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Abstract 

We present a congruence property which is a common generalization of 
congruence permutability and O-permutability. We characterize varieties 
of algebras satisfying this property by a Mal'cev type condition as well as 
by a relational condition. Examples of such varieties are included. 
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Permutable algebras and varieties play an important role in universal alge­
bra. Recall that an algebra A is congruence permutable (or simply permutable, 
in brief) if © • $ = $ • 9 for every two congruences 6 , $ G Con A. A variety 
V is permutable if each A G V has this property. It was shown by B . Jonsson 
that every permutable algebra A has modular its congruence lattice Con A. In 
1954, A. I. Mal'cev [3] derived a very useful condition characterizing permutable 
varieties: 

A variety V is permutable if and only if there is a ternary term 
p of V such that the following identities are satisfied in V: 

p(x, z,z) = x and p(x,x,z) = z. 
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In 1984, H.-P. Gumm and A. Ursini [2] treated the so called ideals in univer­
sal algebras and described congruence classes containing a constant element 0. 
For this, it was suitable to restrict the investigation on the so called 0-permutable 
varieties (or subtractive varieties in the terminology of A. Ursini). Recall that 
an algebra A with 0 is 0-permutable if 

[0]e.* = [0]*.e 

holds for any congruences 0 , 3> G Con A. A variety V with a constant 0 is 
0-permutable if each A G V has this property. Also this property can be char­
acterized by a Mal'cev type condition: 

A variety V with 0 is 0-permutable if and only if there exists 
a binary term b of V such that the following identities hold in V: 

b(#, x) = 0 and b(x} 0) = x. 

Let us note that the latest identities can be easily derived from the fore­
going ones by putting b(x,y) = p(x,y,0) and hence the O-permutability is a 
modification of permutability taken "in vicinity of 0". 

The first attempt to unify both of above mentioned conditions was settled 
by the author and R. Belohlavek in [1], The aim of this paper is to show a 
different approach which enable us to find a number of applications in several 
well known varieties. 

At first, we introduce the concept in question. 

Definition Let A = (A,F) be an algebra of type r . Let f(x),g(x) be unary 
terms of this type r . We say that A is (f, g)-permutable whenever for every 
0 , <I> G Con A and each a, b G A it holds 

(P) (f(a),g(b)) G 6 • $ if and only if (f(a),g(b)) G * • 6 . 

A variety V of type r is (f, g)-permutable if each A G V has this property. 

Remark The condition (P) can be expressed in the form: 

f(a) G [g(b)]e.* if and only if f(a) G [g(b))$.Q. 

Hence, an algebra A is permutable at g in the sense of [1] if and only if A is 
(/, a)-permutable by our definition with the trivial term f(x) r= x. 

Special cases: 
(1) Having f(x) = x = g(x), then (/, O)-permutability is just congruence per­

mutability. 
(2) Putting f(x) = x and g(x) = 0, where 0 is a constant of A (i.e. it is a unary 

term with a constant value), our (/, a)-permutability is just O-permutability 
mentioned above. 
Hence, (/, g)-permutability is a common generalization of both the congru­
ence properties. 
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Example 1 Let C = (L; V,A,0,1) be a complemented lattice, where 0 or 1 is 
its least or greatest element, respectively Set f(x) = 1, g(x) = 0. Then C is 
(l,0)-permutable. 

Indeed, if (1, 0) G 6 • <£ for O, $ G ConC then there exists an element a G L 
with ( l ,a) G 0 , (a,0) G $. Let b be a complement of a. Then 

(6,0) = ( b A l , b A a ) GO 

(1,6) = (aVb ,0Vb ) G $ 

which yield immediately (1,0) G $ • 0 . 
Let us note that no chain with at least 3 elements is (l,0)-permutable. 

Namely, if C is a chain with 0 and 1 and 0 < x < 1, then for 0 = 0(0, x), 
$ = 0(x , 1) we have ( 0 , 1 ) 6 0 - $ but (0,1) £ $ • 0 . 

We are able to characterize (/, O)-permutable varieties by means of a Mal'cev 
type condition: 

Theorem 1 Let f(x),g(x) be unary terms of a variety V. V is (f,g)-permut able 
if and only if there exists a ternary term p(x, y, z) such that the following iden­
tities hold in V: 

P(x,9(y),y) = f(x), p(x,f(x),y) = g(y). 

Proof Consider the free algebra Fv(x) H, z) of V and the congruences ©(/(#) , z), 
Q(z,g(y)) on Fv(x,y,z). Of course, 

(f(x),g(y))ee(f(x),z).e(z,g(y)) 

thus, due to (/, a)-permutability, also 

(m,9(y))€e(z)9(y))-e(f(x),z)). 

