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An extensîon of some formulae of Lerch 

A. Schinzel 

Abstract. A formula of Lerch expressing the sum of fractional par ts of x •+ 
a2m/n (a = 0 , . . . , n — 1) for n odd in te rms of class number of binary quadrat ic 
forms is extended to the case of arbitrary n. 

Let 

í x - i if x <E Z 
1 [a?] otherwise; 

f v ^ E (5)£55^2L i f d = - l m o d 4 , 
<£(2,d) = < "=! 

1 >/3 £ (5) 8 in*r* if d =* mod 4-
Lerch [4], [5] gave the following formula for n odd, ( ra ,n) = 1 

<» E ( ' ( - ^ ) - ( - + ̂ ) ) - S + E (?)*('-•-) 
a=0 x x ' N ' ' n=dd ' 

(see [2], p . 168). As an application he expressed in terms of class numbers of 

primitive binary quadratic forms the sums ^ | x + 9 ~ > for x = 0, i , - , where 

a=o *• J 

{ • } is the fractional part . Particularly simple and elegant is the formula for x = 0, 

namely 

<2> | { ^ } = ̂ - E (?)£«-<> 
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where q2 is the greatest square dividing n and q > 0, h(—d) is the class number 
of primitive binary quadratic forms with discriminant — d and wd is the number of 
integer solutions of the equation u2 + dv2 — 4, hence 

2 
wd 

[1/3 ifd = 3, 
2 

wd 
< 1/2 ifd = 4, 
I 1 otherwise. 

Lerch returned to the formula (2) in [6] and proved it by a different method for n 
odd being the absolute value of a fundamental discriminant. For n even with the 
same property Lerch obtained ([6], p. 245, formula (41)) 

£fíbf-ç 
л = П K J Ã ̂

иэ-ш^ 
wrhere 5 runs through divisors of n such that —S is a fundamental discriminant. 

We shall extend the formulae (1) and (2) to the case of an arbitrary n. For 
this we need the following notation 

фi(z,d) = 

f>-l(z,d): 

\ft £ (~) sj!~^ if d = 0,1 mod 4, 
^ = i 

0. otherwise 

v ^ £ ( I T ) £9~^JL if d = 0, - 1 mod 4 
|y=r1 

0, otherwise. 

Then we have 

Theorem . For m , n coprime positive integers and for all x € 1 

£ ( • • ( • • £ ) - ( • • - , . 

- - i + _E,((l)*<',''i + (i?) •-'"•••' 

Corollary 1 . For m,n coprime positive integers 

^,n):=£{^} = ̂ - E *£)«-<> 
a=0 k * d\n X ; 

d~0,3 mod 4 

u//iere o2 is the greatest square dividing n,q > 0. 

Corollary 2. For every m prime to n we have F(m,n) > F(l,n) with the equality 
attained if and only if either m is a quadratic residue mod n, ornj(n, 2) is composed 
entirely of primes congruent to 1 mod 4. 
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Theorem extends formula (1) since for e — ± 1 , 

ШИ — J , ф(z,d) = фє(z,d) for d = є mod 4. 

Corollary 1 implies formulae (2) and (3). For (2) this is obvious, for (3) follows 
from the fact that for 6 odd, —5 being a fundamental discriminant 

^+2(^J^Jh(-S) = h(-6) + h(-4S). 

Before proceeding to a proof of the theorem I thank John Robertson for calling my 
attention to this circle of problems. The proof is based an 

Lemma. For coprime positive integers m and n 

I
(^)y/n ifn = l mod 4, 

{-f)iy/n~ ifn = 3 mod 4, 
m 

0 ifn~ 2 mod 4, 

( ( £ ) + ( ^ r ) 0 > A - */n = 0 m o d 4 

and 

(5) ip(dm,dn) = dip(m,n). Proof. Formula (4) for rn = 1 and formula (5) are well known (see [1], p. 151, (17), 
p. 197, (78), where <p has a slightly different meaning and [3], Satz 211). Also well 
known are the following formulae 

(6) p(m,n) = ( — ) <p(l,n) for n odd (see [1], p. 165, (45)), 

(7) (p(m,n)tp(n,m) = <p(l,mn) for (m,n) = 1 (ibid., p. 150, (16)). 

