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K Y B E R N E T I K A — V O L U M E 10 (1974), N U M B E R 6 

Information and Entropy of Countable 
Measurable Partitions* I 

M. BEHARA, P. NATH 

In ergodic theory, the notions of information and entropy are separated from each other. 
In the existing literature, it is usual to assume the additive nature of information. In this paper, 
we have proposed a general definition of information in § 2 and studied its properties extensively 
in § 3. In § 4, information and entropy of countable measurable partitions of a Lebesgue pro­
bability space have been defined. 

1. MEASURABLE PARTITIONS 

Let (Q, S, JJ) be a Lebesgue probability space, i.e., a measure space which is iso­
morphic modulo zero to the unit interval [0, 1] with its usual Lebesgue measure. 
A countable measurable partition si = {A,},e7 is a collection of non-empty me­
asurable sets such that 

n(At n Aj) = 0 , i+j, ^Q-\JA,)>=0. 
iel 

Two partitions si and 33 are called equivalent: si ~ 38 (mod 0) if VA e si, there 
exists a B e 38 such that A and B differ by a set of measure zero. A partition 33 is 
called a refinement of si, written as si <= 33, if every element of si is a disjoint 
union of elements of 33. Obviously, by definition, every partition is equivalent to itself 
and also a refinement of itself. The sum of two partitions si and 33, written as si v 38, 
is defined as the least common refinement of si and 38 i.e. 

si v <# = {A ; n Bj}ieIJeJ 

and the definition may be extended to any finite number of partitions. The operation 
v is both commutative and associative. Two partitions si and 33 are called indepen-
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dent, if p.(A n B) = tt(A) ^(B), A 6 .s/, 5 e ^ . By a a-field, we shall mean a collection 
of measurable sets closed under complementation and countable unions. For a given 
partition stf, the collection of unions of sets from sd, together with the null set 0, is 
clearly a er-field which we shall denote by si. Obviously Q = {Q, 0} and is called the 
trivial field corresponding to the trivial partition {Q}. The elements of s/ are called 
atoms of si. 

Throughout the discussion, all the partitions of Q will be such that there corre­
sponds to each partition a sub-d-field of S. 

2. INFORMATION 

We investigate the following question*: How much information is obtained when 
we are told that a point me Q belongs to a non-empty subset E of £2? It is obvious 
that the answer should depend upon u(E) e [0, 1]. Let F(p(E)) denote the amount 
of information obtained when we are told that coeE. Clearly the domain of E is 
(0,1]. 

Definition 2.1. A function E, defined on (0, 1] is called an information function 
if it satisfies the following properties: 

(a,) E is a continuous function of p e (0, 1]. 

(a2) F(i) = 1, E(l) = 0. 

(a3) F(pq) = (j)(F(p), F(q)) where 0 is a polynomial of its arguments. 

Theorem 2.1. Let F be a function defined on (0, 1] and satisfy (a,), (a2), and (a3). 
Then F = z* where 

(2.1) ;£(,) = L Z ^ I , , 6 ( o , l ] , a 4=1, 

= - logf, / e ( 0 , 1] , x = 1 . 

Proof. Let 

F(pq) = cp(F(p), F(q)) = F(p) • E(<jr) . 

Then, it can be easily seen that the operation ' • ' is commutative and associative. 
Hence, by following the arguments as in §2.2.2 and §2.2.4 in [ l ] , it follows that 4> can 
only be a symmetric polynomial of degree one in each of its arguments. The possibility 
of (j) being a constant polynomial is of no use because it leads to the fact that E is 

* This question occurs on page 19 in Halmos [6] where instead of (a3), the additivity of F is 
assumed. 



a constant function which is a contradiction to (a2). Hence, the only admissible form 493 
of <p can be 

(2.2) <p(F(p), F(q)) = a F(p) F(q) + b F(p) + b F(q) + c 

where ac = b2 - b. From (a3) and (2.2), 

(2.3) F(pq) = a F(p) F(q) + b F(p) + b F(q) + c . 

Let a = 0. Then b = 1, and (2.3) reduces to 

(2.4) F(pq) = F(p) + F(q) + c . 

Putting 

(2.5) g(p) = E(p) + c , 

(2.4) reduces to Cauchy's functional equation 

(2-6) g(pq) = g(P) + g(q). 

