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Note on the congruences 2 P - 1 = l (mod p 2 ) , 
3P-1 = 1 (mod p 2 ) , 5P~- = l (mod p 2 ) . 

Stanislav Jakubec 

Abstract: This paper studies the solvability of congruences from the title, and distribution 
of numbers z € Hi, where Hi are cosets of group (Z/p2Z)* by a subgroup Ho of index p 
for i = 0 ,1 , . . . ,p — 1. 

Key Words: Wieferich congruence 

Mathematics Subject Classification: Primary 11R18 

Introduction 
Let p be a prime p > 5 and let H0 be a subgroup of the group (Z/p2Z)* of the 
index p and let Hi = (1 + ip)Ho be cosets for i = 0 , 1 , . . . ,p - 1. The group G is 
defined in Definition 3 such that G = H0 or G = (Z/p2Z)*, (Theorem 2). 

The aim of this paper is to prove the following theorem. 

Theorem 1. Suposse that G ?- (Z/p2Z)*. Then there holds 
(i) 2p~l = 1 (mod p2) if and only if 

J^z= Yl l = ^lT (m o d 2 ) ' /or* = 0 , l , . . . , p - l . 
2 2 2 

*<%- V<*<¥ 

(ii) 3 P _ 1 = 1 (mod p2) t'/ and on/jy if 

J2 1 = 5Z 1 ~ r (mod2), /or t = 0 , l , . . . , p - l , 
z € " i *€Wi 

•2 2 2 2 

v<*<v v<*<v 
where ( - l ) r = ( § ) . 

fit*,1 5P _ 1 = 1 (mod p2) i/ and only if 

] T 1 = r (mod 2), /or i = 0 , 1 , . . . ,p - 1, 
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и/Леге ( - ! ) ' = ( § ) . 

By the computation it was verified that G 7- (Z/p2Z)* for p < 50000. 

Unless the contrary is stated, we shall always suppose that n is a positive integer 
and p, I are odd primes with <p(pn) = 0 (mod /), Z is the ring of integers while Z + 

is the set of positive integers. 
Ho will stand for the (uniquely determined) subgroup of the group (Z/pnZ)* of 

index /. 
The cosets of (Z/pnZ)* will be denoted by Hi, i 6 {0,1,2...,/ - 1}. 

Definition 1. A subset T t of a coset Hi will be called a semisystem (in Hi) if for 
each x € Hi exactly one of the residue classes x, —x belongs to Ti. Clearly 

# Г . = # í ř o <PÍPn) ( P - I ) P " - 1 

21 21 

for every semisystem T t . 

Definition 2. Given a positive integer a coprime to p and a semi- system Ti for 
some i G I , let 

g(a,i) = ] Г 

g(a,i) 

z£Ti 

ZЄTІ Ч L 

( 

az 
pn + 

" z 

pn 

" f laz 
pn + 

'2z 
pn 

, for a odd 

)}fora even 

(i) 

(2) 

Proposition 1. Let i € I, a € Z+, (a ,p) = I. The number g(a, i) (mod 2) does not 
depend on the system of representatives of the group (Z/pnZ)* and on the choice 
of the semisystem Ti. 

Definition 3. Denote by G the set of the alia G (Z/pnZ)* such that g(a,i) = g(a,j) 
(mod 2) for all i,j 6 I. 

Note that 1 G G and thus G is non-empty. 

Proposition 2. Let a € G. If a = a' (mod pn), then g(a,i) ~ g(a',i) (mod 2) for 
all i € I. 

Proof. In the case a = a' (mod 2) the proposition is evident. Therefore suppose 
that a = 1 (mod 2) and a' = 0 (mod 2). 

In order to prove the proposition we will prove the congruence 

E 
zЄЋ 

az 
pn + 

z 
pn -E 

zeTi 

2a'z 

L Pn + 
2г 

(mod 2). (3) 

To do this write a' = a + kpn, k G Z. Then 

E 
zЄЪ 

2a'z 
+ pnìì l^ l 

У J / ZЄTІ Ч 

2(q + kpn)z 
pn + 

2z 

Pn I 
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E 
*ЄT. 

2az 
+ 

*ЄT, 

2az 

pn 

ìl 
pn 

+ 

+ -*£---£ 
*ЄT. 

2z 

p n ) s s г'Є2T< 

•гЄT. 

az 

2az 

L P П J 

L P n 

+ 

2z 

p n 

2 

pn 

(mod 2), 

(mod 2). 

The assumption a G G yields 

£ 
z'Є2T< 

az 
[pn 

zeTi x 

az z ' 
— + — 
pn pn 

(mod 2), 

and (3) follows. 

Proposition 3. The set G is a subgroup of the group (Z/pnZ)*. 

Proof. It is sufficient to prove that ab G G for a, 6 € G. 
In view of Proposition 2 we may suppose that a, 6 are odd.Then 

2ЄT. Ч 

aòz 

LPЛ + ) s £ ( 
7 z€T . X 

aòz 

pn + 
Ъ± 
pn 

Z 

pn > 

£ 
bzebTi 

abz 

£ 
zeTi 

az 

pn 

Pn 1 

+ 

.PnJУ S Л 

) + £ ( 

*ЄT. 

òz 
pn 

Ò£ 

Pn 

2 

pn 

f--ľ)-
(mod 2). 

In other words, the parity of the sum 

abz 

zeTi 

^-^ ( abz z \ 

ž*. \LF"J + Iři)' 
does not depend on the choice of i G I, and consequently ab G G as desired. 

