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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM

1992 Mathematica XXXI : Vol. 105

METHOD OF LOWER AND UPPER SOLUTIONS FOR A THIRD-ORDER
THREE-POINT REGULAR BOUNDARY VALUE PROBLEM

MARTIN SENKYRIK
(Recived November 20, 1990)

Abstract. This paper is concerned with the existence
of solutions of the problem
u’'’= f£(t,u,u’,u’’)
u' (0)=u'(1)=u(n) =0, 0 =7 =1
The method of lower and upper solutions is used here.

Key words: Boundary value problems, lower and upper

solutions, a priori bounds.

MS Classification : 34B10

1. Introduction. In this paper we are concerned with the
existence of solutions of the boundary value problem (BVP)

u' ‘’'=f(t,u,u’ ,u’’) (1.1)

u’ (0)=u’ (1)=u(n)=0, O=n=l, ) (1.2)
where f satisfies the local Carathéodory conditions on (0, 1)xR>.
This problem is regular in the sense that the associated linear
problem has only the trivial solution. This problem models the
static deflection of a three-layered elastic beam. In [18)
there is proved an existence result for BVP (1.1), (1.2)
without requiring a growth condition on the whole interval and

some uniqueness theorems are given there to.
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Multi-point BVPs for differential equations of the
n-th order have been studied by many authors ( see References ).
For nz2 and 2=<k=n ,the question of existence and unqueness of
solutions of k-point BVPs Cauchy-Nicoletti , de la Valeé-Poussin
or similar ones, in which the values of a solution or the values
of its derivatives are given, have been solved e.g. in [10,11,
12-15]. )

We consider equation (1.1) with three-point boundary
conditions. In this case the Valeé-Poussin conditions have the
form

u(a)=A,u(c)=C,u(b)=B , (1.3)
where -w<a<c<b<+w , A,B,CeR. )

BVP (1.1), (1.3) has been investigated e.g. in [1,2,5,19].
Replacing function values by its derivatives, we obtain

u’(a)=A , u(c)=C , u’ (b)=B. (1.4)
In [4] , the subfunction method is used for the existence of
solutions of BVP (1.1), (1.4) and in [16] , the necessary and
sufficient conditions for solvability of this problem are proved
by means of lower and upper functions.

BVP (1.1) ,
u(c)=0 , u’'(a)=u’(b) , u'’'(a)=u’’(b) (1.5)
where -mw<(ascsb<+m , has been investigated in [17] by a method

very similar to the method used in this paper.
C.P.Gupta [7] studied the questions of the existence and
uniqueness of solutions of the equation

—u"'—n2u+g(x,u,u’,u”)=e(x) (1.6)
or

u"'4n2u+g(x,u,u',u”)=e(x) (1.7)

satisfying (1.2). The existence of a solution for the resonance

problem (1.6),(1.2) was obtained when e was a Lebesgue-intgrable

function with I;e(x)sinnxdx=0 and g was a Carathéodory function,

bounded on [0, 1]xB*xR (for every bounded B of R) and
g(x,u,v,w)vz0, for x€[0,1] , u,v,weR.

For the existence of a solution for (1.7), (1.2) g, in adition,

g(x,uv,w)

%3& sup v = B<3nf.

These results were proved by means of the method using
second-order integro—differential BVPs and the Leray-Schauder
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continuation theorem.

In contrast to this, here we defined 1lower and upper
solutions for (1.1), (1.2) directly not transforming the BVP on
to an integro-diferential problem.

2.Notations and definitions.

In what follows we supppse that p,qe[l,+w),where 1/p+1/q=1,
X is the set of all real functions with one real argument ,
C™(a,b)={fex: £™ is continuous on [a,b]}, meN,
L’(a,b)={feX: |£|® is Lebesgue integrable on.(a,b)} with a norm
£l =(S°]1£(t) |7 at)'® for pe+too
p a
L (a,b)

L%(a,b)={fex: ess sup |[f(t)|«t } , with a norm

t<

Wl o = essigpe (O]

AC™(a,b)={feX: £ is absolutely continuous on [a,bl}.
We say that some property is satisfied on D (resp.D’),if it
is satisfied for a.e. te(0,1)(resp.te(a,b)) and for each x,y, z€R.