By (a,) and (2.5), a is a continuous function of p e ( 0 , l ] . Hence, the continuous 
solutions of (2.6) are of the form g(p) = K log2 p where K is an arbitrary constant. 
Obviously, F(p) = K log2 p + c. By (a2), F(i) = 1 and E(l) = 0. Hence, c = 0, 
K = - 1 , so that E = z* where 

(2.7) z*(p) - l o g 2 i . 
P 

If a + 0, then the substitution 

(2.8) h(p) = a F(p) + b 

reduces (2.3) to 

(2.9) h(pq) = h(p) h(q) . 

Again, by (aj) and (2.8), h is a continuous function of p e ( 0 , 1]. Hence the non-
identically vanishing continuous solutions of (2.9) are of the form h(p) = p * - 1 , 
a e R , R = ( - c o , +co) so that F(p) = (p1~l — b)ja. But, by (fl2), it can be seen 
that b = 1, a = 2 1 "" - 1. Thus E = z* where 

(2.10) z*(p) = 1 ~ - 4 ~ - . p e ( 0 , 1], a e R , a + 1 . 

Note that a = 1 leads to E(p) = (l — b)/fl, a situation which is contrary to (a2). 
However, it can be seen that lim z*(p) = z*(p). 

Remark 1. Whereas assumptions (a.) and (a2) are self-explanatory, (a3) needs 
some justification. It is customatory to assume additive nature of information, i.e. 

(2.11) F(pq) = F(q) + F(q) , p e (0,1] , _ e ( 0 , l ] . 



But the R.H.S. in (2.11) is a particular case of (a3) when </>(x, y) = x + y. Obviously 
(j> is a polynomial (symmetric) of degree one in each of its arguments x and y. Since 
we have not assumed non-negative nature of information, therefore xeR, y e R. 
But (&\), (a2) and (a3) make E non-negative. 

If, the R.H.S. in (2.11) is assumed to be an arbitrary polynomial in E(p) and F(q), 
it is natural to expect some more measures of information and this is the justification 
to assume (a3). 

As mentioned above, the operation ' • ' is both cummutative and associative. 
Moreover, if E(l) = e, then 

F(p) = F(p) • E(l) = E(l) • F(p). 

Also, from (a3), the range of </> is the same as that of E. Thus, it is clear that the 
functional equation 

(2A2) F(pq) = 4>(F(p), F(q)) 

admits of at least one non-constant continuous solution provided the range of E 
forms a commutative monoid under the operation ' • ' and the identity of the monoid 
is E(l). By (a2), E(l) = 0. By Theorem 2.1, E = z* which is non-negative. Thus the 
range of E is R+ = {x : x ;> 0} and (R + , • ) is a commutative monoid under the 
operation ' • ' and with identity 0. On the other hand, if U = (0, 1], then (U, .) is 
also a commutative monoid under ordinary multiplication ' . ' and with identity 1. 
Thus the functions z*,aeR, constitute the set d̂ of all mappings from (U, .) into 
(R+ , • ) satisfying (at), (a2) and (a3). 

From (2.1), it is easily seen that 

(2.13) z*a(pq) = z*a(p) + z*a(q) + (21 ~* - 1) zt(p) z*a(q), « e R . 

On the other hand 

(2.14) z*a(pq) = zl(p) + f-1 z*a(q) = z*a(q) + q-1 z*a(p), aeR, 

Hence, Definition 2.1 is equivalent to the following: 

Definition 2.2. A function E, defined on (0, 1] is called an information function 
if it satisfies (aj), and the following properties: 

to *&)- - . 
(a5) For p e (0, 1], q e (0, 1] , 

(2.15) F(pq) = F(p) + p'-1 F(q) , aeR. 

It should be noted that, without making any regularity assumptions on E, the general 
solutions of (2.15) are of the form 

F(p) = A(pa_1 - 1) , a * 1 , p e (0, 1] , 

and (a4) implies X = 21_o t - 1 so that F(p) = zt(p), a * 1. 



However, when a = 1, (2.15) reduces to 

(2.16) F(pq) -= F(p) + F(q) 

and (a,) is needed to ensure continuous solutions of (2.16). 

Remark 2. From information-theoretic point of view, z*(i) can be interpreted as the 
entropy of order a of a generalized singleton distribution {t} where t e ( 0, 1]. The 
conditions (aj), (a2), (a3) stated in Definition 2.1 are enough to characterize it. 
From (2.1), it follows that the entropy of a generalized singleton distribution need 
not be necessarily additive always. A detailed study of z* is desirable in order 
to study the entropy of a non-sigleton probability distribution because according 
to Renyi [8] a non-singleton distribution with elements n ^ 2 can be written as the 
union of n ^ 2 singleton probability distributions. 

