Kybernetika

Jan Mare$
A note on Glushkov's algorithm of the synthesis of finite automata

Kybernetika, Vol. 8 (1972), No. 4, (289)--296

Persistent URL: http://dml.cz/dmlcz/124393

Terms of use:

© Institute of Information Theory and Automation AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124393
http://project.dml.cz

KYBERNETIKA — VOLUME 8 (1972), NUMBER 4

A Note on Glushkov’s Algorithm of the
Synthesis of Finite Automata

JAN MARES

In this paper the problem of the optimalization of one step in the synthesis of finite automata
is solved.

Let L be a finite language. Under the synthesis we understand here finding the
transition function of a (finite) Moore automaton I that represents the language L
by some subset of the set of its inner states. An algorithm of this synthesis is given
in [1] For concreteness we have in mind the algorithm mentioned on pages 101 to
102, rules 1 to 4. In what follows, a knowledge of the algorithm is supposed.

Let Z be a finite alphabet, i.c. a finite nonempty set of arbitrary symbols. Denote
by X* the set of all strings over X. Consider the set & of all such regular expressions
over £ which involve only operations sum (denoted by the symbol +) and catenation
(denoted by juxtaposition) — except symbols belonging to X and parentheses, of
course. Every such a regular expression will be referred to as “‘expression™.

Each expression represents some finite language in the following sense: We say
that an expression R represents a language L iff |R| = L, where the operation |...|
is defined as follows (R,, R, are expressions):

|¢} = {«} for each aeX*,
IR, + Ry = |R,| U |Ry|,

[R(Ry| = {aB|ae|R,| A Be|Ry|}.

Every finite language is, of course, represented by many various expressions yield-
ing, after applying the algorithm to them, automata with various numbers of states.
Our effort will consist in searching for such an expression which yields an automaton
A with as few states as possible. However, this automaton % is not “absolutely”
minimal (in accordance with [17], p. 135). On the other hand, there are algorithms
that, for finite languages, construct automata which are minimal; see e.g. [3] Thus

290

the automaton A is ““minimal’” only in the set of all automata which can be obtained
by the mentioned Glushkov's algorithm.

We confine ourselves (obviously without loss of generality) to languages not con-
taining the empty string.

Let R be an cxpression. Denote by 2U(R) the automaton that is obtained by ap-
plying the algorithm to the expression R. Furthermore denote by o(R) the number of
states of U(R). Finally, if L is a language, put

ofl) = {Re§||R] = L}.
The Formulation of the task:

To find, for an arbitrary finite language L, its minimal form, i.e. such an expression

R, € o(L) that
6(Ry) = Min 6(R) .
Rep(L)

Assume R, Se §. In what follows, by R = S we denote the fact that |R| = |S].
On the other hand, under the identity R = S we understand “‘graphical identity”
of R, S, i.e. R and S are equal as strings over the “extended™ alphabet X, containing,
except symbols belonging to X, symbols +, left parenthesis and right parenthesis.

Let R = yy, ..., ¥, be an expression (of course, here the symbols y;, ..., y,, belong
to Xy). Each expression yi¥is1>-.., ¥, Where 1 Sk St <m, voo;¢2 or 3 ¢2,
and at the same time, ¥, ¢ Z or y,4; ¢ Z, we call a subexpression of R.

Assume R, S, Te §. The following identities are true.)

I, R+R=R,

I, R+S)+T=R+(S+T7),
1, (RS)T = R(ST),

I, R+S=S+R,

I, R(S + T) = RS + RT,
s (R+S)T=RT+ ST.

Moreover, these identities are complete in the following sense. If R, Se §, |R| =
= ||, then there is a sequence R,, ..., R,, such that R, = R, R,, = S and for each i,
1=i<m-— 1,R,,, arises from R; by applying identity I, for suitable j, 1 < j < 6.

(We say that Ve § arises from U e § by applying identity I, (1 £ i < 6) iff the
following condition is true:

If we replace the symbols R, S, T of one side of I, by suitable expressions in such
a way that some subexpression U, of U is obtained, then V arises from U by replacing
U, by V,, where V, arose from the other side of I; by the same replacing of R, S, T
as U, did.)

