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ACTA UNIVERSITÀTIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM 

1992 Mathematica XXXI Vol.105 

METHOD OF LOWER AND UPPER SOLUTIONS FOR A THIRD-ORDER 
THREE-POINT REGULAR BOUNDARY VALUE PROBLEM 

MARTIN ŠENKYŘÍK 

(Recived November 20, 1990) 

Abstract. This paper is concerned with the existence 

of solutions of the problem 

u'''= f(t,u,u',u' ' ) 

u'(0)= u'(l)« U(T?) = 0 , 0 -s TJ s£ 1 , 

The method of lower and upper solutions is used here. 

Key vords: Boundary value problems, lower and upper 

solutions, a priori bounds . 

MS Classification : 34B10 

1, Introduction, In this paper we are concerned with the 

existence of solutions of the boundary value problem (BVP) 

u'''=f(t,u,u',u'') (1. 1) 

u' (0)=u' (1)«U(TJ)-0. 0-ST7<l, (1.2) 

where f satisfies the local Caratheodory conditions on (0,l)xR . 

This problem is regular in the sense that the associated linear 

problem has only the trivial solution. This problem models the 

static deflection of a three-layered elastic beam. In [18] 

there is proved an existence result for BVP (1.1), (1.2) 

without requiring a growth condition on the whole interval and 

some uniqueness theorems are given there to. 
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Multi-point BVPs for differential equations of the 

n-th order have been studied by many authors ( see References ). 

For n£2 and 2-sk-sn , the question of existence and unqueness of 

solutions of k-point BVPs Cauchy-Nicoletti , de la Valee-Poussin 

or similar ones, in which the values of a solution or the values 

of its derivatives are given, have been solved e.g. in [10,11, 

12-15]. 

We consider equation (1.1) with three-point boundary 

conditions. In this case the Valee-Poussin conditions have the 

form 

u(a)=A,u(c)=C,u(b)=B , (1.3) 

where -oo<a<c<b<+oo , A,B,CeR. 

BVP (1.1), (1.3) has been investigated e.g. in [1,2,5,19]. 

Replacing function values by its derivatives, we obtain 

u'(a)=A , u(c)=C , u'(b)=B. (1.4) 

In [4] , the subfunction method is used for the existence of 

solutions of BVP (1.1), (1.4) and in [16] , the necessary and 

sufficient conditions for solvability of this problem are proved 

by means of lower and upper functions. 

BVP (1.1) , 

u(c)=0 , u'(a)=u'(b) , u"(a)=u"(b) (1.5) 

where -oo<a-̂ ĉ b<+oo , has been investigated in [17] by a method 

very similar to the method used in this paper. 

C .P.Gupta [7] studied the questions of the existence and 

uniqueness of solutions of the equation 

2 
-u" ' -rc u+g(x,u,u' , u" )=e(x) (1.6) 

or 

u' " +rc2u+g(x,u,u' , u" )=e(x) ( 1 . 7 ) 

satisfying ( 1 . 2 ) . The existence of a solution for the resonance 

problem ( 1 . 6 ) , ( 1 .2) was obtained when e was a Lebesgue-intgrable 
function with J e(x)sinrcxdx=0 and g was a Caratheodory function, 

bounded on [0, 1]XB2XR (for every bounded B of R) and 

g(x,u,v,w)v-*0, for xe[0,l] , u,v,weR. 

For the existence of a solution for (1.7), (1.2) g, in adition, 

g(x,u,vrw) 
lig s u p _ — « . « 0<3Tr . 

These results were proved by means of the method using 

second-order integro—differential BVPs and the Leray-Schauder 
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continuation theorem . 

In contrast to this, here we defined lower and upper 

solutions for ( 1 . 1 ) , ( 1 .2) directly not transforming the BVP on 

to an integro-diferential problem . 

2,Notations and definitions. 

In what follows we suppose that p, qe[1, +oo),where l/p+l/q=l, 

X is the set of all real functions with one real argument , 

Cm(a,b)={f€X: f(m is continuous on [a,b]}, meN, 

Lp(a, b) = {f€X: |f|p is Lebesgue integrable on.(a,b)} with a norm 

11*11 = a " | f ( t ) | p d t ) 1 / p for p<+oo , 
L P ( a , b ) 

L ( a , b ) = {f€X: ess sup |f(t) |<+oo } , wi th a norm 
a < t < b 

N f H « - ef!t?\?P lf(t)l' 
L (a,b) 

ACm(a, b) = {f€X: fim is absolutely continuous on [a,b]}. 

We say that some property is satisfied on D (resp.D'),if it 

is satisfied for a.e. te(o,1)(resp.te(a,b)) and for each x,y,z€R. 