3. THE FUNCTION z* 

It is obvious from (ax) that continuity of F has not been assumed at p = 0. 
Hence, nothing can be said, in general, regarding the continuity of z* at t = 0. But, 
one can see from (2.1) that when a > 1, the definition of z* can be extended to 
1 = 0 so that the new function will be right continuous at t = 0. Hence, whenever 
a > 1, we shall include t = 0. From the physical point of view, z*(0) means the amount 
of information obtained when we are told that a point coeQ belongs to a set of me­
asure zero. Is this amount of information finite or infinite? It seems difficult to 
decide this question as we notice that z*(0) = oo, 0 < a g 1 and z*(0) = 2; z*(0) = 
= f, etc. 

From ergodic theory point of view, taking into consideration the above difficulty, 
it is desirable to assume that the elements of the countable measurable partitions 
under consideration have positive measures. Now we discuss some properties of z*. 

(b.) ( i ) z * ( / ) ^ 0 . 

(ii) lim z* lies between 0 and + oo. 
<->o + 

(b,) z* is strictly monotonically decreasing continuous function of t. 

(b3) (i) z* is convex function of t for 0 < a < 2. 

(ii) z* is a concave function of t for 2 < a < oo. 

(iii) z* is a strictly sub-additive function of t, i.e. 

-*0i + h) < z*(f,) + z*(f2) , (tlt t2, f, + f- e (0, 1]) . 

(b4) z* satisfies functional equation (2.13). 



496 In particular, 

(3A) z*(xy) < z*(x) + z*(y) , x, y e [0, 1] , 1 < a < oo , 

(3.2) z*(xy) 2; z*(x) + z*{y), x, ye (0,1], 0 < a < ! , 

(3.3) z*x(xy) = z*(x) + z*(y) , x, >• g (0, l ] , « = 1 , 

equality in (3A) and (3.2) being true for x = 1 or y = 1. 

(b5) (i) z*(0 = (1 - 0/ t , te(0, 1], represents a branch, lying in the first and 
fourth quadrants, of the rectangular hyperbola xy + x = 1, x e R, y e R. Since 
f e (0, 1], we shall be concerned with only that part of the branch which commences 
from the point (1, 0) and becomes asymptotic to >'-axis. The asymptotes of the hyper­
bola are the lines t = 0 and y = — 1. 

The function z* also satisfies the functional equation 

(3.4) tz*{t) + (l - 0 - 5 ( 1 - 0 = 1 , te(0,l]. 

In addition to z*(0 = (l — t)jt, t e (0,1], there are other solutions of (3.4) which are 
continuous for t e(0, l ] . For example, 

z*(0 = 2t2 - 3/ + I . 

Let us define another function za such that 

(3.5) z,(0 = tz*(0, .-6(0,1], a e [ 0 , oo) 

= 1 , t = 0 , a = 0 , 

= 0 , t = 0 , a e (0, oo). 

Clearly (3.4) and (3.5) give 

(3.6) zo(0 + z0(l - 0 = 1 . te[0, 1 ] . 

From the definition of za, it is obvious that zo(0 = 2i3 — 3t2 + 1 is also a conti­
nuous solution of (3.6) in addition to zo(0 = 1 — f. All these solutions satisfy the 
conditions z0(l) = 0, z0(%) = \, the latter being an obvious consequence of (3.6). 

In fact, infinitely many continuous solutions of (3.6) can be obtained by choosing 
an arbitrary continuous graph joining the points (£, ^) and (1, 0) and then extend­
ing this continuous function from (-J-, f) to (0, 1) by defining 

zo(0= 1 - z 0 ( l - 0 , t e [ 0 , ± ] . 

Once continuous solutions of (3.6) are known, the corresponding continuous solutions 
of (3.4) can be found easily. 



Besides continuous solutions, (3.4) and (3.6) also admit discontinuous solutions. 
For example, 

g(t) = 1, « 6 [ 0 , i ] , h(t) = 0, l = 0 , 

0, te(h 1 ] , 1, t 4= 0 , 

clearly satisfy (3.6) and (3.4) respectively. 

(ii) j ' j = z*(f) = — log2 t. Both 2* and z* pass through the points (1,0) and 
(\, l) and as t -* 0, both become asymptotic to their y-axis. Also 

(3.7) 2*(0 log2 e = z,(t) = t z*0(t) log2 e , fe (0 , 1] , 

equality being true only when f = 1. 