Hence, there is an element q e Fv(x,y, z) with 

(f(x),q)ee(z,g(y)) 

and 
(q,g(y))£Q(f(x),z). 

Of course, q = p(x, z, y) for a suitable ternary term and from 

(f(x),p(x,z,y)) eS(z,g(y)) 

we conclude immediately 

p(x,g(y),y) = f(x). 

Analogously, (p(x,z,y),g(y)} G &(f(x),z) gives us p(x,f(x),y) = g(y). 
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Conversely, if V satisfies the identities of Theorem 1 and A = (A, F) € V, 
a,b e A, 6 , $ G Con A and (f(a),g(b)) G O • $, then (f(a),c) G 0 and 
(c, G(b)) G $ for some elements c G A Applying the identities, we have 

(g(b),p(a,c,b)) = (p(a,/(a),b) ,p(a,c,b)) G 9 

(p(a,c,b) , / (a)) = (p(a,c,b),p(a,a(b),6)) G $ 

which yield (a(b),/(a)) G 0 4 , i.e. also (f(a),g(b)) G $ • 6 . D 

Examp le 2 The variety of ortholattices is (l,0)-permutable. For this, we can 
take p(x, y, z) = y-1. Then 

P(z,g(;y), y) = p(z, 0, H) - o-1 = 1 = / ( a ) 

p(x, f(x),y) = p(x, 1, y) = l-1 = 0 = a(H). 

It can be easily generalized for algebras with 0 and 1 having a unary term v(x) 
such that n(0) = 1 and D(l) = 0. 

Hence, the variety of pseudocomplemented semilattices (or lattices) is (1,0)-
permutable. 

Examp le 3 The variety of all pseudocomplemented lattices is (/, /)-permutable, 
where f(x) = x**. 

For this, put 
x © y := (x* A y**) V (x** A H*). 

One can verify that the operation © is associative and for 

p(x,y,z) =x** ©u** ©z** 

we have 
p(x, f(x), z) = x** © ix**** © z** = z** = / (*) 

p(x, f(z), z) = x** © z**** © 2** = x** - / ( a ) . 

Example 4 The variety of pseudocomplemented semilattices is (/, /)-permuta-
ble for f(x) = x**. Analogously as in the previous case, we can set p(x,y,z) = 
x** ©y** ©£**, where 

z © y : - = [ ( x * A y * * ) * A ( z * * A H * ) * ] * . 

It is necessary only to check that the operation © is associative. Other 
verifications are evident. 

We can search for a relational characterization of (/, a)-permutable varieties 
in a way similar to that for permutable varieties done by H. Werner [4]. At first 
we are going to formulate some necessary conditions: 
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Theorem 2 Let A = (A, F) G V, a, b, c G A and R be a compatible relation 
on 1Z. 

(a) IfV is (f,g)-permutable and 

(a,b> G it, (6,c> G it and (a(b),/(b)> G it tfien (f(a),g(c)) G it; 

(b) i /V is (f,f)-permutable and R is, moreover, reflexive then 

(i) (a ,b>Git . ( b , c > G i t ^ > ( / ( a ) , / ( c ) > G i t 
(ii) ( a , b > G i t ^ > ( / ( b ) , / ( a ) > G i t . 

Proo f 
(a) Consider the ternary term p of Theorem 1. If (a, b) G it, (b, a) G it and 
(g(°)> 7(°)> £ -R then, due to identities valid in V, we have 

(f(a),g(c)) = (p(a,g(b),b),p(b,f(b),c)) € R. 

(b) If / = a and it is also reflexive, then, of course, (f(b),g(b)) = (/(b),/(b)> G I£. 
Applying (a) in this case, we conclude (i) immediately. For (ii), we have 

(f(b),f(a)) = (p(a,f(a),b),p(a,f(b),b)) G R 

whenever V is (/, /)-permutable. • 

Now, we can give a full relational characterization of (/, a)-permutable va­
rieties: 

Theorem 3 A variety V is (f,g)-permutable if and only if for each A G V and 
every reflexive and compatible relation R on A 

(S) (f(a),g(b)) G R implies (g(b)J(a)) G R 

for any elements a, b of A. 

Proo f (1) Let (S) be valid for every reflexive and compatible relation R on 
each A G V. Choose A — Fv(x, H), the free algebra of V with two free generators 
a;, y. Let it be a reflexive and compatible relation on A generated by a single 
pair (f(x),g(y)). By (5), we have (g(y), f(x)) G it, thus there exists a unary 
polynomial <D over A with g(y) = tp(f(x)) and f(x) = (p(g(y)). However, .A is 
generated by {x,y}, i.e. there exists a ternary term p such that 

(p(t) =p(x,t,y), 

i.e. g(H) = p(x,f(x),y) and /(a;) = p(x,g(y),y). By Theorem 1, V is ( / ,a ) -
permutable. 

