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Abstract 

Sufficient conditions for the existence of a solution to four-point bound­
ary value problems for the second order ordinary differential systems are 
established by means of the topological transversality method. 
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1 Introduction 
An /-point boundary value problem for a k-order ordinary differential equation, 
with / > k, appears very seldom in the literature. And a special case the 
questions of existence and uniqueness of solutions of the four-point boundary 
value problem for scalar differential equations of the second order was studied 
in [2]-[7]. There was studied problem 

x" = f(t,x1x') 

with boundary conditions of a type 

enx(a) + e12x(b) = g1 

e2ix(c) + e22x(d) = g2 

where e?j,g?- £ M, and / is a continuous function or satisfies Caratheodory 
conditions. This problems were studied as like as Neumann problem because 



Neumann problem may be presented as a limit case of the four-point boundary 
value problem. 

Questions of existence to the differential systems of the k-order for k > 2, 
where / is a continuous or Caratheodory function, were studied in [1] by the 
method of topological transversality. There were explicitly solved l-point bound­
ary value problems, where l < 2. 

In this paper there are proved theorems of existence of a solution to the 
differential system 

(1.1) x" = f(t,x,x') 

satisfying four point boundary conditions 

(1.2) x(0) = x(a), x(b) = x(l), 

where 0 < a < b < 1. 
We use the method of topological transversality based on the paper [1], 

especially on the theorem (3.2) part (C). This theorem is introduced in the end 
of this part. 

Let I = [0,1], 0 < a < b < 1, M = (—oo,oo), n, k natural numbers. 
Mn denotes as usual Euclidean n-space and \\x\\ denotes the Euclidean norm. 
Cl = C*([0, l],Mn), Cn = Cl is the Banach space of functions u such that u^ 
is continuous on / with the norm 

| | U | | i = m a x { | H | , | | u ' | | , | | « " | | , . . . , | | w ( f c ) | | } , 

where 
|H| = m a x { | H i ) | | , i e / } . 

Definition 1.1 A function / : I x M2n —» Rn is a Caratheodory function pro­
vided: i f / = f(t,u,p) 

(i) the map (u,p) »--> f(t, u,p) is continuous for almost every t £ I, 

(ii) the map t K-> f(t, u,p) is measurable for all (u,p) G l n x l " , 

(iii) for each bounded subset B C 1 " x 1 " the function 
sup{\\f(t,u,p)\\,(u,P)eB}eL(i). 

In the whole paper assume / : IxR2n —»IRn is continuous or a Caratheodory 
function. 

If / is continuous, by a solutions to the equation (VI) we mean a classical 
solution with a continuous 2nd derivative, while if / is a Caratheodory function, 
a solution will mean a function x which has an absolutely continuous 1 s t deriva­
tive such that x fulfills the equality x"(t) = f(t,x(t),x'(t)) for almost every 
I G F 

By xy in W1 we mean a scalar product of two vectors from W1. 



Topological transversality theorem Let f : [0, 1] x l 2 n —> Mn be continuous 
or a Caratheodory function. Assume furthermore that e ^ 0 is not an eigenvalue 
of the differential operator 

A:C2
nQ^Cn, Ay = y", 

where C^0 is a space of all functions from C% which fulfil boundary conditions 
(1.2), and that g is the unique solution to L(g) = 0; where 

L : Cl
nQ -> Cn, (Lx)(t) = x'(t) - x'(0) - e f x(s) ds. 

Jo 

Then this statement is valid 

(C) Suppose there exists a constant M such that for any A E (0,1) and any 
solution x to the problem 

x" — ex — X(f(t, x, x') — ex) 

with boundary conditions (1.2) we have \\x\\\ < M. Then the problem 
(1.1), (1.2) has a solution. 

Proo f This theorem is a special case of the [1] theorem (3.2) part (C) for k = 2. 

• 

2 A priori bounds on solutions 

In this paragraph we present lemmas on a priori bounds on solutions of the 
differential equation (VI) with the boundary conditions (1.2). Let x be solution 
to (VI) and set 

Ml) = ^( l ) 2 -

Lemma 2.1 Let f be a continuous function. Suppose there is a constant M > 0 
such thai uf(t,u,p) > 0 forVt <E L, Vu eM n , | | u | | > M and\/p£Rn, pu = 0. 

Lf x is a solution to the problem (1.1), (1.2), then \\x\\ < M. 

Proo f If ||x(r.)|| achieves its maximum at t = 0 or t = 1, then \\x(t)\\ achieves 
this maximum at the points t = a or t = 6, and therefore we may assume that 
11x(t)11 achieves its maximum in a point ô G (0,1). 

Suppose 11̂ (10)11 > M. Let h be the function introduced above. Since x is 
the solution to the problem (IT) , h is twice continuously differentiable function 
and h has its maximum at to E (0,1). Therefore 

0 = hf(tQ) = x(to)x'(t0) 



and 

0 > h"(t0) = x(to)f(to,x(to)ix'(t0)) + x'(to)2 > x(to)f(to,x(to)9x'(to)). 