(iii) ,v2 = z*(0 = 2(1 — /) represents the equation of a straight line passing 
through (1, 0) and (0, 2). It intersects both z* and z* only at (l, 0) and (\~, l). In addi­
tion to (2.13), 2* also satisfies the functional equation 

(3.8) 4(0 + 4(1 - 0 = 2, te [0 ,1] . 

Let 

g(i) = tz*2(t), r e [ 0 , 1 ] . 

Clearly (3.8) reduces to 

(3.9) 0(0 + 0 ( 1 - 0 = 1. * e [ 0 , l ] . 

Due to the fact that z* is well-defined at t = 0 whenever a > 1, (3.9) differs from 
(3.6) in the sense that it holds at t = 0. Since z|( l) = 0, z|(0) = 2, therefore, g(\) = 
= 0, ^(O) = 1. Hence the continuous solutions of (3.9) are the same as those of (3.6). 
Consequently, the solutions of (3.8) can be found out easily. 

It is obvious that 

z?(/) = 2fz*(0, te(0,l]. 

Thus 

(3.10) z*2(t) < z*0(t), te(0,i), 

z$(t)^z*0(t), te [ | ,1] , 

equality holding only when t = -J, 1. 

(jv) ^3 = r*(t) — 1(1 — t2) represents the equation of a parabola with vertex 
(0, f), focus (0, 1), latus rectum 1. Also z2(t) = 2(t — /2) represents a parabola 
passing through the points (0, 0), (1, 0) and (^, ^). These two parabolae intersect 
only at one point (1,0) and 

2 2 ( r ) ^ z * ( 0 , te[0,l]. 



498 (v) For positive integral values of a, z*(t) is a polynomial of degree (a - 1) 

in t, and hence zjt) is a polynomial of degree a in t. But 

zjt) <. z*(t), a e [0, oo] . 

(b6) a -> z* is a continuous mapping such that 

a. < a2 => z*(t) < < ( t ) , t 6 (0, i ] , 

a, < a2 => z*(t) ^ z*(r) , te[i, l ] . 

(b7) ( i ) « - > z * ( . ) e [ l , 2 ] , a e [ 2 , o o ] , t e [ 0 , i ] . 

(ii) a -» z*(f) e [0, 1] , a e [0, oo] , te [|, 1] . 

(iii) It is only in the region t e (0, J ] that z*(t), for all a e [0, 1], becomes 
infinite as t -> 0. 

(iv) Z*(l) = 1 , f 6 [0, 1]. 

(b8) Since z* is defined even at t = 0 for a 2: 2, it follows that 

z*(r) 2: 1 , a ^ 2 , t e [0, J ] , 

z*(f) < 1, a ^ 2 , r e [ i , 1] . 

Let us consider the Euclidean metric d(x, }') = ^/[(X! — x2)2 + (>'i — yif] where 
x = (Xj, x2) and y = (y\, y2). Then, it can be easily seen that, with respect to this 
metric, the sets 

Ea = {(t, z*(t)), t e [0, 1]} , a e G = [2, oo] , 

are both connected as well as compact. Obviously, for any S a G, f\ Ea 4= 0. Hence 
U Ea is connected but not compact. Let xsS 

acG 

zdj = set of all points lying inside and on the triangle with verticles(0, 2), (0, l), (|, 1), 

A2 = set of all points lying inside and on the triangle with vertices (i, 1), (1, 0), (1, 1). 

Clearly Ax and A2 are connected and compact sets. Since Av c\ A2 = \(\, 1)}, it 
follows that /.[ u A2 is also connected and compact. Moreover (J E, <= (Ax u A2). 

The sets At and d̂2 can be transformed into each other because to each (X. Y) e A2 

there corresponds (x, y)eAt such that 

X = 1 - x, Y=2- y . 

Also (A, u A2)\ \JEa = {(\,y):0 < y < 1}, and [J Ea = Ay u A2. 
OLSG aeG 

(b9) (i)z*(t)~2tz*(t), te(0,l]. 



(ii) For a > 2, 

-:« = (fr_r-l)z«--W + (l - 2 ' ~ r ' f*_1 -o(() • 

(bio) z*(t) * -*0 - t)> l e (0. 1) e x c e P l w h e n t = i-
However, if we define a function i/_ such that 

^ ( f ) = z*( f) + z*(l _ f), f 6 (0, 1), a € [0, co), 

then 

i/_.f) = V_(l - f ) , r e ( 0 , 1 ) . 

