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A note on polynomial cycles 

Michal Vavroš 

Abstract. The paper deals with correspondence between polynomial cycles for 
a polynomial / € Z[x] in the ring of integers of p-th cyclotomic field and 
polynomial cycles for / in the ring Cp of integral circulant matrices of degree 
p, p is prime number. As a corollary it follows that integral polynomials over 
Q(Cpt) have polynomial cycles in ring Cp of only of lengths n = pip2 • • Ps, 
where pi < p. 

The paper deals with correspondence between polynomial cycles for a polyno­
mial / 6 Z[x] in the ring of integers of p-th cyclotomic field Q{(p) and polynomial 
cycles for / in the ring Cp of integral circulant matrices of degree p, p is prime 
number. 

First we recall some notions. 

Notation 
("„ is a n-th primitive root of unity (for example Cn = e27rt/ /n) 
Z[Cn] - ring of integers of the n-th cyclotomic field Q{(n) 
Cn - the ring of circulant matrices over Z of degree n 
A* is the conjugate transpose of matrix A 

Definition 1 Let R be a ring. A finite subset {xo,x\,... ,xn-\} of the ring R 
is called a cycle, n-cycle or polynomial cycle for polynomial / , / € R[x], if for 
i = 0 , 1 , . . . , n — 2 one has f{x{) = Xi+\, f{xn~\) = XQ and x» ^ Xj for i ^ j . The 
number n is called the length of the cycle and the x, 's are called cyclic elements of 
order n or fixpoints of / of order n. 

We can introduce a similar definition for polynomial cycle in the situation tha t 
5, R are rings and R is an 5-module: 
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Definition 2 A finite subset {_o? x\,..., _ n _ i } of an 5-module R is called a cycle, 
n-cycle or polynomial cycle for polynomial / , / _ S[x], if for i — 0 , 1 , . . . , n — 2 one 
has / (_ i ) = xl+1, / ( _ n _ i ) = xo and x t ,_ x^ for i 7̂  j . 

In the above cases, polynomial cycles were investigated over a field. The results 
hold for any polynomial / € R[x]. In this situation it is not interesting to investigate 
possible lengths of polynomial cycles for all polynomials over R. The answer is 
trivial. Any length is available. 

It follows for example by the fact that for any m there is the Lagrange inter­
polation polynomial 

/ ( l ) ,g Iwgi___ 
t=0 ilj=0j^i(xi xj) 

with polynomial cycle {_o, _ 1, • • •, _ m _ i } of length m in the field R (we put x m = x 0 

in polynomial / ) . 
The situation is rather different if R is not a field. 
In the case R = Z, Narkiewicz [7] proved that a polynomial with rational 

integral coefficients can have in Z only cycles of length 1 or 2. 
In the case R = ZK is a ring of integers of quadratic number field K', Boduch 

[1] and G.Baron (letter to Narkiewicz) determined independently possible lengths 
of polynomial cycles ( see e.g. Narkiewicz [7] ). 

For fields K of greater degree the problem of determining of all cycle-lengths 
in their rings of integers ZK is still open ( Problem XXI of [7]). 

In the above results it is very important that R is domain. We will be interested 
in lengths of polynomial cycles in rings of circulant matrices which are not domains, 
but in our investigation it will be important that rings of integers of corresponding 
cyclotomic fields are domains. 

Definition 3 By circulant matrix of order n it is meant a square matrix of the form 

= « r c n ( c o , c i , 

I CQ C\ ... Cn~i\ 
C n _ i CQ . . . C n _ 2 

V Ci C2 . . . Co ) 

The elements of each row of C are identical to those of previous row, but are 
moved one position to the right and wraped around. We can also write a circulant 
matrix in the form 

C = {cjk) = (c„_j+i) 

subscripts mod n. If all c t 6 Z then C is called integral rational circulant matrix. 

Remark 1 All integral rational circulant matrices of rank n form a ring which we 
denote by (C-.. This ring is also a Z-module and so it is posible for us to investigate 
polynomial cycles for polynomial / € Z[x] in rings of integral rational circulant 
matrices Q , . 
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In the next we will interesting only in the cases when order of circulant matrices 
n = p is prime number. Let C = c i r c p ( c o , c i , . . . , c p _ i ) be a circulant over Z. 
Associate with the p-tuple 7 = ( c o , c i , . . . , c p _i) the polynomial pT(A) = Co + cxA + 
• • + Cp-iXp~l. The polynomial pT(A) be called the representer of the circulant 
matrix C. The determinant of the matrix C is given by the formula 

detC = p(l)-p(CP)--p(Cv
p-

1) = Y[p(Ci-1). 
i=i 

By the above formula the correspondence between circulant matrices from the 
ring Cp and elements of p—th cyclotomic field Q(CP) is established. 