This is a contradiction, which proves the lemma. • 

Similar lemma may be proved for Caratheodory functions. 

L e m m a 2.2 Let f be a Caratheodory function. Suppose there are constants 
M > 0. 7 > 0 such that u/(i,u,p) > 0 for almost every t G I, VH G Mn, 
||u|| > M and Vp G Mn, |pu| < j . 

If x is a solution to the problem (1.1), (1.2), then \\x\\ < M. 

Proof This proof is very similar to the proof of lemma 2.1 By the same way 
as there we may prove that without loss of generality we may assume that ||a:|| 
achieves its maximum at internal point of interval I. 

Suppose ||x(^o)|| > M. Let h be the function introduced above. Since x is 
the solution to the problem (1.1), h has absolutely continuous first derivative. 
Assume h has its maximum at to G (0,1). Therefore there exists positive e such 
that 

h(t0)>h(t) for t G (t0 ~e,t0 + e) 

h'(t0) = x(to)x'(t0) = 0 

|lV(*)|<7 for te(t0-e,to + e) 

and 
h"(t) = x(t)f(t, x(t), x'(t)) + x'(tf > x(t)f(t, x(t), x'(t)) > 0 

for almost every t G (to — £,to + z) and integration from t0 to r G (^o,̂ o + s) 
yields 

h'(t)= I h"(s)ds >0 
J*o 

Therefore next integration on interval (to,to + £) gives 

h(t) = h(to) + / h'(s)ds >h(to). 

This is a contradiction, which proves the lemma. • 

The next lemma is used to derive a priori bounds "for the derivatives of 
solutions to (1.1). 
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Lemma 2.3 Let f be continuous or a Caratheodory function, 

(i) Let M be fixed and x(t) a solution to (1.1), (1-2) for which \\x\\ < M 

(it) Suppose there exists bounded on bounded sets (for example continuous) 

positive functions Aj, Bj, j E {1, 2 , . . . , n} 

Aj :I x M ^ ' - 1 -> R, Bj : I x J R ^ ' " 1 -> R 

such that for almost every t £ I 

\fj(t,u,p)\ < Ai(t,w,pi,p2,--.,Pj--i)pJ
2 + ^ j ( ^w,P i ) H2 ) . . . ,P i - i ) , 

where f = ( / i , / 2 , . . . , / n ) , « € ^ n , p E Mn p = (Pi,P2, • • . ,pn) and for 
j = I, Ai and B\ are independent of p functions. 
Then there is a constant M depending only on M,Aj,Bj such that 

\\xf\\ < M. 

P roo f Since by boundary conditions (1.2) x(0) = x(a) there exist such points 
tj E I that for Vj E {1, 2 , . . . , n} derivative Xj vanishes in them, it is xUtj) = 0, 
where x — (x\y x-2, . .. , xn). 

Since xf- vanishes at least once on J, each point t in I for which x'At) ^ 0 
belongs to an interval [LJ,.v] such that xf- maintains a fixed sign on [/f,.v] and 
x'-(ii) or x'Av) is zero. To be definite, assume that #i(/i) = 0 and that x[ > 0 on 
[/i,iv]. Since A-i,Hi are bounded on bounded sets functions independent on xf 

and x is a bounded solution to the equation (1.1), there exist positive constants 
Ai, Hi such that for almost every t E I 

| / i ( * , z , z / ) | < I 1 4 2 + JB1. 

From this 
2Aix[xl_ < 2 i 

and integration from fi to t yields 

-9i 

and from this 

K(t)\<{f-(e^M-l)}\ 
By the same wray we may treat the other possibilities that might occur. Arguing 
inductively we deduce componentwise bounds on each xf-. From this it is easy 
to see that there exists a constant M depending only on M, Aj, Bj such that 
\\x'\\<M. • 

п 



3 Main results 
In this paragraph we apply theory of topological transversality to our problem. 

Theorem 3.1 Let f : I x M2n —*• IRn be a continuous function and consider the 

problem (1.1), (1-2). Assume 

(i) there is a constant M > 0 such that uf(t,u,p) > 0, Vr G I, Vu £ IRn
; 

\\u\\ > M andVpeW1, pu = 0. 
(ii) Suppose there exist continuous positive functions Aj, Bj, 

i e { i , 2 n} 

Aj : I x M71^'"1 -> K, S;- : 7 x R^3'1 -> M 

5?zch that 

\fj(t, u,p)\< Aj(t, u,pl,p2).. .,pj-i)p] + 5y(r, t / ,pi ,p2 , • • • ,P ; - l ) , 

where / = ( / i , / 2 , . . . , / „ ) , w G Mn. p G Mn
? p = ( p i , p 2 , . . . ,pn) «^^ 

for j = 1, All and Hi are independent of p functions. 
Then the problem (1.1), (1.2) has a solution. 