Let s ,s ec°(0,l), s (t)-ss (t) on [0,1] and S , S be such 
1 ' 2 • 1 2 1 2 

that s;(t)=Si(t), S2(t)=s2(t) on (0,1) and S% (T?)=S2 (TJ)-=0. 

Then we say that some property is satisfied on D(s ,s ),if it is 

satisfied for a.e te(0,l) and for each x,y,z€R, where |z|---l, 

si(t)syss2(t), min {Sx (t),S2(t) }sxsmax { Si(t),S2(t)}. 

Let D'=( (a,b)xR3). We say that f:D'-*R satisfies the local 

Caratheodory conditions on D' (feCar (D')), if 
loc 

f(.,x,y,z): (a,b)-»R is measurable on (a,b) for each x,y,zeR, 

f(t,.,.,.): R -+R is continuous for a.e. te(a b) 

and sup { (f (t,x,y, z) | : (x| + | y | + |zl-sp}eL1(a, b) for any p€(0,+oo). 

A function ueAC2(0,l) satisfying (1.1) for a.e. te(0,l) and 

fulfilling (1.2), will be called a solution of BVP (1.1), (1.2). 

Functions <r ,cr2€AC
2 (0, 1) satisfying 

or;' '>f(t,x,cr;(t),cr;' (t)), (1.8) 

for a.e. te(o,1) 

and for x e [min{cri (t), cr (t)}/aax{<r (t),<r (t)}], 
cri(7))=0, 0-̂ (0)50, cr;(l)̂ 0, (1.9) 

cr2"sf(t,x,cr2,«r2'), (1.10) 

for a.e. te(o,1) 
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and for x€[min{cri (t), a2 (t)}, »ax{<r (t),cr (t)}], 

<r2(n)*-0, cr2(0)^0, cr2(l)>0, (1.11) 

will be called a lower and an upper solution of BVP (1.1), (1.2). 

For i = 0,1,2 we denote c * max{ \al
i
i) (t) | + \aiiy (t) | : 0-stsi } . 

3. Lemmas. 

Lemma 1. (generalized Fredholm alternative theorem [19]) 

Let D' =( a,b)xJRn,<p ; cf'1 ( a, b )->R, i=l ,2, . . . ,n are continuous 

linear functionals, A e R for i=l,2, . . . ,n. Let us put 
n 

Ly=yn- E a j 

i = 1 

Ny=f(t,y,y' ,$n~l)), 

where a^L(a,b), i=0,1,2,...,n, f^Car (D'). 
i loc 

Let the BVP 

Ly=0, 

<t> (y)=0, i=l,2, . . . ,n 

have only the trivial solution. If the absolute value of the 

function f is bounded by a Lebesgue integrable function on D' , 

then the BVP 

Ly=Ny, 

$ (y)=A , i=l,2,.. .,n 

has at least one solution. 

Lemma 2. Let a be a lower solution and 
I 

solution of BVP (1.1),(1.2) and a'(t)za' (t) for every tz[0,l]. 

Let there exist h eL (0,1) such that on D there is satisfied 

\f(t.x,y,z)\*hQ(t) , (1.12) 

for a'(t)^y^a' (t). 
1 J 2 

Then BVP (1.1), (1.2) has a solution u satisfying 

a't(t)su' (t)*a'2(t) (1. 13) 

for te[0,l]. 

Proof. Let us choose meN and put (on D) 

si(t)=min{cri(t),(r2(t)}, s 2 (t)=max{cri (t), a£ (t) }, 
s (t) for x -s s (t) 

p(t,x)= x for s^ít) -s x -? s (t) 

s2(t) for x -- s2(t) , 
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v t ( t , x , y , z ) « - m ( y - t r p ( f ( t , p ( t , x ) , t r ' i ( t ) , t r ^ ' ( t ) ) - f ( t , p ( t , x ) , c r ^ ( z ) , z ) ) / 

v 2 ( t , x , y , z ) « m ( y - t r 2 ) ( f ( t , p ( t , x ) , o r 2 ( t ) , c r 2 ' ( t ) ) - f ( t , p ( t , x) ,<T2 ( t ) , z ) ) , 

f ( t , p ( t , x ) , t r ^ ( t ) , c r ' i ' ( t ) ) for yscrj ( t ) - l /m , 

f ( t , p ( t , x ) , t r # ( t ) , z ) + v ( t , x , y , z ) for <r̂  (t)-l/m<y<cr^ ( t ) , 

H f ( t , p ( t , x ) , y , z ) for c r ^ ( t ) s y s c r 2 ( t ) , (1 .14) 

f ( t , p ( t , x ) , < r 2 ( t ) , z ) + v ( t , x , y , z ) for a' (t)<y<trl ( t ) + l/m, 

f ( t , p ( t , x ) , t r 2 ( t ) , t r 2 ' ( t ) ) for cr2 ( t ) + l/m^y . 