The correspondence between the ring Cp of integral circulant rational matrices 
and the ring of integers of cyclotomic field Z[CP) is given by the following relation 

rircp(co,Ci,...,cp-i) i—> a = c0 + CiCP + • • • + cPCp'~""1> a ~ Z\Q-

The set {1, Cp, • • •, CJ - 1 } is a set of generators but it is not a basis of the field 
Q(Cp) o v e r Q. So an element a e Z[CP) corresponds to the whole class of circulant 
matrices from Cp. 

The following theorems 1 and 2 describe the connection between possible 
lengths of polynomial cycles of a polynomial / 6 Z[x] in Cp and Z[CP). 

Theorem 1 Let f £ Z[x] have a cycle of length n in the ring of integral rational 
circulant matrices Cp over Z, where p is prime. Then 

1. If 2 J(n or 4|n, then f has a cycle of length n in Z[CP). 
2. If 2\n and 4 J(n, then f has a cycle of length n or ~ in Z[CP]. 

Theorem 2 Let f £ Z[x] have a cycle {x0 = e, X\,..., x n _ i } of a length n in Z[CP). 
1. Let n be even. Then f has a cycle of length n in the ring Cp, which contains 

some of representations of e in Cp if and only if there exists cycle {k0,k\} G Z for 
f, where k0 = e mod (1 - CP)-

2. Let n be odd. Then f has a cycle of length n in the ring Cp, which contains 
some of representations of e in Cp if and only if there exists fixpoint ko € Z of f, 
where k0 = e mod (1 - Cp)-

3. If n is odd. Then f has a cycle of length 2n in the ring Cp, which contains 
some of representations of e in Cp if and only if there exists cycle {k0, k\} 6 Z for 
f, where k0 — ki = e mod (1 — Cp)-

For proofs of Theorems 1 and 2 we recall the way of diagonalization for circulant 
matrices Davis [2]. 

The Fourier matrix Fn of degree n is the matrix conjugate transpose to the 
matrix 

F " v ^ 

/ 1 1 1 . . . 1 

1 Cn C ••• Cr 

1 a C„ ••• Cn(n~ 

V 1 cñ" >2(n-l) л(n-l)(n-l) 
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It holds F* = F n" 1 . 
A procedure of diagonalization for circulant matrices is given by the following 

Lemma 1, Davis [2]. 

Lemma 1 If C is circulant of order p, it is diagonalized by Fp. More precisely 

c = F;\FP 

where 

A = Ac - diag(Pj(l),Pl(CP),... ^ ( C ^ 1 ) ) -

In this case the product Fp • C • F; = diag(p(l),p(£p),... , p (CJ - 1 ) ) = DC is a 
diagonal matrix whose diagonal elements are the eigenvalues of the matrix C. 

The Fourier matrix Fp transforms any circulant matrix C of the order p to 
diagonal matrix Dc. 

Diagonal matrix Dc has a form 

( k 0 0 . . . 0 \ 

.° .£l. °. ::: .° -
0 0 0 ... ep-J 

where k = p(l) = Y%=o c*' ^ € z; elements E\,E2,- • • ,£P-i are conjugate elements 
from cyclotomic field Q(Cp) over Q. 

So we can substi tute the problem with polynomial cycles in the ring of circu-
lants for the problem with polynomial cycles in the set of special diagonal matrices, 
then 

FP • g(C) F;=Y1 a{FpC*F; = g(Fp • C • F;) = g(Dc), g € Z[x). 
i=0 

So, the set Cp forms the set A p of diagonal matrices of the form Dc • _-p is a ring 
which is isomorphic to a subring of the direct sum Z © Z[C,P). The sets of cycles 
lengths in Cp and Z_p coincide. Hence, we shall consider only cycles in ring Ap. 

For the next we will need the following Lemma 2 (G.Baron[7, Theorem 12.9]) 

Lemma 2 Polynomial f € Z[x) over Z has this possibility for lengths of cycles 
i) f has no cycle; 
ii) f has 1 cycle of length 1 and k > 0 cycles of length 2; 
Hi) f has k > 1 cycles of the same length (1 or 2). 

