume that u;; > 0, w1z > 0. Define

My ={(vi,v12) : v11 20,012 20, X —vun Xemrn —v12 Xyoq2 2 0fort =2,.. ., n}.

Let M be the oblong with vertices (0,0), (u11,0), (u11,u12), (0,u12). It is clear that
My D Mj D ... First we prove that M, — M a.s. We have

}% =un+ 'fiﬁun + %‘1,1. (5.6)
Uy 77—% (431
Fig. 1.
Theorem 4.4 implies that there exists a sequence ¢, such that
Xt,l /Xl,-l,l — Uy a.s.
In view of (5.6) we can see that
Xo<12/ Xtp-10 — un a.s. (5.7)

Since Xa

=u

-1
PP A A
using (5.7) we obtain
X1/ Xym1pg — a.s.
In this case the straight line p in Figure 1 approaches the straight line ¢;. Similarly we
can prove that withl probability 1 there exists a sequence of straight lines p converging
to ¢s.
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An elementary calculation gives that p intersects ¢; at the point

€11
Ui, Uiz + X
1-1,2

and thus no straight line p intersects M.
Consider the linear program LP(n) (5.5) for 7+ = 1. It concerns the problem

o 0
max (Xm v+ X5, 1’12)

on M,. Since M,, = M and X% — p1, X% — pz a.s. (see [10], Chap. IV.2), the

7

solutions (u},,u},) of LP(n) converge a.s. to a solution of the linear program LP
max (g vn + f2 12) (5.8)
on M. It is clear that the maximum (5.8) on M is reached at the point (uqy, u1z). Thus

we have proved that ufy — uyy, ujy — ugy a.s.

If uyy = 0 and/or uyy = 0, the proof is similar. The case i = 2 is quite analogous. O

6. A SIMULATION STUDY
We simulated the two-dimensional AR(1) process
X =UX+e
0.7 0.3
U= ( 0.1 0.5 )

The roots of U are A; = 0.8, A, = 0.4. The white noise e; = (en, €)' was constructed
in such a way that

with

en =l én+ o, ey =lbnt+ s

where £y, €y, €3 were nonnegative constants and &, were nonnegative i.i.d. variables.
Three distributions of ¢,; were examined:
(i) exponential distribution Ez (1);
(ii) absolutely normal distribution AN (0,1); i.e. & = |Usl, where Uy ~ N(0,1);
(iii) rectangular distribution R(0,1) with the density f(z) =1 for = € (0,1).
The results of simulations are swmmarized in Tables 1-5. In each case 100 simulations

were performed. The tables contain averages of estimates of the elements of the matrix
U. The empirical standard deviations are introduced in parentheses.
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Table 1
n=20, b =l=63=1, & ~Ex(1)
0.70  0.37
(0.10) (0.22)

0.13 050
(0.10) (0.20)

Table 3
n=20, 4L =8=40=1, &i ~ R(0,1)
0.68 0.44
(0.20) (0.41)

0.19 0.43
(0.15) (0.29)

223

Table 2
n=20, & =l =f3=1, {u ~ AN (0.1)
[ 071 0.37
(0.15) (0.30)
0.17 0.46
| (0.13) (0.26)

Table 4
n=20,=b=1, =0, &~ Fz(l)

[ 070 033
(0.05) (0.10)
011 051

| (0.06) (0.12)

Table 5

n=50, {1 =L ="f3=1, &~ Ex(1)

071 032
(0.07) (0.14)
0.1 051

(0.06) (0.12)

A simulation of length n = 50 with {; = €, = €3 = 1 and € ~ Ez(1) is depicted in
Figure 2.

Simlation

Mt
- xum

Fig. 2.

The estimate of the matrix U for this simulation is

0.74 0.26
0.11 053 /°
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The experience from our simulations can be briefly summarized as follows. Tables 1 -
4 show that the estimates are better when the distribution of residuals is nearer to the
exponential one. This is not surprising, since our method was motivated by the maximum
likelihood estimators for exponential distribution. The best results among Tables 1 ~ 4
are contained in Table 4. The same quality in the case &; = £, = {3 = 1, &; ~ Fz(1),
is reached only when the length of simulation is enlarged from n = 20 to n = 50 (see
Table 5).

Let us remark that the least squares estimates of the elements of the matrix U for the
simulation depicted in Figure 2 are

0.53 0.41

0.05 048 /-
(Of course, first of all the average of the both components of the series were substracted.)
The corresponding asymptotic standard deviations are

0.14 0.17
0.16 0.19 /°
In this case the estimates obtained by the new method are better. Also the empirical

standard deviations introduced in Table 5 are smaller than the asymptotic standard
deviations of the least squares estimates.

7. ANALYSIS OF REAL DATA

Andél [1] presents some hydrological data about the small river Volyika in Czechoslo-
vakia. The mean hourly discharges of the Volyiika river (in m?/s) and hourly rainfall in
the Volyiika basin were measured for three days. The data are graphically presented in
Figure 3. .

Denote X, the discharges and Xy, the rainfall (£ = 1,...,72). The averages are

T2 72
T=(1/72) 3 Xa =3178, Ty =(1/12) Y X =0.36
t=1

t=1

and the empirical variances of the components are
st = 207.59, sz =0.53.
The least squares estimates of the autoregressive parameters are
( 0.97 1.08 )
0.00 0.76

and their asymptotic standard deviations are

0.025 0.498
0.004 0.075 /°
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The residual variance matrix is

9.37 0.02
0.02 021 /-

- iy
—— nirhilul
S — o
» : H
ol Py :
[ /\ E
sl / : ]
N 1
] ]
H n i I . n

Fig. 3.

Applying our new method we get the estimate of the matrix U

0.87 1.68
0.00 0.00 /°

The residual variance of the first component is in this case 11.80.

APPENDIX

Theorem 8.1. Let two sequences of events A;, Ag,---

following conditions:

(i) The events Ay, Aj,... are independent.

(ii) The events A; and B; are independent for every i = 1,2,-- -

(iil) TP (As) = oo,

and By, By,...

225

satisfy the
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(iv) P(B;) = 1 as i — co.

Then with probability one infinitely many events C; = A; N B; occur.

Proof. See [7). . [u]

(Received Aprii 25, 1991.)
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