From (1 .12 ) and (1 .14) i t fo l lows t h a t on D i t i s 

| f B ( t , x , y , z ) | s h o ( t ) . (1 .15) 

Let us consider the differential equation 

u' ' '=f (t,u,u' ,u" ). (1. 16) 
m 

According to Lemma 1 BVP (1.16), (1.2) has a solution u .We shall 
m 

show that u satisfies 
m 

a' (t)-l/m-su' (t)-scr' (t)+l/m (1. 17) 
1 m 2 

for every te[o,l]. Put 
v(t) = (-l)i(u'(t)-cr'(t))-l/m m I 

for te[0,l] and ie{i,2}. 

Then by (1. 2), (1. 9)and (1.11) we get v(0)-S0, v(l)-sO. 

Let there exist t €(o,l) such, that v(t )>0. Then there exists 
an interval (a ,b ), where O^a <t <b ^1, such that v(t)>0 for o'o o o o ' * 
te(ao,bo), v(ao)=v(bQ)=0, v'(ao)&0, v'(bQ)-so. From (1.8), (1.10) 

and (1.14) it follows that 

v " (t) = (-l)i(f (t,u ,u',u" )-tr;;" (t))>0 (1.18) 
m m m m i 

for a.e. te(a ,b ), for ie{i,2}. Integrating (1.18) from t to t , 

where a <t <t <b , we get 
O 1 2 0 3 

v' (t )-v'(t )£0. 

The last inequality implies, that the function v'(t) is 

nondecreasing in (a ,b ). Let v(t )=max{v(t); te(a ,b )}, then 

v'(t )=0 and v'(t) is nondecreasing in (t ,b ). Since v(t )>0 we 

get v(b )>0 which contradicts to v(b )=0. Hence (1.17) is 

proved. From (1.17) and (1.2) it follows that 

lu'(t)lsc +l/» for t€[0,l] (1.19) 
1 m * 3 

and 
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|u (t) |sc +l/m for te[o,l]. (1.20) 

Integrating (1.16), where u-m , from t to a , where t,ae(o,l) and 

a is such that u''(a)=0 we get 
m 

K'(t)l^o Vt)dt" (1 .21) 
From (1.19), (1.20) and (1.21) it follows that the sequences 

(u ) , (u' ) are uniformly bounded and equi-continuous on 
m m =1 -m m =1 •* ^ 

[0,1] and that the sequence (u'' ) is uniformly bounded. 
B • = 1 

From (1.16) and by the theory of the Lebesgue integral we get 

that the sequence (u' ' ) is equi-continuous on [0,1]. By the 
m m =1 

Arzela-Ascoli lemma without loss of generality, we may suppose 

that all the three sequences are uniformly converging on [0,1]. 

By Lebesgue theorem and by (1.14),(1.16),(1.17) the function 

u(t)=lim u (t) on [0,1] is a solution of BVP (1.1), (1.2) and 
ES-THX) Kl 

fulfils (1.13). Lemma is proved. 
Lemma 3. (On a priori estimates) Let r ,r eR, r <r , 

^ 1 2 1 2 

r^O^r^ , gecar ((0,l)xR) , h&Lq(r ,r ) and weC°(0,co) is a 
1 2 1 o c 1 2 

positive function satisfying 

oo 
f ds 
I —,—r~ - +oo. (1. 22) 

j ~w^r 
Then there exists r e(l,co) such that for any function u^AC (0,1) 

the conditions (1.2), 

r -su' (t)^r for every te[0,l], (1.23) 
1 2 •* 

|u'" |swf \u" \)g1/p(t,u)h(u* )(l+\u" \)1/q (1.24) 

for a.e. te(0,l), \u"(t)\±l, 

imply the estimate 

\u" (t)\sr* for every t*[0,lj. (1.25) 

Proof. Let G={ veAC2(0,l): v satisfies (1.2) and (1.23)}. 

If veG,then |v(t)|-Sp, where p=max{ | r | , r^ } and 

go(t)=sup{|g(t,v)|: v€G}€L*(0,1). 
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Put 

Válčil » INI p ' 0.26) 
L ( 0 , 1 ) L í r ,r ) 

1 2 

n ( x K î T-TT f o r X€R- ( 1 2 7 ) . ds 
L 

0 

From (1.22) and (1.27) it follows that Q is an odd function, 

n(R)-*R and there exists the inverse mapping Q'1. Let ueAC (0,1) 

satisfy (1.2), (1.23) and (1.24) then there exists a €(0,1) such 

that u " (a )=0. Let us suppose that there exists t €(a ,1] such 

that 

lu-U^^r*, (1.28) 

where 

r*=n_1(n(l)+ko). ( 1 .29) 

Let [a ,b ]c[a ,1] be the maximal interval containing t , in 

which |u"(t)|£l. Let s e(a ,b ] be such a point that 

|u" (sx) |=pa--max{|u' ' (t) | : a^t*^}. 

