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Abstract 

An algebra of quasiordered logic is a generalization of Boolean 
algebra such that the induced relation is not an order but only a 
quasiorder in the general case. We give a list off all subdirectly irre­
ducible algebras of quasiordered logic which are not degenerated. 
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The concept of a q-lattice which generalizes lattices for quasiordered sets 
was introduced in [2]: 

Definition 1 By a q-lattice is meant an algebra (A\ V, A) with two binary ope­
rations satisfying the following axioms : 

(associativity) a\J (b\J c) = (a\I b)M c a A (6 A c) = (a A 6) A c 
(commutativity) a V b — b V a a A 6 = 6 A a 
(weak absorption) a V (a A b) = a V a a A (a V b) = a A a 
(weak idempotence) a V (6 V b) == a V b a A (b A b) = a A b 
(equalization) a\/a~af\a 

It was proven in [2] that the binary relation defined on A by 

(a,b)eQ if and only if aV6 = bV6 
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(or, equivalently, if a A 6 = 6 A 6) is a quasiorder on A; the so called induced 
quasiorder. 

A g-lattice (A; V, A) is distributive if it satisfies the distributive identity: 

a V ( 6 A c ) = (aV6) A (a V c) 

for each a,b,c of A. Note that this identity is equivalent to its dual. 
A g-lattice (A;V,A) is bounded if there exist elements 0 and 1 of A, the so 

called zero and unit, such thet 

0 A a = 0 and 1 V a = 1 (*) 

for every element a of A. 

Let us remark that 

(i) such elements are unique in A; 

(ii) it can happen that O V a / a and l A a / a , however 0 V a = a V a and 
1 A a = a A a for each a £ A; 

(in) (0, a) £ Q and (a, 1 ) G Q for the induced quasiorder Q\ by (i) and (ii), 
it can also happen (6, 0 ) G Q and/or (1, c) E Q for some 6, c 6 A. 

For some examples, see [2] and [3]. 

A g-lattice (A; V, A) is complementary if it is bounded and for each a £ A 
there exists 6 £ A with a V 6 = 1 and a A 6 = 0; such element 6 is called a 
complement of a. 

Let (A;V,A) be a bounded distributive g-lattice, let a,6,c £ A and 6,c be 
complements of a. It was proven in [3] that in such a case 6V6 = c\Jc. Henceforth, 
we can introduce the unary operation ' in a complementary distributive g-lattice 
defined as follows: 

a ' = 6 V 6 , (**) 

where 6 is a complement of a. 

Definition 2 An algebra .4 = (A ;V,A, ' ,0,1) with two binary operations V, A, 
with one unary operation ' and two miliary operations 0,1 is called an algebra 
of quasiordered logic if (A\ V, A) is a complementary distributive g-lattice where 
0 and 1 satisfy (*) and ' is defined in (A;V,A) by (**). 
An algebra A of quasiordered logic is called trivial if Gard A = 1; 

A is nondegenerated if A is trivial whenever 0 = 1. 

We can visualize g-lattices in diagrams as follows: 

if a, 6 £ A and (a, 6) £ Q, where Q is the induced quasiorder, then a is connected 
with 6 by a path consisting of arrows oriented in the same direction. An example 
of a nine-element algebra of quasiordered logic is shown in Fig.l: 
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Fig. 1 

Although this g-lattice is distributive and complementary, it is not uniquelly 
complementary since 0 has two complements 1 and q; 1 has two complements 0 
and p; w has four complements x,y, z,v. 

An element a of a g-lattice (A; V, A) is called the idem,potent if a Va = a (or, 
equivalents, a f\ a = a). If a,b £ -4, then clearly a V b is the idempotent as it 
follows from weak idempotence. If card C > 1 and C is a maximal subset of A 
such that C x C C Q for the induced quasiorder Q, then C is called a cell of A 
It is easy to see that every cell has just one idempotent. 

In the foregoing example, {0,p}, {1, q} and {&*, y, z, v} are cells of A. If x is 
the idempotent, then 

x = xVx = y\/y — zVz — vVv. 

Since 0 A a = 0 and l V a = 1 for each a £ A, the zero 0 and the unit 1 are 
idempotents. Also w & A is the idempotent because it is not contained in any 
cell of A. 

