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CASOPIS PRO PESTOVANI MATEMATIKY A FYSIKY

CAST MATEMATICKA

On sequences of integers containing no arithmetic
progression.

Felix Behrend, Praha.
(Received April 28, 1937.)

Erdos and Turéan!) recently considered the following question:
let a, < a, < ...< z be a sequence of positive 1ntegers containing
no k consecutive members of an arithmetic progression, and denote
by 7i(x) the highest possible number of elements of such a sequence
(a sequence with 74(x) elements may be called a maximum se-
quence). Erdos and Turdn proved, by numerical arguments, that

r3(x
8 2 o), M
but they were not able to show as little as
rg() _
- = o(1). (2)

In the following I shall draw some immediate consequences from
the theorem of van der Waerden?) which may throw some light
on the problem.

1. It is easﬂy to be seen tha,t'M converges; this follows
‘from the evident fact that ri(mn) éxmrk(n); put, namely,
lim inf "(—xx) = o (3)
then for abitrary £ > 0, there exists » such that
gt (4)
Hence, for =z > =, ' '

1) Journal of the London Math. Soc. 11 (1936), 261—264. :
2) Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde
15 (1927), 212—2186.
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Z rin)

B o) < ot e+ o) (%)
i. e.
. () oo Ta(T)
lim sup = < lim inf — + (6)
and
() i (7)
2. We have ,
L ®

for every m. Suppose, namely, this were not true, then ry(n)/n
must assume its minimum for a certain value n = n, and
71:(”’0) <
Te{%o) ) 9
ny = O (9)
Now choose a sufficiently great m and a maximum sequence
a, < ay < ...for z = ngm. Denote by 4,, 4,, . . ., An the intervals
{1, nyy, <{my + 1, 2ny>, ... Now

THny) - T(nem) - mri(ng)

< < (10)
ny — mgm T mgm
hence
7i(ngm) = mri(ny), . (11)
which is only possible if every A4, contains precisely 74(n,) elements
of the sequence a,, a,, .. Defme A, = A,, if the a’s lymg in

A, are obtained by addmg o (u—v) to the a’s lying in 4, . n,
bemg fixed there is only a finite number of ,different* A%,

But from van der Waerden’s theorem follows the existence of one
interval, 4 say, which occurs among all intervalls 4,,..., Apn.
in an arithmetic. progression of length , if only m was chosen
greater than a certain m (ny, k). This gives a contradiction because -
the first a’s ocurring in the 4’s would form an arithmetic progression
of length £.3).

3. Consider also 1nf1mte sequences b, < b, < ... Let §(x)
denote the number of b, < z, then lim inf §% and lim sup E(xi)

are called the lower and the upper density of the sequence. There

3) Mr. Erdés draws my attention to the fact that van der Waerden S
theorem may be avoided here. (8) follows from ry((k—1)n, + 1) <

< (k— 1) r,(ny) which can easily be proved directly.
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will be a certain number o; such that all sequences with upper
density > o, contain an arithmetic progression of length % whereas
to every ¢ > 0 there exists a sequence with upper density oy — ¢
containing no arithmetic progression of length k. It is

, or < 0k S Or+1. (12)
The first inequality is trivial; the second may be proved in the
following way: choose positive integers z;, @,, ... such that

() ;>2x3+1 (1=12...),

(¢3) lim -~ - = oo.
s Li—1

To every xz; there exists a maximum sequence - .
an < Gz < ... < Oiye) é X (13)
not containing an arithmetic progression of length k; let ag,

be the first element of (13) > 2x;_; + 1; drop the elements
i1, iz, -« - Bij—1 < 2% + 1 and with the remaining elements
form the sequence

' -~
Q1> Cyzs - « -5 Blr(z,) (1st ,,group®)
25y A2jg+15 + - > V2rylzy)s (2nd ,.group®)
.......................... (14)
ijyy Biji+15.+ - o> Tirg(z)s (ith ,.group®)

..........................

