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Abstract 

Congruence regular varieties are characterized by a MaPcev condition 
containing m-ary terms. We prove that this number m is the degree of 
regularity, i.e. the number of elements which generate the congruence class 
of every principal congruence. 
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Recall from [1] that if gi(x),... ,gn(x) are unary terms, we say that an 
algebra A is regular with respect to g\,..., gn if for any a G A, 0 = # for 
© , $ £ Con A whenever [gi(a)]e — [gt(«)]o for i = 1 , . . . ,n . A variety V is 
regular with respect to g\,..., gn if all its members have this property. 

Let us remark that if gi(x) = x for i = 1 , . . . , n then it gives the common 
concept of regularity. If g%(x) = 0 for i = 1 , . . . ,n (where 0 is a miliary term) 
then we obtain the concept of O-regularity alias weak regularity. Moreover, the 
concept of regularity with respect to gi,..., gn coincides with that of subregular-
ity introduced by J. Duda, [4], see [1] for some details. The following statement 
was proven in [1]: 

Proposit ion 1 The following conditions on a variety V with unary terms 

9i(x),---,9n(x) 

are equivalent: 
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(1) V is regular with respect to g\,.. .,gn; 

(2) for some positive integer m, there exist ternary terms pi,...,pm and a 
function r »-> ir from {!,..., m} to { 1 , . . . , n} such that V satisfies 

\pi(x,y,z) =gil(z)k'"kpm(x,y,z) = girn(z)\ ^>x = y; 

(3) for some positive integers m,k there exist ternary terms P i , . . . , p m , 
(m -I- S)-ary terms t\,... ,tk and a function r H-> ir from { 1 , . . . ,m} to 
{ 1 , . . . , n} such that for j = 1 . . . , k — 1 and r = 1 , . . . , m, V satisfies 
pr(x,x,z) = giT(z) and 

{ x = h (x, y, z, gh (z),..., gim (z)) 
tj(x,y,z,p1(x,y,z),...,pm(x,y,z)) = tH1(x,y, z, gh(z),..., girn(z)) 
y = tk(x,y,z,pi(x,y,z),...,pm(x,y,z)). 

Moreover, if one of the foregoing equivalent conditions holds for (*) then k is 
the smallest integer for which V is (k -f l)-permutahle. 

Hence, the Proposition characterizes the degree of permutability by the num­
ber of terms tj, in (*). On the other hand, it was not clear what is the dependence 
of the integer m in (ii) or (iii). We are going to introduce a degree of regularity 
which relates this m. 

At first, we will solve the simplest case for k = 1 and m = 1, i.e. for 
permutable varieties. 

Definition 1 Let gi(x),..., gn(x) be unary terms. An algebra A has trans­
ferable congruences with respect to g\,... ,gn if for any a, 6, x £ A there exist 
c\,..., cn € A such that Q(a, b) = @(^(a;), Q ) holds for each i € { 1 , . . . , n } . A 
variety V has transferable congruences with respect to g\,..., gn if each A £ V 
has this property. 

T h e o r e m 1 The following conditions are equivalent for a variety V with unary 
terms g1(x),...,gn(x): 

(1) V has transferable congruences with respect to g\,...,gn; 

(2) for each i £ { 1 , . . . , n} there exists an integer k and a ternary term pi and 
5-ary terms t\,..., tk such that Pi(x, x, z) = gi(z) and 
x = h(x,y,z,gi(z),pi(x,y,z)), 
tj(x,y,z,pi(x,y,z),gi(z)) = tHi(x,y,z,gi(z),pi(x,y,z))forj^l,...,k-l, 
y = tfc(^,2/,2r,pi(a:,i/,z),^(0)); 

(3) for each i € { 1 , . . . ,n} there exists a ternary term Pi such that 

Pi(x,x,z)= g{(z) iff x = y. 



The degrees of regularity in varieties 29 

Proof (1) => (2): Put A = Fv(x,y,z). By (1), for each i G { l , . . . , n } there 
exists Ci e A with Q(x,y) = @(gi(z),a). Hence, a = Pi(x,y,z) for some 3-ary 
term pi and, immediately, pi(x,x,z) = gi(z). Since (x,y) G 0(gi(z),pi(x,y,z)), 
there exist 5-ary terms h,.. *,tk satisfying (2). 

(2) => (1): Let A G V and a,b,x G A. By (2) we have 

(a,b) G Q(gi(x),pi(a,b,x)). 

Further, (gi(x),pi(a,b,x)) = (pi(a,a,x),pi(a,b,x)) G Q(a,b), i.e. Q(a,b) = 
Q(gi(x),pi(a,b,x)) proving (1). 

(1) => (3) is implicitely contained in (1) => (2) since for those pi we have 
Pi(x,y,z) =gi(z) iff a; = y. 