Let si,szeco(o,l), sl(t)Ssz(t) on [0,1] and S1’ S2 be such

that S;(t)=sl(t), S;(t)=sz(t) on (0,1) and Sl(n)=52(n)=0.

Then we say that some property is satisfied on D(sl,sz),if it is
satisfied for a.e t€(0,1) and for each Xx,y,z€R, where |z|z1,
sl(t)syssz(t), min (Sl(t),SZ(t)}SXSmax { Si(t),Sz(t)}.

Let D'=((a,b)xR’). We say that f:D'»R satisfies the local
Carathéodory conditions on D’ (fECarlm(D’)), if
£f(.,x,¥,2): (a,b)-»R is measurable on (a,b) for each x,y, z€R,
£(t,.,.,.): RPaR is continuous for a.e. te(a b)
and sup {|f(t,x,y,2)|:|x|+|y|+|z|=p}el’(a,b) for any pe(0, +w).
A function ueAC®(0,1) satisfying (1.1) for a.e. te€(0,1) and
fulfilling (1.2), will be called a solution of BVP (1.1), (1.2).
Functions ol,czeACZ(O,l) satisfying
a;”zf(t,x,a;(t),a;’(t)), (1.8)
for a.e. te(0,1)
and for x € [min{o (t),o (t)} max{o (t),0_(t)}],

01(")=0’ o;(o)so, a;(l)so, (1.9)
o) sf(t,x,az,dz ), : (1.10)

for a.e. te(0,1)
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and for xe[min{o (t),o_ (t)}, max{c (t),0, (t)}],
o, (m)=0, 0 (0)z0, o, (1)20, (1.11)
will be called a lower and an upper solution of BVP (1.1),(1.2).
For i = 0,1,2 we denote c= max{lay)(t)|+]0;l)(t)]:05t51).

3. Lemmas.

Lemma 1. (generalized Fredholm alternative theorem [19])

Let D'=(a,b)xR",@:C”4(a,b)aR, i=1,2,...,n are continuous
linear functionals, A‘ € R for i=1,2,...,n. Let us put
Ly=y"- £ a,y
1=1
Ny=f(t,y,y" ,...,y" "),
where aieL(a,b), i=0,1,2,...,n, fECarlM(D’).

Let the BVP

Ly=0,

¢ (y)=o0, i=1,2,....,n
have only the trivial solution. If the absolute value of the
function f 1is bounded by a Lebesgue integrable function on D’,
then the BVP .

Ly=Ny,

Qi(y)=A1, i=1,2,...,n
has at least one solution.

Lemma 2. Let o, be a lower solution and o, an upper
solution of BVP (1.1),(1.2) and a;(t)sgé(t) for every te€[0,1].
Let there exist hoeL (0,1) such that or D there is satisfied

|f(t,x,y,2)|sh (t) . (1.12)
for o;(t)5y50;(t).

Then BVP (1.1), (1.2) has a solution u satisfying

0';(t)5u'(t)scr;(t) (1.13)
for tefo0,1].

Proof. Let us choose meN and put (on D)

s, (t)=min{o (t),0 (t)}, sz(t)=max{al(t),oz(t)),

s, (t) for x = s (t)
p(t,x)={ x ©  for sl(t) s x =< sz(t)
sz(t) for x 2 sz(t)
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wl(t,x,y,2)=*m(y-c;)(f(t,p(t,x),v;(t),o;’(t))-f(t,p(t,x),a;(z),z)),

wz(t,x,y,z)=m(y—a;)(f(t,p(t,x),a;(t),a;’(t))-f(t,p(t,x),a;(t),z)),

£(t,p(t,x),0,(t), 0" (1)) for yso(t)-1/m,

f(t,p(t,x),0;(t), z)+w (t,x,y,2) for ol (t)-1/mcy<o](t),

Hh
[l

_-f(t,p(thx),y,z) for o;(t)sysa;(t), (1.14)

f(t,p(t,x),vé(t),z)+g (t,x,y,z) for %’(t)<y«g(t)+1/m,

f(t,p(t,x),o;(t),o;’(t)) for U;(t)+l/m$y‘

From (1.12) and (1.14) it follows that on D it is
|fm(t,x,y,z)|sho(t). ' (1.15)