The conection between algebras of quasiordered logic and propositional cal­
culus is shown in [3]. The aim of this paper is to list all subdirectly irreducible 
algebras of quasiordered logic. It was shown in [3] that the algebra of quasior­
dered logic is a Boolean algebra if and only if it has no cell. By [1], the variety 
of all Boolean algebras has just one subdirectly irreducible member, namely the 
two-element algebra. We are going to show that the situation is different in our 
case: 

Theorem 1 Let V be the variety of all algebras of quasiordered logic. A nonde-
generated algebra A £V is subdirectly irreducible if and only if it has either two 
or three elements, i.e. if A is isomorphic to one of the three algebras B,Ci,C>2 
in Fig. 2. 
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Fig.2 

Proof Trivially, B is subdirectly irreducible since it has two elements only. 
Denote by u) the identity relation, i.e. the least congruence, and by t the grea­
test congruence (i.e. the full relation). Thus C\^C2 has the following lattices of 
congruences 0 for which (0,1) £ 0 (see Fig. 3): 

Con C\ = (l ł в ) ConC2= if 6 ( 1 , p) 

FІg. 3 

Hence C\ and C2 are also subdirectly irreducible since their congruence latti­
ces have only one atom. 

Now, let A be an algebra of quasiordered logic different from S,Ci,C2. We 
have the following possibilities: 

(a) A has no cell. Then, by [3], A is a Boolean algebra. Since A is not 
isomorphic to /?, it is subdirectly reducible by [1]. 

(6) Let A has at least two different cells, say D\)D2. Then, evidently, D\ f\ 
D2 = 0. We can put ©i = D\ x D\ Uw, 0 2 = D 2 x D2 Uw where u is the identity 
relation. It is easy to see that 0 i ,©2 are congruences on A with ©i O 02 = <*/, 
thus A is subdirectly reducible, see e.g. [1]. 

(c) It remains the possibility when A has just one cell D. 
(i) Suppose that A has only two idempotents, namely 0 and 1. Since A is not 
isomorphic to C\ or C2, it means that D contains at least two non-idempotent 
elements, say a and 6. 

Suppose 0 € D and put A\ = {0, l , a } , A2 = A - {a}. Clearly both A\,A2 

are algebras of quasiordered logic (,4i = C2). Introduce a : A —> A\ x A2 as 
follows: 

a(0) = (0,0) a ( l ) = (1,1) a(a) = (a, 0) <*(x) = (0, x) for x G L>, * ^ a. 
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We can see thet a is an injection and pr\a(A) = A\, pr2a(A) — A2.li z,y £ A\ 
or z, y G A2, we can easily testify 

a(z V y) = a(z) V a(y), a(z A y) = a(z) A a(y). 

If z G A\ — A23 2/ E A2 — A\, then z = a and y G A and we have 

a(z V y) = a(a V y) = a(0) = (0, 0) 
a(z) V a(y) = a(a) V a(y) = (a, 0) V (0, z) = (0, 0) 

and 
a(z) A a(y) = (a, 0) A (0, x) = (0, 0) = a(0) = a(z A y). 

It is evident that (0,0) is the zero and (1, 1) the unit in A\ x A2l thus a 
preserves both miliary operations. 

a(0') = a ( l ) = ( l , l ) = (0,0)' 
a ( l ' ) = a(0) = (0,0) = ( l , l ) ' 
a(a ' ) = a ( l ) = ( l , l ) = (a,0)' = a(a) ' 
a(x') = a ( l ) = (1,1) = (0, x)f = a(x)' for x G L>, x 7- a, 

thus a is an injective homomorphismus. In the summary, A is isomorphic to 
a subdirect product of A\,A2. 

If we suppose 1 G D, the proof is dual to the previous one for 0 G D. 
(ii) Suppose that A contains an idempotent d such that 0 ^ d / 1. Put 

A\ = {x\(x,d) G Q}, *42 = {#; ( a » G Q}, 

where Q is the induced quasiorder. 
(a) If J G 13 (the unique cell of .4), define 

a(.r) = (x A a1, _c V d) for x £ D and 
a(x) = (x,x) for x G D. 

Since every x $ D is an idempotent of .4, it is easy to check that a is an 
injective homomorphism of A into the direct product A\ xA2 and pr\a(A) = A\, 
pr2a(Al) = A2, i e . -4 is isomorphic to a subdirect product of Ai,A2. 

(b) If 0 E Dj then d 0 L) and we can define 

a(x) = (x A J, x V J) for x ^ D and 
a(x) = (x, d) for x £ D. 

Analogously as in the case (a), we can prove that A is isomorphic to a subdirect 
product of A\,A2. 

(c) If 1 G D, define 

a(x) = (x A J, x V a1) for x £ D and 
a(x) — (d, x) for x G D. 

The proof is dual to that of (b). • 
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Corollary 1 Every algebra of quasiordered logic is isomorphic to a subdirect 
product of algebras B,Ci,C2 (see Fig.2). 

Example The algebra A in FigA is isomorphic to C\ x C2. 
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