(2) Suppose that V is (/, a)-permutable. Let .>4 G V and it be a reflexive 
and compatible relation on A. Let a, b be elements of A and (/(a),a(b)> G it. 
Then also (a, a) G it, (b, b> G it and, applying the term p and the identities of 
Theorem 1, we conclude 

(g(b),f(a)) = (p(a,f(a),b),p(a,g(b),b)) e R 

proving (S). • 
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Lemma 1 Let V be an (f,g)-permutable variety. IfAeV and R be a reflexive 
and compatible relation on A then 

/(b) G [g(a)]R-i implies / (b) G [g(a)]R. 

Proof Let A G V, let i t be a reflexive and compatible relation on A and for 
a, b of A we have /(b) G [g(a)]R-i. Then (/(b), a (a)) G i t - 1 thus also 

(g(a),f(b)) = (p(b,f(b),a),p(b,g(a),a)) € i T 1 

which implies 
( / ( b ) , a ( a ) ) G ( i t - 1 ) " 1 = It. 

Hence /(b) G [g(a)]R. D 

Lemma 2 Let V 6e an (f,g)-permutable variety such that the identities 

f(f(x)) = f(x) and g(g(x)) = g(^) 

hold in V. Let V = (-4, F) G V and R be a reflexive and compatible relation 
on A. Then for each a, b G A 

/(b) G [g(a)]i?.H implies /(b) G [g(a)]R. 

Proof Under the assumptions of Lemma 2, let / (b) G [g(a)]R.R. Then 
(f(b),g(a)) e R- Ry i.e. there is c G -4 with (/(b), c) G i t and (c,g(a)) G it. 
With respect to the identities in assumption, we conclude 

(f(b),g(a)) = (f(f(b)),g(g(a))) = (p(f(b),g(c),c),p(c,g(c),g(a)) G fl 

where p is the term satisfying the identities of Theorem 1. 
Hence, /(b) G [g(a)]R. • 

Let i t C A x A for an algebra A = (-4,F). We denote by 6( i t ) the least 
congruence on A containing R. Of course, if i t is a reflexive and compatible 
relation on A, then ©(it) is the transitive hull of R U R"1. Applying of Lemma 
1 and Lemma 2, we conclude: 

Theorem 4 Let V be an (f,g)-permutable variety satisfying f(f(x)) = f(x) 
and g(g(x)) = #(#). Fe£ *4 = (A,F) G V and R be a reflexive and compatible 
relation on A. Then for every a,b G A we have 

f(b)e[g(a)]R iff f(b)e[g(a)]@{R). 

For every algebra A = (A, F) and $ , ^ G COn.,4, we have 

$ V * = ( # • * ) U ( $ • # • $ ) U ( $ • $ • $ • # ) U • • • 

in COn A Hence, <I> V \1/ = 6 ( $ • ^ ) and Theorem 4 implies the following 
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Corollary Let V be an (f)g)-permutable variety satisfying f(f(x)) = f(x) 
and g(g(x)) = g(x), let A = (A,F) e V and <1>, * E Con A. Then for any 
a, b E A we have 

/(b) E [g(a)]$v* if and only if /(b) E [g(a)]<z>.* . 

Let us note that the identities f(f(x)) = f(x) and g(g(x)) = g(x) are 
satisfied e.g. in the varieties of Examples 3 and 4. 

It is a well-known statement that if an algebra V is permutable then the 
congruence lattice COn.4 is modular. Applying the foregoing results, we are 
able to show that in the case of (/, a)-permutable varieties, a weak form of 
modularity of Con A can be proven. 

Theorem 5 Let V be an (f', a)-permutable variety satisfying f(f(x)) = f(x) 
and g(g(x)) = g(x). Let 6 , $ , ^ E Con A for A E V with $ C ^ and a, b E A. 
Then 

/(b) E [0(a)](ev$)A# */ and only if /(b) E [ff(a)](6A*)v*-

Proof Of course, $ C # yields (6 A * ) V $ C (0 V $) A # . Hence, to prove 
our assertion, we need only to show 

/(b) E |>(a)](e.*)n* => /(&) € [g(a)](ervi>)-<s>-

in account of the foregoing Corollary. 
Suppose /(b) E [g(a)](e.$)n#- Then (/(b), a(a)) E ^ and there is c e A 

with (/(b), c) E © and (c,g(a)) E $. Hence, $ C # gives (g(a),c) E $ and, 
due to transitivity of # , also (/(b), c) E # . Together, (/(b), c) E 9 fl ^ , and 
(f(b),9(a)) e ( 6 n ^ ) 4 proving /(b) E [ff(a)](en*).*. D 
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