The following theorem shows that we have only two possibilities for the group 
G defined in Definition 3. 

Theorem 2. For group G we have either G = H0 or G = (Z/pnZ)*. 

Proof. In view of Proposition 3 it suffices to prove that H0 C G. Let Z\ = 1 
(mod 2) be a generator of the group Ho- By the Proposition 3 it is sufficient to 
prove that z\ G G. 

Let b G Hi. If m = ^p- - 1 and for j = 0,1,2,..., m we put 6j to be equal the 
residue of bz\j (mod p n ) , then T{ = {&o,bi, ...i&m} is a semisystem. 

&., = 6zJ (mod pn) 0<bj < pn for j = 0 ,1,2, . . . m. 
Since bj < pn

1 we have in turn 

?-( 
j = 0 ч 

+ V 
p n 

) = - - pn 
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E 
j = 0 

z\bj 
= —{zib0 -bi+ zibi -b2 + ... + z\bm - 6m + 1) = 

- ±-{{Zl - 1)(60 + 6i + •• + bm) + í>o - bm+l\. 
pJl 

It is easy to see that z™*l = — 1 (mod p n ) and thus 6 m + i = p n - 6. This implies 
that 

\Zlbj' E [pn 

- — [(-! - 1)(60 + 6i + • • • + 6m) + 26 - pn] = 1 (mod 2). 
P n 

Note that the sum is independent on the choice of i, therefore 

- - ( 
Z\Z 

pn + 
' z ' 
pn 1 (mod 2), 

for all i Є L D 

2тr From now on we will denote C = cos ~ + i sin 

Let L = Q(C + C 1 ) , K C L, [K : Q] = J. 
Given a G ( Z / p n Z ) * , let 7 a be a cyclotomic unit of the field L defined by 

7a = 1 + C + C 1 + C + c л + • • • + C"7" + C" 
sm : 

sm 
-, for a odd (4) 

sin — 
7a = C + C - 1 + C 2 + C ~ 2 + --' + C f + C 1 = — C - , f o r a even 

sin ~ 
pn 

Denote by ea , i € I , that conjugate of unit £a = NL/K^Q) for which 

sin 
4 ° = TT ~ r ~ ^ - , f o r a o d d ±i, sin % 

g m 2a|7r 

4° = n—-fe"'f°raeven-

(5) 

z€T(
 S l n P-

The behavior of the function sinx implies that the sign of ea is ( - l ) a ( a , i ' . 
We have proved following propositions: 

Proposition 4. Let a € (Z/p n Z)*. Then a € G if and only if the unit ea is totally 
positive or totally negative. 

Proposition 5. G = (Z/p n Z)*t / and only if for all a <E (Z/p n Z)* the units ea
i} are 

totally positive or totally negative. 
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Theorem 3. Let a G (Z/pnZ)*. Then ea = +1 if and only if a G H0. Moreover, if 

ae H0 */»enea = ( * ) . 

Proof. Let 7 a be the cyclotomic unit of the field Q(C) denned by 

1 — r a 

7Ó = l + C + C + — + C 
i - C 

Let 7 a be the cyclotomic unit of the field L denned by equalities (4),(5). 
An easy calculation shows that 

NQ{0/M)^NL/K(la)2> 

Hence ea = ±1 if and only if NQ(o/*:(7a) = L 

1 - Ca 

NQ(C)/K(-~-~--T) = 1, 

if and only if 
^ Q ( c ) / ^ ( 1 " - C ) - / v Q ( o / A ' ( i ~ C a ) -

Denote by a the automorphism of the field Q(() for which a(() = Ca 

- V Q ( 0 / K ( l " C ) = i V Q ( o / / c ( l - C a ) ) 

if and only if 

#Q(C)/*(x - 0 = ^ ^ Q ( 0 / K ( 1 - 0 , 

i VQ«)/Q(1 ~ C) = P implies - V Q ( O / K ( 1 - C) i Q 

Since the extension K/Q is of prime degree, the field K has only trivial subfields. 
Hence -V Q ( o /# ( l - C) IS primitive element of the field K. 

On the other hand C / - V Q ( O / K ( 1 ~~ C) = N Q (0 /K (1 ~ 0 -
This implies that the automorphism a fixes all elements of the field K. Therefore 

a e H0. 
It remains to prove that if a G H0, then ea = (: ;)• Since 7 a = a (mod 1 - C) 

then NL/K(1O) = a""-"*1 (mod 1-C)- However a""^0" = (~) (mod p) and the proof 

is finished. D 

Now we shall prove Theorem 1. Because G = H0 by Proposition 4 and Theorem 
3 the unit £a is totally positive or totally negative if and only if a G H0. In all cases 
take Tx = iz\z G Hi, z < *£} . Clearly a G Ho if and only if ap~l = 1 (mod p2) . 

(i) Because 2 + p2 is odd we have 

^ / r (2 + p2)zl [ 2 z j \ _ ^ 

2 ^ I — 3 T — + br ) = L * ( m o d 2 ) -
zeHi X L F J L i J J / ze//. 

*<£ 2<# 
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(ii) In this case we have 

E ([?]+ [?]) • E i («*». 
*€t f . X L ^ J L-- J / 2 G / / . 

2 2 2 
z<V V<*<V 

An analogous procedure gives the proof in the remaining cases. Theorem 3 yields 

that the corresponding sums correspond with the Legendre symbol ( - ) , (-), ( - ) . 
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