Let us consider the differential equation
=fm(t,u,u’,u"). (1.16)

v

u

According to Lemma 1 BVP (1.16),(1.2) has a solution u .We shall
show that u satisfies . :

o) (t)-1/msu’ (t)so,(t)+1/m (1.17)
for every te[0,1]. Put

v(t)=(-1)"(u; (t)-o| (t))-1/m
for te€[0,1] and ie{1,2}.
Then by (1.2),(1.9)and (1.11) we get v(0)=0, v(1)s0.
Let there exist toe(o,l) such, that v(tobo. Then there exists
an interval (ao,bo), where 05a0<t0<b051, such that v(t)»>0, for
tE(ao,bo), v(ao)=v(bo)=0, v’(ao)zo, v’(bo)SOA From (1.8),(1.10)

and (1.14) it follows that
v r(t)=(-1)' (£ (t,u ,u’,u’")-c'’’(t))=0 (1.18)
m m m m i
for a.e. tE(ao,bo), for ie{1,2}. Integrating (1.18) from tlto tz,
where ao<t1<t2<b0, we get :
v'(tz)—v’(tl)zo.
The 1last inequality implies, that the function vVv’'(t) is
nondecreasing in (ao,bo). Let v(t3)=max{v(t); tE(ao,bo)}, then
v'(t3)=o and v'(t) is nondecreasing in (ts,bo). Since v(t3)>0 we
get v(bo)>0 which contradicts to v(b0)=0. Hence (1.17) is
proved. From (1.17) and (1.2) it follows that

|u;(t)]5cl+1/m for te[0,1] (1.19)
and

_64..



lu_(t)[sc1+1/m for tef[o,1]. (1.20)

Integrating (1.16), where u=u , from t to « , where t,ae(0,1) and
o is such that u;’(a)=0 we get

ful’(t)|=§_ h_(t)at. (1.21)

From (1.19), (1.20) and (1.21) it follows that the sequences
(u.)f=1’ (q;)?ﬂ are uniformly bounded and equi-continuous on

[0,1] and that the sequence (ul’n')()::1 is uniformly bounded.
From (1.16) and by the theory of the Lebesgue integral we get
o
Arzela-Ascoli lemma without loss of generality, we may suppose

that the sequence (u;’ is equi-continuous on [0,1]. By the
that all the three sequences are uniformly converging on [0,1].
By Lebesgue theorem and by (1.14),(1.16),(1.17) the function
u(t)=%3g um(t) on [0,1] is a solution of BVP (1.1), (1.2) and
fulfils (1.13). Lemma is proved.

Lemma 3. (On a priori estimates) Let fl,rzeR, ro<r,,
r sosr, gecarloc((o,l)xR) , heLq(rl,rz) and wec®(0,w) is a
positive function satisfying

[o4]

f gss - oo, (1.22)

°
Then there exists r*E(l,m) such that for any function ueACO(O,l)
the conditions (1.2),

rlsu’(t)sr2 for every te[0,1], (1.23)
[u’ " |=w(|u | )g' P(t,u)h(u’ )(1+|u’*|)' /9 (1.24)
for a.e. te(0,1), |u’’(t)|=z1, ‘
imply the estimate
|u’’ (t)|=r™ for every tel0,1]. (1.25)

Proof. Let G={ veAC®(0,1): v satisfies (1.2) and (1.23)}
If veG, then |v(t)|sp, where p=max{|r |,r } and
go(t)=sup{|g(t,v)|: veGleL'(0,1).
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Put

1/
k =2llg," "Il | Iml] . (1.26)
Lo, 1) Lot )
X
ds
Q(x)= for xe€R. (1.27)
[ oty

From (1.22) and (1.27) it follows that Q is an odd function,
Q(R)=R and there exists the inverse mapping Q°'. Let ueAc’(0,1)
satisfy (1.2), (1.23) and (1.24) then there exists aoe(o,l) such
that u”(a0)=0. Let us suppose that there exists tze(ao,ll such
that

[ur " () ]>r™, (1.28)
where

r*=07(a(1)+k ). (1.29)
Let [al,bI]C[ao,ll be the maximal interval containing to in

which |u’’(t)|z1. Let s e(a ,b ] be such a point that
u"" (s )|=p =max{]u’’(t)|:a stsb }.

