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On representation of cyclotomic fields Q({pq)

Marek Pomp
Radim Havelek

Abstract: In this paper is shown representation of cyclotomic fields ((pq ), where p,q are
primes, as the correspondence between circulant matrices and elements of this cyclotomic
field.
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In the paper [4] it is found a representation of cyclotomic fields Q((,), where,
G = e2™i/P p is the prime, as the correspondence between circulant matrices and
elements of this cyclotomic field. In the present paper it will be found representation
of cyclotomic fields Q(¢,,,), where m is product of two distinct primes m =p - q.

Correspondence between the set C,, of rational circulant matrices of degree n,
n € N, and n-th cyclotomic field Q(¢,,) is given by map ¢:

¢(circ(ag, ay,...,a,_1)) = ag +0a,(, + ayi 4 ta, (1 (1)

Because of the set {1,¢,,(2,...,¢(? !} is not a basis for the field Q(¢,) under Q,
this map is surjective homomorphism from ring C,, to the field Q(¢,)-

Let m = p- q, where p,q are different primes. We denote by C,, the set of

circulant matrices of degree m, and (,,, = e?™/m  The set of all primitive roots of

unity
N,={¢;i#0 (modp)andi#0 (mod q)}

is an integral normal basis of the field Q({,,,) under Q and it holds

N, ={¢,; wherer =k+1 (mod m),k=0 (modp),l=0 (modq)}.

Since
P = =1y (lprka) (modm) 9 g1,
k=1

g—1
G = =1 ¢gettn) tmodm) i o =1,
=1
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we have, that any element a € Q(¢,,,)

a=ay+0,Cp+a+ o H (T =

=(a, - )G + (ag = ao)(ﬁ; +o 4 (A, —ag) ﬁ“l,

have unique expression in the form

o= Z (a, +ag —ap —a)(,. ' (2)
r=k+{ (mod m)
k=0 (mod p)
1=0 (mod q)

Proposition 1. Mapping ¢ : C,, = Q((,,,), given by (1), have the kernel

I, = {circ(ag,ay,...,a,,_,); where a, =a; +a, — ay,
for r = k41 (mod m),k =0 (mod p),l =0 (mod q)}.

Proof. Let A € I, then

m)

#(A) = ag + Z (ay +a; — ag)(+
=k+! (mod m)

k=0 (mod p)

1=0 (mod q)

+ Y ekt > el =

k=0 (mod p) =0 (mod q)

=ag — ag Z Cin+

Ci€ENm

+ Z ay Z CSJH (mod m)

k=0 (mod p) =0 (mod q)

+ Z aQ Z ﬁ:—k (mod m)

=0 (mod q) k=0 (mod p)

r

Since
> =1,
CiLLEN,
Z ¢kt (modm) _ ok Z ¢ =0 where k = 0 (mod
m - Sm m — - p)a
=0 (mod gq) =0 (mod gq)
ST ik medm) ¢t N ¢k =0, wherel=0 (modg),
k=0 (mod p) k=0 (mod p)

it holds ¢(A) = O and so I, C ker ¢. Reverse inclusion yields obviously from (2). O
Let C;, be a subset of the set C,,
cr = {circ(ao,al, Q1)

where a; = 0 for every i =0 (mod p) or i =0 (mod q)}.
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Any class of the factor-field C,,/I,, contains one and only one element of C7,.
If matrices A, B are the elements of the set C;,, and

A - B =circ(cg, ¢y, -+, Cuey)s

we denote by C,p the matrix from ideal I,,, Cpp = circ(dy,d;, .-, d,,_;), Where

d;, = c, for every t =0 (mod p) or i =0 (mod q). Next we define the relation x on
the set C},

AxBEA.B- Cas-
For the map ¢ it holds:

¢(A xB) = ¢(A-B) — ¢(Cpp) = (A - B).

Proposition 2. The set C} under obvious matriz operation + and operation * is
the field and

(C:n7+’*) = (Cm/1m7+7') = Q(Cm)

Now we look on the multiplication in Q(¢{,,), m = p - q, where p, ¢ are distinct
primes.