(14) evidently has an upper density'> gz, the number of elements
<y being 2 14(%;) — 21— 1 =r(2;) + o(x;). An arithmetic
progression contained in (14) can overleap at most one of the
gaps between the single ,.groups®, because each gap is greater
than the last element of the preceding ,.group®; consequently -
such a progression has at most 1 + (k—1) =k elements i. e.,
(14) contains no arithmetic progression of length %k 4 1. Hence
0r < 041

4. Tt follows from (12) that oz and o1 are converging towards
the same limit:

lim 0 = lim o = 0. : (15)
. k—>wo k—> o : ’
Also : , . '
' 0 < [ <1 . (16)

Theorem: ¢ is either 0 or 1. This means e. g. that in order
to prove g; = 0 it would suffice to prove the existence of a constant
¢ < 1 (not depending on k) such that for all & : gz < ¢. The argu-
ment is similar as in 2. Suppose namely
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0<po<l (17)
Then there exists a & with gz—; — gor > 0. Choose

(?) &> 0 such that ¢ < Qk_l: oor,

(¢3) a sequence by, b,, . .. with upper density > pr—1 conta-
ining no arithmetic progression of length £,

" (#9t) m so great that every sequence of more than (ox + &) n

integers < » contains an arithmetic progression of

length £.

The intervals {1, n), {» + 1, 2n), ... are denoted by By, By, ...

Evidently there are at most 2¢ ,different“ B’s. The interval

containing no b’s at all is called the zero-interval Z, the others

may be denoted by A4, A4,, ... A (L= 2"—1). The lower

density of the Z’s among the B’s may be called {. Choose now
() m such that

a) the number of Z’s among the first m B’s
is> (L —¢)m,
b) the number of b’s < mn is > (or_; — &) mn.
The last number must be, on the other hand, < (1—¢4-¢) m (gr+¢) n
(because the Z’s do not contain any b’s and the 4’s at most (oz+¢) %
from (43)). Hence

I—C+ &) (ox+8)=o1—5¢ (18)
C<(1+5)(@k+8)—9k—1+8 Qk—ek—x-_l-__f1€<l_e (19)
or + & 0k

from (7).

The upper density of the A’s, consequently, is greater than p
Choose now, by van der Waerden's theorem, K(k, L) so great that
if we divide the numbers ,2,..,K arbltranly into L =2 —1
classes, there can always be found in at least one of the classes
an arithmetic progression of length k. As the A’s’ have an upper
denslty > o = ¢k, there can be found an arithmetic progression
of A’s (among the B’s) of length K: A,,, ..., A,z These form L
classes of ,,equal‘‘ 4’s; consequently there exist k equal A’s forming
an arithmetic progression among the A,,..., 4.;; they also
form an arithmetic progression among all intervals B, By, .
But this contradicts (i¢) because the first b’s contained in these
A’s would form an arithmetic progression of length k. Hence the
theorem is ‘proved.4)

Prague, March 1937.

4) Mr. Erd6s communicated to me a slightly different proof which
makes ‘use of van der Waerden’s theorem only for the case of 2 classes.

238




0 posloupnostech celych &isel, neobsahujicich aritmetické
posloupnosti.

(Obsah predeslého &lanku.)

Pro celd &isla > 0, k > 3 budiz 7,(x) nejvétsi &islo m, majict
tuto vlastnost: existuje mnozina m prirozenych &isel nejvyse rov-
nych z, neobsahujici Zadnych £k &isel, tvoficich aritmetickou
posloupnost. Potom existuje lim kf::)

. TH®

= Ok, hm e =¢a plati

tyto véty:
1. Pro kazdé piirozené n je 7i(n) > gin.
2. Je budto g = 0 nebo p = 1.

Drucktehlerbenehtlgung zum Aufsatz: K. Mack, Eine mit dem
vollstdndigen Vierseit zusammenhingende SchheBungsautgabe (Ca-
sopis 67, S. 199—202).

Die Redaktion macht den Leser darauf aufmerksam, daB die
Figur 1 mit der Figur 2 verwechselt ist.
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