In what follows, we shall consider (without any loss of generality) only such ex-
pressions in which parentheses will be written if and only if this is necessary for the
correct interpretation of the expression (as regards representation). Thus identities
I, and I can be omitted.

Let R be an expression. If it is possible to apply to R I or Iy from left to right,
denote the expression arisen in such a way by "R or by R® respectively. On the other
hand, if it is possible to apply to R several times I, and then (once) I or I from right
to left, denote the expression obtained in such a way by 'R or by R’ respectively;
if this is not possible (i.e. after no multiple application of I, is it possible to apply I5),
put 'R = R or R" = R. (Of course, in general there are many expressions that can be
denoted by ‘R or R'.)

It is easy to show that

(1) if R, SeF and S arises from R by applying 1,, then o(S) = o(R).

If Te &, denote by &(T) the set of all states of the automaton A(T).

Now let R be an expression for which some 'R % R and examine the relation be-
tween the numbers o(R) and ¢('R). Due to (1) we can confine ourselves to that case,
when 'R arises from R by applying I only (from right to left), i.e. by replacing
SP, + SP, by S(P, + P,), where S, P|, P, € §. Write down some places and indices
in R and 'R. Corresponding parts have the forms

&)

S|P |+]|S|Pr.],
I J1 I Jr

®) iSI(JIPx|+1PzI)I

I 2z J2

where I, J,, J, are sets of indices.

Consider, how (2) differs from (3), i.e. R from 'R. Let M or N be the set of all
principal indices in the expression denoted by the first of the second occurrence of S
from left in (2), respectively. Assume M is (at the same time) the set of all principal
indices in the expression denoted by S in (3).

If in (2) me M x,-follows m' el U M and neN x,-follows n" eI u N, clearly
in (3) only m x,,-follows m’ (index n does not occur in (3)). In such a way it is possible
to assign to each m € M an n e N corresponding to it and vice versa (M and N have
the same number of elements). Further J, = J,. There are no other diflerences.

The states of the automata 2(R) and 2A('R) consist of sets of (principal) indices
of R and 'R. The set #('R) is obtained from ¥(R) in such a way that each index
n e N is replaced in all states of (R) by the corresponding index m € M. From two
different states arise two different ones again. Really, an arbitrary state s € #(R)
contains index n if and only if s contains the index m which corresponds to n. Thus
by replacing n by m we get from two different sets of indices two different ones, too.

291

292

Hence
) a('R) = o(R).

We call here every mapping F from Z*to N u {0} (where IV is the set of all positive
integers) a (finite) family iff F(a) > 0 for a finite number of strings o € £* only.
If F, G are families, define:

F =G iff VaeZ*(F(e) = G(a),
(F® G)(2) = F(x) + G(o) forcach aeX*,
(F© G)(x) = F(a) — G(a) foreach aeZX*;

F © G is defined only for such families F, G, for which F(«) = G(«) for each a € Z*,
Clearly, every family F can be characterized by a finite list % of exactly those

strings o € Z* for which F(«) > 0; in this list &£, each a e Z* occurs F(a)-times.

Two lists which differ only in the order of strings are supposed to be identical.

E.g if Fa) = 2, F(B) = 1, F(y) = 3 and F(§) = O for & e Z* — {«, B, 7}, we write
Le=[o, 28,7, 7.7]

In what follows, we speak about % 's themselves as about “families”. Each finite
set A < Z* will be understood as a family that contains each string « € Z* at most
once.

Each expression which is a sum of several nonempty strings (belonging to X*) is
said to be a polynomial.

Obviously, every expression R is unbracketetable to a polynomial, i.e. there is
a sequence R, ..., R, such that

R, =R, Ry =R,

where either R; = "R, or R; = R} (i = 1,..., m — 1) and R,, is a polynomial.

If P is a polynomial, P = o, + ... + &, o;€X* (i =1,...,n)., put ’P’ =
= [, 2, en 0] {||P] is & family.)

Let R be an expression and let F be a family. We write | R|| = F iff R is unbrackete-
table to a polynomial P such that ||P| = F. (Clearly, it is not possible that R is un-
bracketetable to polynomials P, and P, such that [P, | # |P,].)

Each expression R for which |[R|| = [R|is said to be simple.

Lemma. Let R be an arbitrary expression. There is a simple expression S such
that |S| = [R] and o(S) = o(R).