Proo f Instead of a problem (1.1), (1.2) we will solve a problem 

(3.1) x" -x = \(f(t,x,x')-x) 

with boundary conditions 

(3.2) x(0) = x(a), x(b) = x(l), 

It is easy to see, that a trivial solution is the unique solution of a problem 

x" - x = 0, 

with the boundary conditions (3.2). Therefore for £ = 1 and for g = 0 there 
the assumptions of the topological transversality theorem with exception to the 
statement C are satisfied. Now we try to find a priori bounds of the solutions 
to problem (3.1), (3.2) 

Equality (3.1) may be written in the form 

(3.3) x" = \f(t, x, x') + (1 - X)x = F(t, x, x', A). 

Let M > 0 and / satisfy (i), then uF(t,u,p,\) > 0 W G I Vu. G Mn, 
Hull > M, Vp G Mn, pu = 0 and VA G (0,1). And therefore for any solution to 
(3.1), (3.2) the inequality ||#|| < M is valid according to the lemma 2.L 

If in addition / satisfies (ii) of this theorem, then 

|-F}(*,ti,p,A)| < Aj(t,u,pup2,... ,pj-i)p] + Bj(t,u,p!,p2,... ,Pj-i) + M,, 
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V(i, u,p, X) E I x M2n x (0, 1). Then lemma 2.3 implies that there is a constant 
M independent on A such that ||x'|| < M is valid for solution x. Therefore 
there exists a positive constant M dependent only on M, M such that for 
any solution x to the problem (3.1), (3.2) ||ar||i < M. Now all assumptions 
of topological transversality theorem are satisfied and therefore there exists at 
least one solution of the problem (1.1), (V2). This proves the theorem. • 

E x a m p l e 3.1 It follows from theorem 3A that the system 

x'l = X\ + x[ x\ + arctan(e t + x\x2) 

x2 = sin(27rr) + x2 + eXlx2 + x2 x2 

has a solution satisfying boundary value conditions (3.2). 

Example 3.2 It follows from theorem 3A that the system 

xi = z ~r~ e Xi s i n ~ o o — x-\ 1 x l + x\ + x2
2
 x 

ll 1 / 20 , / 
Xn = ; ; h X2 + X2Xi — XiXn 

2 1 + |a,2| + tant l l 2 

has a solution satisfying boundary value conditions (3.2). 

T h e o r e m 3.2 Let f : I x M2n —» Rn be a Caratheodory function and consider 
the problem (1.1), (1.2). Assume 

(i) there are constants M > 0, j > 0 such that uf(t,u,p) > 0 for almost 
every t £ I,\/u£ Rn, \\u\\ > M and Vp E Mn, \pu\ < J. 

(ii) Suppose there exist bounded on bounded sets positive functions Aj, Bj, 
j E { l , 2 , . . . , n } 

Aj : I x W1^-1 -+R, Bj :I x Mn+i""1 -+ R 

such that for almost every t E I 

\fj(t)u)p)\ <Aj(t,u,p1)p2,...)pj_1)p
2 + Bj(t,u,pi,p2,...,pj-i)} 

where f = (fu / 2 , . . . , f n ) , u E Mn, p E Mn, p = (pup2) . .. ,p„) and 
for j = 1, A\ and B\ are independent of p functions. 

Then the problem (1.1), (1-2) has a solution. 

Proo f This proof is based as like as the proof of the theorem 3A on the 
application of lemmas 2.2 and 2.3. Similarly to the proof above instead of the 
problem (1.1), (1-2) we will solve the problem (3.1), (3.2) 

By the same way as in the proof above we prove that there are satisfied 
assumptions of the topological transversality theorem with exception to the 
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statement C. Similarly to the proof above equality (3A) may be written in the 
form 

(3.4) x" = Xf(t, x, x1) + (1 - X)x = F(t, x, x', X). 

Let M > 0 and / satisfy (i), then uF(t,u,p,X) > 0 for almost every t £ I, 
\/u £ ]Rn, ||u|| > M and Vp £ Rn, \pu\ < j , VA £ (0, 1). And according to the 
lemma 2.2 for any solution to (3.1), (3.2) the inequality ||JC|| < M is valid . 

If in addition / satisfies (ii) of this theorem, then 

\Fj(t,u,p,X)\ < Aj(t,u,p1,p2,...,pj„1)p
2

j + Bj(t,u,p1,p2,. . . ,pj_i) + M, 

for almost every t £ L and \/(u,p,X) £ R2n x (0, 1). Then lemma 2.3 implies 
that there is a constant M independent on A such that \\x'\\ < M. Therefore 
there exists a positive constant M dependent only on M, M such that for 
any solution x to the problem (3.1), (3.2) ||a;||i < M. Now all assumptions 
of topological transversality theorem are satisfied and therefore there exists at 
least one solution of the problem (1.1), (1.2). This proves the theorem. • 

E x a m p l e 3.3 Let ( £ L°°(L) be a positive function, it follows from theorem 
3\2 that the system 

xf{ = C(t)(x1+x[x2
2-{-t) 

A = COO [x2 + x2ex'1 + x'2x2
2\ 

with boundary conditions (3.2) has a solution. 
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