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1. Introduction 

Let Rn be the n-dimensional vector space with a norm || . || , 

R = (-QD,QD), R+ = [0,m). Let c

l o c (
R

+ >
R n ) denote the space of 

continuous functions u: R+ — Rn with the topology of locally 

uniform convergence on R^ and let L l n n(R . R n) be the space of 
•+• loc + PI 

locally Lebesque integrable functions u: R+ -*• R with the to­

pology of convergence in the mean on every compact subinterval 

of R+. Let T: C-. (R+, R
n) -• Lioc^ R+' R ° ^ b e a c o n t i n u o u s opera­

tor of volterra type. Let A: R+ -* R
n x n be a locally integrable 

matrix function. 
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Throughout the paper the vertical bars | . | denote vectors 

or matrices formed from absolute values of their components. 

Further we put u .-- v (U -£ V) if for the corresponding components 

the inequality u. ̂  v. (Ui-, ̂  Vi-.) i s valid and in this sence we 

also understand the monotonicity of vector or matrix functions. 

We consider an operator-differential equation of the form 

y'(t) = A(t)y(t) + T(y)(t) 

and the corresponding unperturbed linear equation 

x'(t) = A(t)x(t) . 

(1 .D 

(1.2) 

By a solution of (1.1) we understand any function y: 

[o, t*) —* Rn which is locally absolutely continuous on [0, t*) 

and satisfies (1.1) almost everywhere on [0, t ) and which is 

maximally extended to the right. 

Let X(t,s) be the Cauchy matrix for the equation (1.2) 

such that X(t,t) is the identity matrix. 

It is well-known that (1.1) is almost everywhere on the 

existence interval [0,t*) equivalent to the integral equation 

t 

y(t) = x(t) + f X(t,s)T(y)(s)ds , t c [0, t*) , (1.3) 

0 

where x is a solution of (1.2). 

Define on the space Ci0C(
R+> Rn") the successive approxi­

mations 

ҺL (1.4) 

by 

u
Q
(t) = x(t) 

L 

u
k
(t) = x(t) + Jx(t,s)T(u

kl
)(s)ds , k = 1,2,..., 

(1.5) 

tєR 

In this paper we provide sufficient conditions for the 
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existence solutions of (1.1) on R+. These results generalize the 

results of [l], [2] and [3]. 

2. Results. 

Theorem 2.1. Let the following assumptions hold: 

1. X(t,s) ^ 0 , s -=• t , s,t € R+ , 

2. the operator T is monotone and nonnegative on C, (R+,R ) , 

3. for every constant vector a > 0 and every t<sR+ the 

following inequality is fulfilled 

t 

[ X(t,s)T(a)ds -* | (2.1) 

b = sup 
t«-R 

olution x of (1.2) there exists a 

's a locally uniform limit of 

on R+ . 

olution of (1.2) on R . Denote 

Then for every bounded solution x 01 \ L . ' D there exists 

solution y of (1.1) on R+ which is a locally uniform limit of 

the nondecreasing sequence (1.5) on R+ . 

P r o o f . Let x be bounded s P r o o f . Let x be bounded solution of (1.2) on R . Denoti 

up |x(t)|. From (1.5) it follows that the functions u,(t) 
«-R k 

+ 

are defined and continuous on R+ for every k= 0,1,2,... . With 

respect to the assumptions of Theorem 2.1 and (2.1), from (1.5) 

by using the principle of mathematical induction, we obtain 

- b -* u. -(t) ^ u. (t) * 2b , k = l,2,..., tsrR . (2.2) 

by using 

b ^ uk_1(t) ^ u k(t) * 2b , k = 1,2,..., t c R + 

Further the sequence (1.4) is nondecreasing and bounded on R . 
+ 

Therefore there exists lim u.(t) = u(t) for which 
k -*CD K 

|u(t)| -* 2b , t c R + . 

With functions u R(t) fulfilling (2.2) the functions 

X(t,s)T(uk)(s) (2.3) 

for any fixed teR , are uniformly bounded for 0 ^ s -= t. By 

Lebesque 's dominanted convergence theorem it follows that 

t 

u(t) = x(t) + J X(t,s)T(u)(s)ds , 

0 

t є R . 
+ 
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From the last equality we have that the function u is continuous 

and there exists such a function y that u(t) = y(t), te R+ , and 

the inequality 

|y(t)| * 2b 

is true. 

The function y fulfils the relation 

t 

y(t) = x(t) + f X(t,s)T(y)(s)ds , t*R + 

Therefore y is the solution of (1.1) almost everywhere on R+ . 

By Dini's theorem the sequence (1.4) is uniformly convergent to 

y on every compact subinterval from R+. Thus the theorem is 

proved. 