Proof. (In the proof a knowledge of the notion TotF is necessary; see [2] for it.)

Assume R is not simple. By [2] (Theorem 1} there is a sequence Ry, ..., R,, such
that R, = R, R;,, = 'R, and R,, has the form TotF (i = 1,...,m — 1). At the
same time by (4) it is o(R,)) = o(R) and of course |R, || = [R].

Because R is not simple, there is ¥ € I*, @ = x,, ..., x, such that ”R” =|R,| =

=[o, 7, ...]

Clearly, it is sufficient to prove that there is S,, € & such that

o(S) = o(R,) and S, = [Ru]| © [2] .

Assume R, = y,, ..

. ¥a (yi€ Z,); each subexpression T= y,, ..., y;, of R,, such

that y4,_, is the left parenthesis, y,,+, is the right parenthesis and for no i, d; £
< i £ d,, y;is a parenthesis, is called a minimal subexpression of R,,. (Clearly, T'is

a polynomial.)
Suppose that T, ..

., T, are all minimal subexpressions of R,,. If § € £* (possibly

5 = A; A denotes the empty string), and T is a polynomial, T = 6, + ... + J,, put

[T] 18} = [6.9, ..., 3,8] It is not difficult to verify that

IRl

where 74, ..., ne, B -+
=i+t Bno=A

Thus there are r, s, r £ 5,0 < r £ k,0 <5 < k such that

I7.

Now there are two possibilities: either

T.=.o4 X 000 X oy B = X5
and
=+ XX+ 1= Xpey
or
T, = FXp Xyt XX, F
e = Xpqq oo Xp = Xpuq e X,
and 1, £ t,.

Flinel @ [T ns]) = [7.

., B,eX¥ arc suitable strings, k = 0,
b

Assume that S, arises from R, by deletion of the string x,

other change). Clearly S, = |R.] © [«]-
Roy=...(.+ & +xf...

S

xl“ + & +)(+ Xf

[T] @ - @ [T Ine]l @ [Brs -] s

hz0 Put Ty=

... x,, (without any

x,z2 +)

w = e F &GS L) X x])

(upper indices are only for distinguishing the same symbols in various places;

&L ée E*)-

It is obvious that x}, x2, x} have the same “preindex”, namely 0. Denote by 1(x{)

the index of x]. Clearly, S, e #(R,), where S, = ((x}) v o{x}) v ..}

hence

293

294

S:€ #(Ry), Wwhere S, = (((x}) v «(x3) v ...) etc.; finally S, € S(R,), where
Sio= (x}) v xZ) v ...). It is easy to see that no other state s € (R,,) contains
any of the indices «(x3), ..., o(x3).

Assume #(R,)=0uU{s, ..., s}, On{s,...5,}=0 Then &(S,)=
=Qu{s,...5} 0n{§,....5,} = 0 again, where 3, arises from s, by replacing
the couple «{x}) v «(x}) by «(x3) (i = 1, ..., t,). Furthermore, because no s; contains
(xy(i,j =1, ... 1), itis §, = §,foru + v (u, v = 1,..., t,). Hence

o(S,) = a(R,) .

" As follows from the lemma when searching for a minimal form, we can confine
ourselves to simple expressions only. Really, if some R € § that is not simple is a
minimal form, by the lemma there exists such a simple S € § that S is a minimal form
(of the same language), too.

Let P be a polynomial. If we apply several times identity I from right to left to P
(i.e. we form a sequence Py, ..., P,, where P, = P, P,,; = Pi(i=1,..,m — 1)),
it is easy to see that here T in I represents only strings belonging to X* (not arbitrary
expressions).

Now let R be an expression and examine the relation between the numbers o(R)
and o(R’) under the special condition mentioned above, i.e. R’ arises from R by re-
placing P by P’, where P = P+ Pya, PP = (P, + Pz) o and o = x;...X,
o € X*. Write down some places and indices in P and P':

() [Pilx | x| -“I"k [+ 1Pl >y [x| o |

m m+i m+2 m+k n n+1 n+2 nt+k

(6)](]P,’I"+ }PZI)LXI Joxa] ke |-

m+1 m+2 m+k

n

Consider, how (5) differs from (6), i.e. R from R. In (5) n + 1 x,-follows n, in
(6) m + 1 x,-follows n. Further,in (5)m + i + Lorn + i + 1 x;;-follows m + i
or n + i, respectively, while in (6) only m + i + 1 x;. -follows m + i (i = 1, ...
..., k = 1). There are no other differences.