(3) => (1): Let A G Vanda; ,u , z G A. Put a =Pi(x,y,z). Then (gi(z),a) = 
(pi(x,x,z),pi(x,y,z)) G Q(x,y). Denote by 0 = &(gi(z),pi(x,y,z)). Then in 
A/Q we have [gi(z)]e = \pi(x,y,z)]e = Pi([x]e, [y]e, N o ) - However, A / 0 G V, 
thus also A/Q satisfies (3), i.e. we obtain [x]® = [y]e giving 

(x,y) <EQ = ®(gi(z),a). 

Altogether, &(x,y) = Q(gi(z),a) proving (1). • 

By (Hi) of the Proposition, we conclude 

Corollary 1 If a variety V has transferable congruences with respect to gi,..., gn 

then V is regular with respect to g\,..., gn. 

Now, we can characterize the simplest case: 

Theorem 2 For a variety V, the following are equivalent: 

(1) V is permutable and has transferable congruences with respect togi,..., gn; 

(2) for each i G { 1 , . . . , n} there exists a 3-ary termpi and a 4-ary term U such 
thatpi(x,x,z) = gi(z) and x = U(x,y,z,gi(^)), y = U(x,y,z,pi(x,y,z)). 

Proof (1) :=-> (2): Consider again Fv(x,y,z) and 0 = Q(x,y). For each 
i G { l , . . . , n } there exists a G Fv(x,y,z) with Q(x,y) = Q(gi(z),a). Hence 
Q - Pi(x,y, z) for some 3-ary term Pi(x, y, z) and pi(x, x, z) = gi(z). Moreover, 
the permutability implies 

®(gi(z),Pi(x,y,z)) = R(gi(z),Pi(x,y,z)) 

whence (x,y) G R(g%(z),pi(x,y,z)). It is a routine way to prove (2). 
(2) => (1): for permutability, put m(x,y,z) = U(%,z,y,Pi(y,z,y)). Then 

m(x,y,z) is a MaPcev term, i.e. V is permutable. 
Prove transferability: let A G V and a, b,x G A. Then (gi(x),pi(a,b,x)) = 

(pi(a,a,x),p(a,b,x)) G &(a,b), (a,b) = (U(a,b,x,gi(x)),U(a,b,x,pi(a,b,x))) G 
@(gi(x),pi(a,b,x)) thus 0(a ,6) = Q(gi(x),Pi(a,b,x)). a 
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Remark 1 By Theorem 2, if regularity is replaced by transferability in a per-
mutable variety, then m = 1 in the Proposition. Hence, this condition has an 
influence on this number. We can generalize the concept of transferability to 
obtain a full characterization of this m. Theorem 2 is a generalization of the 
result of [2], [3] for regular and permutable varieties. 

Defini t ion 2 An algebra A is said to have m-transferable congruences with 
respect to g\,..., gn if for any a, b, x of A there exist c i , . . . , cm € A such that 

9(o,6) = Q(gil(x),c1) V • • • V e(gim(x),cm) 

for any subset { i 1 } . . . ,im} C { 1 , . . . , n } . A variety V has m-transferable con­
gruences w.r.t. 0 1 , . . . , gn if each A e V has this property. 

T h e o r e m 3 A variety V has m-transferable congruence with respect to gi,...,gn 

if and only if V satisfies (ii) of the Proposition. 

Proof Consider Fy(x,y,z) of V. By the definition, there exist c i , . . . , c m e 
Fv(x,y,z) with 

®(x,y) = Q(gil(z),cl)\/-.-ve(girn(z),cm) 

for any {i\,... ,im} C { 1 , . . . , n } . Hence, Cj = pj(x,y,z) (i = 1 , . . . ,m) and 

b i 0&, V,z) = 9h (z)& ''' &Pm(x, y, z) = girn (z)} iff x = y . 

The converse implication can be shown similarly as in the proof of Theorem 1. 
D 

Coro l l a ry 2 A variety V is regular with respect to gi,..., gn if and only if V 
has m-transferable congruences w.r.t. gi1...1Qn for some integer m > 1. 

Combining the approach developed in [1] with the foregoing results, we can 
easily prove: 

T h e o r e m 4 If a variety V satisfies (*) of the Proposition for some integers 
m, k, then k is the smallest integer for which V is (k-j-1)-permutable and V has 
m-transferable congruences with respect to gu... , p n -

Let us remark that if gi(z) — • • • = gn(z) = z then V has m-transferable 
congruences, i.e. MA e V and for each a,b,de A there exist C i , . . . , c m € A with 

@(a,b) = @ ( d , c i , . . . , c m ) . 

If gi(z) = ••• = gn(z) = 0 then V has m-transferable congruences at 0, 
i.e. for each A e V, any a,b e A there are C i , . . . , c m e A with ©(a,b) = 
6 ( 0 , c i , . . . , c m ) . 

Hence, a variety V is regular (or 0-regular) if and only if V has m-transferable 
congruences (at 0, respectively) for some integer m > 1. 
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