Let the representative of a € Q((,,,) be the matrix A = circ(ag,ay,...,a,,_,) and
the representative of 8 € Q((,,) be the matrix B = circ(bg,b;,...,b ) A,B

1Y m—1

€ C;,. We denote by Aj; vector of elements of matrix B, A = (by, b;,...,b )T.

sy 0y

Let X, 5 = (dg,dy,...,d,,_,)T is the vector of elements of the matrix A * B, i.e.
representative of product « - 8. Then there is the matrix T/ (t,,) so that

! !
T ﬁ = Aa.B*

The elements of matrix A * B we can express to

r

_{0 if r =0 (mod p) or r =0 (mod q),
" e +cy—c,—¢ in the other cases,

where c; are elements of product A - B = circ(cy, ¢;,...¢pp_1)s
¢ = > aj,bj,,
J1+3j2=1i (mod m)

and 7 =k +1 (mod m), k =0 (mod p), I =0 (mod q). If

Il

P R D DR (3)

i+j=r (mod m) i+3j=0 (mod m)

— Z aib]- - Z aib]-.

i+j=k (mod m) i+j=l (mod m)
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then we express the elements of matrix T,

trs =a; + a;, — 0y — 0 (4)

4
where i; =7 —s (mod m), i, =m—s (mod m), iy =k—s (mod m)andiy =l-s
(mod m).

Because of b, = 0 for s =0 (mod p) or s = 0 (mod ¢) we can omit s-th columns
of matrix T}, also d. =0 for r =0 (mod p) or r = 0 (mod ¢) than we can omit
r-th rows of matrix T;. The new matrix we denote by T, and we denote by Cp
the set of all matrix T, @ € Q((,,). Let A5 is the vector of nonzero elements of the
vector A\j. The vector Az is vector of coordinates of element 3 in integral normal
basis N, .

Because of T, is matrix of multiplication in regard to the integral normal basis
N,,, and by Proposition 2 the following theorem holds. (See [1].)

Theorem 1. Let o, 8 € Q((,,) and let T, € Cy then

(1) Cp =~ ( m)

(2) T ’\ o:ﬁ

(3) Tfo(c )/0(0‘) = Tr(T,)
(4) NQ(Cm)/Q( a) =det T,

Now, let the field K be the subfield of Q(¢,,) and [Q(¢,,,) : K] = (p—1)(g—1)/w.
An integral normal basis in field K, Ny = {€,,€,,...,€,}, is generate by element
£ = TrQ((m)/K(Cm) and

= Zg;'n, i=12...,w

oEM;

where M; € G(Q((,,,)/Q) /G(Q(¢,,,)/K). We denote the index set
i ={i Gne{¢rioe M}y, i=12..w

Classes of group G(Q((,)/Q) /G (Q((,)/K) are index in order My, M,,...,M,,

w
where j, < j, if and only if minZ; < minZ; .
Let a,8 € K. The representative of 8 in Q(¢,,,), circ(by,by,...,b,,_;), have
b;, =b;,, where i,,1, € Z;, j = 1,2,...w

i)
If h; =minZ;, 1= 1,2,...w, then equation (3) we can obtain in form

where
thi= > t
JETL:
Since ry,7, € Z;, j = 1,2,...w imply tr” = t,,;, We put s;; = t;, where r € 7.

Let T, x be a matrix of elements $; 1 =1,2,...w. We denote by Cr f the set
of all matrix T, g, @ € K. Let A,  is the vector of coordinates of an element
a € K, in the basis €,,€,,...,€,.

The following theorem holds by the same way as Theorem 1.
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Theorem 2. Let o, 8 € K C Q((,,,) and let T,x €Crx then
(1) Crp ~K
(2) Tox " Agk = Aap K
(3) TYK/Q(O‘) = Tr(Ta,K)
(4) Nyjola) = det T,
Ezample. Let p=3,¢=25. Let a € Q(¢y5),

2 4 7 11 13 14
a = a,(5 + 05055 + a4Cy5 + ar(ys + asCfs +a;;Cr5 + 3136815 + 14635 -

From (4) we obtain the matrix T,. It is presented at page 76.
For every 8 € Q((;5)

B = byCy5 + byCEs + bylils + b,¢T5 + bgCls + by, (s + by3(is + b, (ls-
holds
Tﬂ = blTCm + bZTCfs + b4T<;15 + b7T<;75 + bchlss + b”T({sl + blsng + b14T(,‘g’

where matrices T respond to the elements of the integral normal basis (i, € N.
Then it is useful have this matrices:

0 0 00 0 001 00 -1 0-10T11

1 0-10 0-101 00 0 0 0010

0 0 00-1 001 01 0-1-1010

T -|0 0 00 0-101|  _| 00 0 0-1010
s~ |10 -1-11 0 001/ ~¢b -10 0 0 0010/

0 0-10 0 001 00-1 0 0010

0-1 00 0 001 -10 0 0-1110

0 0-10-1 011 00 0-1 0010

0-100 010 O 0 0001 0 0 -1

-1 000-111 O 0 0001 0-1 0

0 000 010 O 0-1001 0 0 o0

T 0 000-110 0| » _|0 0001 0 0 o
s~ | -1 010 010 —1]| "¢ L 0001 -1-1 0}

-1 -101 010 O 0 0101 0 -1 -1

0 000 010 -1 0 0001 -1 0 0

-1 000 010 O 0-1011 0-1 o0

0~-1 0110-10 001 000 0 -1

0 0-1100 060 101 000 0 o

-1 -1 0101 00 001 9010 -1 -1

_| 0-1-1100 01 —|-lo1 -
T=] 0 0 0100 o0 ™#™| 0¢, _? 8 é 8 é )

0 0 0100 -10 001 000 0 o

0-1 0100 00 011_-100 0 -1

-1 0 0100 00 001 000 -1 o0
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76

1p llp—lp—2p+ 1D €lp—-¥p ilo41lo—
Yip4llp—¥p—1p (4] Yip—Llp—-¥D42p Llp4-Tp—
Lp—1p €Ip4+8p—Lp—-2p 1 27] €lp—LD
Yo—1p Llp—-2p Lp—V¥p Lp
nadl.:dl.max_‘~d ¥ip—2p Yig—1lp4¥p4 10— VYip4Llo4-¥D—2D—
Ilp—1p 1Ip—-2p vip—-€lp—8p4¥p 1lp4LlD42D—-1D—
€lp—-1ip Yip—Llp—V¥D+42D Yo+ 1p— lp4-Vvo—
lip—Llp—2p41p 8p—2p vip—¥o £1p—804- L0420 —

€lp—8p4Lp4-20—
1i1p—8p

Yip—€lp—8p+4¥D

€lp—11p—8p4 1D Yilp—1lp4¥p4In—

8p
wd+ﬂd|
€lp—8p

¥Yip—8p

nad..T:S..TwGl Ip—

.

Tip4 1o
vip—1lp

D4 D420~ lp—

1lp48p—

18¢)

p42o—

€lp4-20—
€lp41lp4-8p—1p—
Elp4-bp—
€ip4-1p—
m~d+m¢|
€lp4+-8p—LD—-2D
€lp

Yip4Elp48p—bp—

¥Yip4€lp48p—¥p—
¥lp4-2o—
Yip4bp—

¥lp4Lo4vD—T0—
Yip41lp—
vip48D—

Yip4 llp—¥p—1p

¥ip

Figure 1: Matrix T, .
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010 0-1 00 0 11 0
011-1 0 00 -1 10 0
010 0 0-10 0 10 0
010 0 0 00 -1 10 0
Tgs=1010-1 0 00 of Yct#=]|10 -1
010-1-1 01 0 10 0
010 0 0 00 O 10 -1
110-1 0-10 0 10 0

OO H OO OO

0 -1 00
0 0-10
0-1 00
1 -1-10
0 0 00
0 0 00
0 -1 01
0 0 00
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Let K C Q((;5) is the unique quadratic field with the conductor 15. Then the

elements of integral normal basis of K are

2 4 8

€y = (15 + (15 + (15 + (s
7 14 13 | 11

€y = Cis + G5 + G5 + G5 -

We found matrices T, and T,,,

0 -2 -11 0102 121
0 0-21-1021 012
-1 0 00 -2211 101
0 -1 -11-2012 011
Te, = -2 -1 02 0110} Te, = 210
-1 -1 -22 0101 112
-1-2 01-1210 120
-2 0-10-1121 201

-1
-1
0
0
-2
-2
-1
0

Now the representatives of €, a €, regarding to subfield K are

-3 4 4 —4
Tex = <~4 4)’ Terre = (4 —3)'

Let a € K, such that o = ag, + be,, then

T - -3a+4b 4a — 4b
oK ™\ —~4a+4b 4a—-3b )"

Trace and norm of o are
Tro(¢ny/e(@) = a+b,

No(cny /(@) = —27a® + 25ab — 274,

o= O = NN = O

-1

-2

-1

-2
-1

0
-2
-1
-1
-1

0

-2

-2
-1
-1
-2

-1
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