Now (4) for n odd follows from (6) since for e = ±1, 

(TD = 0 for"^(mod4)-
For n = 2 mod 4, m odd we have by (6) and (7) 

p(m,n)p(n,m) = 0 

and, since by (6) <p(n,m) ^ 0, it follows tha t <p(m,n) = 0. 
For n = 0 mod 4, m odd we have by (6) and (7) 

<p(l, mn) 
<p(m, n) 

<p(n, m) 

^ - V T =((-) + (-i)^(-)i)^=((-) + (-?)i)vz. 
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Proof of Theorem. W7e have, following [5] (see also [3], Satz 216) 

1 ^ s i n 2vxn 
E {x) = x~ - + > . 

Hence 

/ / a2m\ ( a2m\\ n ^ ^ s i n 2 t / ( ^ + n— I / • ') \ / O N - I I — 1 UU C 

E ( / «"m\ / Grm\\ n v-- v L 

a=0 ь 

n v̂ -« -̂-̂  sin 2vxҡ cos 2vҡa2m/n + cos 2г/T7r sin 2vҡa2m/n 
2 + E E 
n v-^ /sin2i/T7r , cos2i/X7r , \ 

= — + > Riphnv ,n) H "s<f{mv ,n) 
2 Z _ ^ \ ,/-.- Jy'TT / 

I / ' = I •"- ' 

and by Lemma, putting (n,;/) = d', n = a"d, n' = dV 

n v ^ v~̂  /sin2i/d'x7r „„ , ,. , cos2<vd'x7r , \ 5' = - - + > > j7—-d'^ip{mu,d) + —-— d'\^{mv,d) 
2 --—' - ^ \ i/d;7r vd'ix J 

d\n * = 1 

( M ) = l 

.H.+ \- ŝin2z/ďT7r (±\j~d 2 /_^ Z_/ ^ \mv) 
d\n * = 1 Ч 7 

d = Q,l m o d 4 

_ -^005 2 ^ ^ / - d \ ^ 
Z „ ^ .C—V i / 7 Г \ 7771/ / 

- ^ E ( й ) ^ < ^ d ) + Ю^-<^d))' 

Proof of Corollary 1. Using Theorem for x = 0 we obtain 

E (*• (-£) - -?) = -1 + E ((£) * (M + (i?) *-. (o.-) 
Howe 

if a2 = 0 mod n, 

otherwise; 

øi(0,d) = 0 , 

УД f_ J_ (rá) = Cd/i(-d) if d = 0,3 mod 4, 
0-i(O,d) = 

i 0, otherwise 
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(for the last formula see [3], Satz 209). Hence 

n | a 2 d=0,3 mod 4 

It remains to notice that n j a2, if and only if J | o, hence 

Remark. It is possible to prove Corollary 1 by the method of [6], but the proof 
n - l f 2 > 

is longer. It is also possible to evaluate the sum ^ < x + --p f in terms of class 
a=o l n > 

numbers for x = \ or | and arbitrary n, but the formulae are more complicated. 
We give without proof the formula for a: = ~ to be compared with that quoted in 
[2], p. 168 

E Г 1 a2m ì n ç / 
-1) t/vч 

cdh(-d) * £ (->(-(^))«-^ S (=? 
n=dd n—dd 

d=0,3 mod 4 d~0,3 mod 4 
d' = l mod 2 d'=0 mod 2 

and the formula for x = - and n = 2 mod 4, 

E f 1 Q2ml n „ --—. f —d\ 

d=3 mod 8 

which is simpler than that for n = 1 mod 2 quoted in [2], p. 158, formula (2). 

Proof of Corollary 2. It is clear that F(m,n) > F(l,n), that the condition for the 
equality is sufficient and that F(m,n) = T(l,n) implies (~) — 1 for all divisors 
d of n congruent to 0 or 3 mod 4. Assume that F(m,n) = F(l ,n) and suppose 
first that n ^ 0 mod 4. Then for every prime factor q of n, q = 3 mod 4, we have 
(—*) = 1, hence f -J ) = 1 and if there is at least one such qQ, then for every prime 

factor p of n,p = 1 mod 4 (:z^fa) = 1 implies (£ ) = 1, hence f -J J = 1 and m is a 

quadratic residue mod n. Suppose now that n = 4 (mod 8). Then ( — ) = 1 implies 

m = 1 mod 4 and for every odd prime factor p of n, (-jj-) = 1 implies f ~ J = 1, 

hence m is a quadratic residue mod n. Suppose finally that n = 0 (mod 8). Then 

\~rn) ~ iln) ~ 1 implies m = 1 mod 8 and for every odd prime factor p of n, 

(~^) — 1 implies (-^) = 1, hence m is again a quadratic residue mod n. 
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