From (1.24) and from the Holder inequality we can obtain 
s 

f .(|u-iti[) *«V 
a • ' 
1 

In the case that u''(t)z-l on [a ,s ] we get Q(p )-Q(l)-£k , which 

implies by (1. 26), (1. 29) that p -?r*. The last inequality 

contradicts (1.28). We can obtain a similar contradiction in the 

case u'' (t)-s-l on [a ,s ]. Therefore we have |u''(t)|-sr for 

every te[a ,1]. If we suppose that t e[0,a ] , we can get in a 

similar way as above that |u''(t)|-sr for te[o,aQ] and this 

comletes the proof. 

4.Theorems 

Theorem 4. Let a be a lover solution and a an upper 
solution of BVP (1.1) ,(1.2) and a'(t)^a' (t) for each te[0,l]. 
Let on the set D(a',a* ) the inequality 

\f(t,x,y,z)\*u(\z\)g1/p(t,x)h(y)(l+\z\)1/q, (1.30) 

be satisfied, vhere hGL*(-c ,c), gecar ((0,l)xJR) are nonnega-
1 1 1 oc 

tive and wee (0,1) is a positive function satisfying (1.22). 

Then BVP (1.1),(1.2) has a solution such that 

cr* (t )&u* ft )**r'z(t) for each t*[0,l]. (1.31) 
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Proof. Without loss of generality we «ay suppose c >0. 

Let r be the constant found by Leaaa 3 for r «-c , r *c . Put 

p -=r +c +c +c , 

X(p0,s)* 
1 f o r Oзќs-sp 
2 - s / p f o r p <s<2p 

' o r 0 0 

0 f o r S2-2p , 
к o 

l ( t , x , y , z ) - = ^ ( p o , | x | + Jy | + | z | ) f ( t , x , y , z ) on D. ( 1 . 3 2 ) 

S i n c e max{ |cr ( t ) | + |<r' ( t ) | + | c r " ( t ) | ; Ors-t-U} <pQ , f o r i = l , 2 , 

a i s a l o w e r s o l u t i o n and a i s an upper s o l u t i o n o f BVP 
1 2 * F 

u'''=l(t,u,u',u' ' ), (1. 33) 

(1.2). Further |l(t,x,y, z) |-sg*(t) on D, where 

g*(t)=sup{|f(t,x,y,z)|: |x| + |y |+ | z | =-2p
()
}eL

1
-(0

/
1). 

By Lemma 2 BVP (1.33), (1.2) has a solution u satisfying (1.13). 

Consequently u fulfils (1.23) for r =-c , r -=c . According to 

(1.30) and (1.32) we have 

|u'" |-<(j(|u" i)g
1/p
(t,u)h(u')(l+|u" | )

1 / q 

for a.e te(o, 1), |u" (t) |ai. Therefore by Lemma 3 |u"(t)|sr* 

for te[o,l]. Consequently according to this estimate and to 

(1. 2), (1.23) we get 

|u(t)| + |u'"(t)| + |u"(t)|-fip
o
 for t€[0,l]. (1.34) 

In view of (1. 32), (1. 33) and (1.34) u is a solution of BVP 

(1.1),(1.2). Theorem is proved. 

Note. If a' (t)=cr' (t) on [0,1] then a (t)«tr (t) on [0,1] and 
1 2 i d 

BVP (1.1), (1.2) has a solution u(t)-(r (t)*J2(t). 

Theorem 5. Let there exist r ,r eR such that r<r^, r sosr 
1 2 1 2 1 2 

and 
f(t,x,r ,0)^0, f(t,x,r ,0)^0 (1.35) 

for a.e. t<z(o,l), xe[min{r (t-i\),r (t-v)}, max{ri(t-Ti),r2(t-q)}]. 
Further let (1.30) be fulfilled on D(rt,rz), where JieiVr^r^, 

g,u are the functions from Theorem 4. Then BVP (l.l),(1.2) has a 
solution u such that 

r^u'(t)^r2 for each te[0,l]. 
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Proof. Let us put a (t)=r (t—n), a (t)=r (t-Tj), then a is a 

lower solution and a is an upper solution of BVP (1.1) , (1.2) 

and a'<a' on [0,1]. Thus Theorem 5 follows from Theorem 4. 

Example. Theorem 5 (and also Theorem 4) is applicable for 

example to the function 

f(t, x,y,z) = (y +et)(l+z )g(t)+zex , where g is a nonnegative 

function of C(0,1). 
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