From (1.24) and from the H6lder inequality we can obtain

w([u (EAD)

In the case that u’’(t)z1 on [a1,51] we get Q(pl)—Q(l)Skc, which
implies by (1.26),(1.29) that plsr*. The last inequality

s

1
[ e
(4]

u1

contradicts (1.28). We can obtain a similar contradiction in the
case u’’(t)s-1on [a, s, ]. Therefore we 'have [u'’ (t)|=r* for
every tE[au,ll. If we suppose that tle[o,aol , we can get in a

similar way as above that |u"(t)|5r* for tE[O,aO] and this

comletes the proof.

4.Theorems

Theorem 4. Let o, be a lower solution and o, an upper
solution of BVP (1.1) ,(1.2) and U;(t)SG;(t) for each te€[0,1].
Let on the set D(a;,a;) the inequality

[£(t,x,y,2)|sw(|z|)g" "P(t,On(y)(1+|z|)" 7, (1.30)
be satisfied, where hEL‘(—cl,cl), giCarloc((O,l)xR) are nonnega-
tive and wec®(0,1) is a positive function satisfying (1.22).
Then BVP (1.1),(1.2) has a solution such that

o;(t)SU‘(t)sw;(t) for each te[0,1]. (1.31)
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Proof. Without loss of generality we may suppose c‘>0.
Let r* be the constant found by Lemma 3 for r =-c., r,=c. Put

*
=r +C _+C_+cC
Po o 1 2'

1 for Oss$p°
x(p ,8)={ 2-s/p, for p <s<2p,

0 for sz2p ,
1(t,x,y,2z)=x(p , |x|+]y|+|z|)£(t,x,y,2) on D. (1.32)

since max{|o (t)|+|o;(t)[+]|o] (t)]|; O=t=1} <« , for i=l,2,
o, is a lower solution and o, is an upper solution of BVP

u'’’=1(t,u,u’ ,u’"’), (1.33)
(1.2). Further |l(t,x,y,z)}5g*(t) on D, where
g*(t)=sup{|f(t,x,v,2)|: |x|+|y|+|z|=2p }eL(0,1).
By Lemma 2 BVP (1.33),(1.2) has a solution u satisfying (1.13).
Consequently u fulfils (1.23) for r1=-cﬂ r2=cl. According to

(1.30) and (1.32) we have

lur e u’ [Dg™ P (t, uh(u’) (1+|u’ " Ve

for a.e te€(0,1),|u’’(t)|zl. Therefore by Lemma 3 ]u"(t)|sr*
for te[0,1]. Consequently according to this estimate and to
(1.2),(1.23) we get '

lult) [+]u’ (£)|+]u’ " (t)|sp, for te[0,1]. (1.34)

In view of (1.32),(1.33) and (1.34%) u is a solution of BVP
(1.1),(1.2). Theorem is proved.

Note. If 0;(t)=o;(t) on [0,1] then ol(t)=02(t) on [0,1] and
BVP (1.1),(1.2) has a solution u(t)=61(t)=J2(t)-

Theorem 5. Let there exist rl,rzeR such that ro<r,, rlsOSr2
and
f(t,x,r ,0)=0, f(t,x,r,,0)z0 (1.35)

for a.e. te(0,1), xe[min{r (t-n),r (t-n)}, max{r (t-m),r (t-m)}].
Further let (1.30) be fulfilled on D(r ,r,), where heL(r ,r ),
g,w are the functions from Theorem 4. Then BVP (1.1),(1.2) has a
solution u such that

r su’(t)sr, for each tefo,1].
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Proof. Let us put ol(t)=r1(t—n), oz(t)=r2(t-n), then alis a
lower solution and o, is an upper solution of BVP (1.1) , (1.2)
and a;<a; on [0,1]. Thus Theorem 5 follows from Theorem 4.

Example., Theorem 5 (and also Theorem 4) is applicable for
example to the function

£(t,x,y,z)=(y +e")(1+z%)g(t)+ze* , where g is a nonnegative
function of C(0,1).
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