Thus the set #(R’) is obtained from (R} by replacing index n -+ i in all states
belonging to #(R) by index m + i (i = 1, ..., k). Hence (because due to the replacing
two or more identical states can arise) .

™ o(R) < o(R).

In general, the inequality < in (7) cannot be replaced by <. The latter one, how~
ever, holds in “most” of concrete cases, as it can be proved.

Let R be a polynomial and let Ry, ..., R,, be a sequence of expressions such that
Ri=R,R;,; =Rj(i=1,...,m— 1).and R, = R,. Then the expression R, is
called total right bracketing of R.

Assume an arbitrary finite language L is given. It is possible in many ways to form
a polynomial that represents L. (We simply write down all strings of L in an arbitrary
order and place between every two neighbouring strings the symbol +.) Further,
to each such polynomial there exist various total right bracketings of it. We show,
however, that ail such bracketings yield automata with the same number of states
and that each such bracketing is a minimal form of the language L.

Really, let P, P, be arbitrary polynomials that represent the language L and let
T; be an arbitrary total right bracketing of P; (i = 1, 2). It is clear that e.g. T} is also
a total right bracketing of P;. (Really, by definition of Pj it is possible to apply to P,
firstly several times identity I,; in such a way P, can be obtained.)

In [2] (Theorem 3) it is proved that every two total right bracketings of an
arbitrary polynomial can be obtained ecach from the other by multiple application
of the identity I,. Whence and by (1) it follows that

U(Tl) =0(T) .

Now suppose there is given an arbitrary (simple) expression R e o(L). In [2]
(Theorem]) it is proved, that there is a sequence Py, ..., P, Sy, ..., S, such that
P,=R, P, =P, =P, S5, =St (i=1...,m—1; j=1..,n-1)
and S, is a polynomial.

By (4) we then have
(8) o(P,) = o(R)

(if P;y, = "P, then 'P;,, = P).

Further, thcfc is a sequence Ry,..., R, (k = n) such that R, = S, R;,; = R;}
(i=1,..,k=1). Ry=R, and at the same time R; = S,_;4; (i=1,...,n);
particularly, R, = S; = P
Hence and by (7)

m

o(Ry) < o(P,,)

and then (by (8))
o(R,) < o(R).

(The formula (7) can be applied because in [2] the results we use were proved under
the same special condition as (7) was.)

Thus the number of states of (R) is not less than the number of states of A(T),
where T is some (and then arbitrary) total right bracketing of a polynomial P which
represents the language L. Hence each total right bracketing of P is a minimal form
of the Janguage L.

{Received October 21, 1969.)

296

REFERENCES

[1} B. M. Tnymxos: CurTe3 uddpossix apromaros. dusmarrus, Mocksa 1962,

[2] J. Mare§: Two Properties of Expressions in a Certain Free Universal Algebra. (In Czech.)
Kybernetika 5 (1969), 3, 190— 200.

[3] J. A. Brzozowski: Derivatives of Regular Expressions. Journal of ACM 1/ (1964), 481 —494,

VYTAH

Poznamka ke Gluskovovu algoritmu syntézy koneCnych automati

JAN MARES

Pii syntéze kone¢ného automatu pomoci reguldrnich vyraza zdvisi pocet vnitfnich
stavil konstruovaného automatu na tvaru reguldrniho vyrazu, od kterého pii syntéze
vychdzime. V tomto &ldnku je ukdzdno, jak Ize k libovolnému konecnému jazyku L
nalézt takovy reguldrni vyraz R (reprezentujici jazyk L), ktery je minimdlni v tom
smyslu, Ze je-li S libovolny jiny reguldrni vyraz reprezentujici jazyk L, neni podet
stavi automatu zkonstruovaného pomoci S mensi neZz polet stavii automatu zkon-
struovaného pomoci R.

Jan Mares, Matematicky ustav CSAV (Institute of Matk ics — Czechoslovak Academy of
Sciences), Zitng 25, Praha I.

		webmaster@dml.cz
	2012-06-04T22:16:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