Clearly i/_ is a symmetric function of f E ( 0 , l). Also, __ is monotonic decreasing 
function of f, ^ < f < 1, and monotonic increasing function of f, 0 < f < •_-. For 
0 < a < 1, i/_(0) and _<<_.( 1) are not defined because of the difficulty that z*(0) = co. 
However, for a > 1, iA_(0) and __(l) are both finite and further __(0) = __(l) and 
consequently __(f) is a symmetric function of f e [0, l ] . 

It is easily seen that __(f) is not necessarily a polynomial of degree a — 1 for positive 
integral values of a. Rather, __(t) is a polynomial of degree a — 1 for positive odd 
integral values of a and of degree a — 2 for positive even integral values of a. Thus 
i/_(f) = 2, a straight line and \[/3(t) = f(l + 2f - 2f2), a parabola. 

( b n ) Since 

log2 f~x __ (fa_1 - l ) l o g 2 e , a > 0 , f e ( 0 , 1 ] , 

equality being true when a = 1 or f = 1, it follows that 

§ / j _ 2 l ~ a \ 
z*(f) or (log2 e) ( — ) z*(f) according as a < 1 or a > 1 , 

g V a - 1 / 

= /] _ 2i~"\ 
i/f_(f) or (log2 e) I ) _Va(f) according as a < 1 or a > 1. 

g \ « - l / 

(b12) Let us define 

(3.11) =Ut)=~l
IJl'^^a + ^ f e ( 0 , l ] , a ^ 0 , / ? > 0 . 

Obviously z* _(f) = z*(t) and 

2* (A = ( l - 2 1 - ) z « * ( t ) - ( l - 2 ^ ) 2 * ( f ) 

" • ' U (1 - 2 1 - * ) - ( ! - 2 1 " " ) 



500 Also 

(i) </>(*) = 0. 

(a).z.Vi)«i. 

(iii) lim z*,(0 = - 2 " - 1 / " - 1 log2 t = C*(0 (say) , 0 = 0, t e(0, l ] . 

Clearly 

CT(0-*T(0-

(iv) c* satisfies the functional equation 

(3.12) c*(xj) = / - - C.*(x) + x - 1 £*(v) (x, V6(0, 1]) . 

However, the continuous solutions of (3.12) are of the form 

C*(x) = X ( a ) x ^ 1 l o g 2 x . 

(v) z*j satisfies the functional equation 

(3.13) zUxy) = y " > z*„(x) + x""1 - . * » (x, v e (0, l ] ) , 

whose solutions are of the form 

2*„(x) = ^ x " - 1 - x"-1) , « * / ? . 

However if z * / i ) = 1, then we get (3.11). 

Now we state the following theorem. 

Theorem 3.1. Let there be two sets ( a j , i = 1, % ..., m, and {by}, J = 1,2,..., n, 

of non-negative real numbers such that £ a; = £ by = 1- I^' tlle'"e oe a real-valued 
i = i j = i 

continuous function h which satisfies the functional equation 

(3.14) J £ h(a(b,) = ( t b)) ( t h(a$ + ( £ « ? ) ( £ «(fc,)), 
i = i j = \ j = i i = i i = i j = i 

where a > 0, /? > 0 and h(£) = £. Then h = zaj where 

(3.15) za>,(f) = 0 , t = 0, 1 , 

= tzl.it), a * / ? , te(0,l),, 

= tC*(t), « = /*, . e ( 0 , l ) . 

We give a sketch of the proof of the theorem. Let n — m = 1. Then, (3.14) gives 
h(l) = 0. Now, let n = m = 2. Choosing ax = 1, a2 = 0; bj = 0, b2 = 1, (3.14) 
gives h(l) = h(0). Thus 

h(l) -, h(0) = 0 . 



Writing m = u — r + \, n = v — s + 1, 1 — r < u, 1 <. s < u; u, r, v, s being 501 
positive integers, and choosing 

a,- = — , i = 1, 2, ..., u — r ; a„-r +1 = ~ > 
n w 

and 

bj = ~ , j = 1,2, ..., » - s ; b 0 _ s + 1 = - , 
y « 

it can be shown easily by following the technique as in [3] that (3.14) reduces to the 
functional equation (using continuity of h) 

(3.16) T(xy) = y1 "« <F(x) + x1 ~' <P(y) , 

x, y being real number greater than unity , 

where 

(3.17) W(x) = xh (-\, x > 1 . 