Proof of Theorem 1 Let / € Z[x] and let the set {C0, C\,..., C„_ i} be polynomial 
cycle for / in Cp. By the above the set {DCo,Dc i ; • • • , D c „ _ i } is corresponding 
polynomial cycle for / in diagonal matrices. By the form of diagonal matrices 

Dc. = 

(ki 0 0 . . . 0 \ 
0 ehi o . . . o 

\ 0 0 0 . . . Ep-uJ 
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it follows tha t the length of polynomial cycle {Dc 0 , DCi, • • •, Dc„_i} and so also 
for {Co,Ci,... , C „ _ i } is the least common multiple of the lengths of polynomial 
cycles of diagonal elements 

ki,6i,i,£2,i, • • • ,£p-l,$-

By the Lemma 2 the numbers k{ € Z generate the cycle of length r, r is 1 or 2. 
All of the another diagonal elements generate cycle of the same length s for / e Z 
because the elements _i,»,_2,t, • • • ,£p-i , t a r e conjugated. Then n equals the least 
common multiple of r and s. Since there are only cycles of lengths 1 and 2 in Z, 
hence 

{s for r = 1 or r = 2,2 |s 

2s f o r r = 2 , 2 / s . 
Now the assertion of Theorem 1 follows immediately. 

Proof of Theorem 2 Let / € Z[x] have a cycle {XQ = _, X\,..., x n _ i } of a length n 
in Z[Cp]- Let one of representations _ in the Cp be a circulant matrix 

d r c p ( c o , c i , . . . , c p _ i ) , 

where 
p - i 

5> = *. 
t=0 

By the correspondence between zT[CP] and Cp which was described above a 
circulant matrix is a representation of e in Cp if and only if it has a form 

Ct = circp(co + -,ci + t, . . . ,Cp_i + . ) , 

where t £ Z. Such a circulant matrix is an element of polynomial cycle of length n 
for polynomial / if and only if the diagonal matrix is in the form 

Dc. = 

ík+pt 0 0 . . . 0 \ 
0 _i o . . . o 

V 0 0 0 . . . £ p _ i / 

where £i , £2 • •. - p _ i are all conjugations of e. So Ct is a element of polynomial cycle 
of length n for polynomial / if and only if ko = k + pt is a cyclic element of / of 
order m which divides n. By Lemma 2 we have only two possibilities for m, m is 
equal to 1 or 2. It is equivalent to the existence of cycle {ko,k\} _ i? for / , where 
fco = - mod (1 — Cp)- If n is odd , then ko — k\. 

If n is odd and k0 -- fci then length of polynomial cycle in Cp is 2n (the 
least common multiply of lengths of cycles for k0 and _ ) and the n-th iteration 
fn{Ct) 7̂  Ct. But both Ct and fn{Ct) are representations of the same element e in 
C«. We have 
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Oc, 

and 

0 . . . 0 
0 . . . 0 

0 0 . . . 0 
є\ 0 . . . 0 

*>fn(ct)= .. 

\o 0 0 ... ep_J 
So k0 = k\ = £ (mod 1 - (p) and also fc0 EE fci (mod p). 

As a corollary we obtain the following theorem. 

Theorem 3 Let p he a prime and let n be a length of polynomial cycle of f in Cp. 
Then 

n = p^p^...pk
s% 

where pi,J>2,. -Ps &re primes with the property Pi < p for all 1 < i < s. 

Proof The Lenstra constant L of ring Z[(p] does not exceed p, the principal ideal 
I — (1 - (p) in the ring Z[QP] is of norm p, L(Z[(,P]) < p. Now it remains to apply 
the Corollary 2 [7, p. 104]. 

Remark 2 Let a polynomial / € Z[x] have a polynomial cycle of length n in Q( ( p ) 

{ £ 0 , £ 1 , . . . , £ n _ l } . 

By the above theorems for such a polynomial / there exists a polynomial cycle in 
the ring of circulant matrices Cp if and only if polynomial / has a fixpoint 

fco G Z 

or polynomial cycle of length 2 

k0, k\ G Z. 

In the other cases, polynomial / does not have a polynomial cycle in the ring of 

circulant matrices Cp. 
So, in the special case for monic quadratic polynomial, there is the following 

situation. We have a monic polynomial / in the form 

f(x) = x2 + bx + c, b, c e Z. 

Let fc0 G Z it holds 

/(fco) = fco, 

then fco is a root of equation x2 + (6 — l)x + c = 0 and so 

( 6 - 1 ) 2 , l-b±s/~D „ 
c < L _ i - , fc0 = ^ ~ € Z . 

The equation x2 + 6x + c has exactly one fixpoint fc0 in Z if and only if 

6 = 2fco + l , c = fco, fc0 e Z. 
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The equation x2 + bx + c has two fixpoints k0,k0 - d if and only if 

6 = 1 - 2fc0 + d, c - k0 - k0d, k0 £ Z, 

or k0,k0 + d if and only if 

b = I - 2k0 - d, c = &Q + k0d, k0 e Z. 

Let f(x) = x'2 + bx + c, / € Z[x] and 

4 
then by above and by the inequality f(x)>x for all x 6 Z there is no cycle for / 
in Z and so there is no polynomial cycle for / in Cn for all positive n e Z. 
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