Only two cases arise i.e. a + /? and a = /?. In both cases, the functional equation 
(3.16) can be easily solved. Making use of (3.17) and the condition /i(-2) = \, (3.15) 
follows immediately. 

In [2], the authors have discussed the functional equation 

(3.18) i i g(atbj) = i tfa,) + f g(bj) + ( 2 1 - - 1)( f 9(«,)) ( I fffo)) , 
; - i j - i i - i j - i i - i j - i 

o ^ 0 . 

Both (3.14) and (3A8) are generalizations of the well-known functional equation 
given by Chaundy and Mcleod [3] 

(3.19) i ih(aibj)="ih(a) + ih(bj), 
i = l j = l i = l j = l 

whose continuous solution satisfying h(^) = \ is of the form 

h(t) = - r l o g 2 ? , r e (0 ,1) , 

= 0 , t = 0, 1. 

We shall show in §4, as to how (3.14) and (3.18) are of considerable importance 
in the development of entropy theory. 



4. INFORMATION AND ENTROPY 

Let !F denote set of all countable measurable partitions of Q and sf e 3F. The 
information ^Js4) of order a of partition s4 is defined as 

(4.1) JJSJ) = YJ7{A)Z*MA)), li(A)>0, VAesJ, 

where %(A) denotes the characteristic function of set A. 

The entropy of order a of the partition s4 is defined as 

(4.2) Ijs/) = J £js4) dfi. 

Both the functions Jjstf) and ijsi) are measurable with respect to si. If stf is a finite 
partition, say stf = (Au A2, .*.., A„), then it is obvious that 

that is, 

1 - I M ) 
(4.3) / a ( j / ) = i = 1

 i - a . , a + 1, / ((A ;)e(0, 1 ] , . = 1,2, ..., n , 

= - £ /<A;) log2 /z(A;) , a = 1 , /<(A;) e (0, 1] , . = 1, 2 , . . . , n . 
; = i 

To every finite measurable partition .s/ = (A t , A2, ..., A„) of i3, there corresponds 
a discrete finite complete probability distribution 

(4.4) ^ = (p1,p2, . . . ,p„) , p t > 0 , fc = l , 2 , . . . , n , t P k = \ . 
fc=i 

The entropy IJ&J) is the well-known Shannon's entropy. Recently, Havrda and 
Charvat [5], while studying the qualificatory theory of classificatory processes, 
introduced lj0>J), a 4= 1, by calling it structural a-entropy. Quite independently, 
by considering a generalized form of fundamental equation of information theory, 
Daroczy [4] introduced lJS?J) and called them generalized information functions. 
Their characterizations differ in the sense that they assume the prior existence 
of parameter a. In this paper, the authors have given simultaneous characterization 
of Shannon's entropy and Ijstf), a 4= 1, without assuming the prior existence of para­
meter a. 

To the authors, it appears that it might be more general to define entropy of 
a finite partition s4 as 

(4.5) *.M) = I *.M£)) > a > ° - P > ° > 



of which Ia(sJ) is a special case i.e. Ia(sJ) = Jfal(sJ). Moreover, 

(4.6) jep(sj) = jrM(.sO = E //(A) CJ(K^)). J > ° , 

of which I^sJ) is a special case i.e. Ji(.s/) = =?f j(^/). From Theorem 3.1, it is obvious 

that when sJ and 8& are finite independent partitions, 

.&a/sj v a) = ( I /."(B)) ^ , „ ( 0 + ( I /(^)) ^ * i ^ ) , 

so that 

(4.7) ^a,n(sJ v <f) < 3e„,t{s/) + .#",,„(£), oc > 1 , j8 > 1 , 

(4.8) . ^ ( j / v if) > J f , , J ( J / ) + •*',,./,(.*), 0 < a < 1 , 0 < p < 1 , 

equality in (4.7) and (4.8) being true when at least one of sJ and J1 is a trivial parti­

tion. 

Halmos [6] and Parry [7] have described in considerable details the role of J\(sJ) 

and h(sJ) in ergodic theory. It is expected that Ja(sJ) and Ia(sJ), a 4= 1, may also 

prove useful in some situations. In this direction, the results for countable measur­

able partitions shall be presented elsewhere. It will be appropriate to mention that 

many of the properties of z* discussed in §3 can be utilized to study the properties 

of Ja(sJ) and Ia(sJ) in great detail. 

The authors are extremely grateful to the referees for their valuable comments. Thanks are 
also due to Professor Janos Aczel for his valuable suggestions. 

(Received November 17, 1971.) 
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