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and 

let the solution of (1.1) be uniquely determined by the initial 

condition 

y(0+) = yr (2.4) 

Then for every solution x of (1.2) with x(0+) = x there 

exists a unique solution y of initial problem (1.1), (2.4) on 

R+ with y(0+) = x(0+) = xQ. 

P r o o f . Choose a sequence of compact intervals (iiA k_i 

so that jj-̂  Ik = R+ and for any k € N, I k C . I 
k+1 

is true. 

Consider an arbitrary interval I, . Since the solution x of 

(1.2) is bounded on I. , we can repeat the whole proof of Theorem 

2.1 only with one exception: consideration will be carried out 

on the interval I. and not on R+. Thus we obtain the existence 

of the solution yk of the initial problem"(1.1), (2.4) on I.. 

With respect to uniqueness of the problem (1.1), (2.4), yk(t) = 

= y (t) for any t e l p>k. Therefore y defined on R+ by re­

lation 

У(t) = y
k
(t) , tsl, 1,2, 
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is already a solution of the initial problem (1.1), (2.4) on the 

whole interval. 

Theorem 2.3. Let the following assumptions hold: 

1. there exists locally integrable matrix functions M,N: R --> 

-» Rnxn such that 

|X(t,s)| * M(t)N(s) , t ^ s , t,s*R . (2.5) 

2. there exists a function co : R x R Rn nondecreasing in 

the second argument for every fixed t <£ R and 

N(t)|T(u)(t)| -* co(t,|u(t)|) a.e. t e R+ , (2.6) 

there exists positive constant vectors q,r such that 

q - r > 0 and 

OD 

fcu(t,M(t)N(0)q}dt < N(0)[q-r] . (2.7) 

0 

Then for every solution x of (1.2) with 

|x(0+)| = |xJ = r 

there exists a solutions y of (1.1) on R such that 

|y(t)| ^ M(t)N(0)q 

(2.8) 

(2.9) 

is true for any t <£ R . 

P r o o f . Let x be an arbitrary solution of (1.2) such that 

(2.8) is true. Let y be a solution of (1.1) with its existence 

interval [0,t ). Then from (1.3) with regard to the assumptions 

of Theorem 2.3 we get 

t 

|y(t)| ^ |x(t)| + j|X(t,s)||T(y)(s)|ds «* |X(t,0)x(0)| + 

0 

t 

+ fM(t)N(s)|T(y)(s)|ds -* M(t)N(0)|xQ| + 

0 

t 

+ M(t)fN(s)|T(y)(s)|ds * M(t){N(0)|xQ| + 

0 

t 

+ f Oj(s,|y(s)|)dsj , for te[0,t*) . (2.ю: 
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Define 

u(t) . N(0)|x I + fc
0
(s,|y(s)|)ds, teto.t") (2.11) 

Then we can write (2.10) ifi
 t n e f o r m 

|y(t)| -=M(t)u(t) , t«[0,t*) 

Using (2.12), we obtain fr^ t
2
-

11
)

 t h e
 inequality 

(2.12) 

L 

u(t)*N(0)|x I + f eo(s,M(s)u(s))ds , t«[0,t
м
). (2.13) 

We will show that the inequality u(t) - N(0)q is true for 

every t<£[o,t*). We prOve it in inderect way. 

If t = 0, then u(0) ̂  N(0)q. With respect to the continuity 

of u there exists a 6 > 0 s u c h t h a t for x e [° > <-0 > u(t) - N(0)q, 

holds. Let t e [0,t*) be the first point on the right from 0 
such that u(t ) = N(0)q- Then for t£[0,tQ) from (2.12) we get 

|y(t)| * M(t)u(t) ~ M(t)N(0)q . 

Thus, from (2.13) we have 

t 

N(0)q = u(tQ) -* N(0)|xQ| + J^(s,M(s)u(s))ds «* N(0)|xQ| + 

0 

+ fбo(s,M(s)N(Q)q)ds< N(0)|x
Q
| + N(0) q - |x

f 

0 

= N(0)q . 

This is a contradiction. In this way we have proved that u(t) — 

- N(0)q for t€ [0,t*). With respect to (2.12) we obtain (2.9) 

on the interval [0,t*). Since (2.9) means the boundedness of a 

solution of (1.1) on [0,t*), we have that t = + CJD . Thus the 

proof is complete. 

Next we shall consider a functional differential equation 

y'(t) = A(t)y(t) + f(t,C>(y;h(t))) (2.14) 
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where A has the same meaning as above, f: R x R
n
 —* R

n
 fulfils 

local Caratheodory conditions and P is an operator defined by 

u(t) 

0(u;t) 

foг t є R 

for t < 0 , 

where h: R
+
 -*R is a continuous function such that h(t) — t 

for t€R, , 

Corollary 2.1. Let the following assumptions hold: 

1. X(t,s) -* 0 , s -* t , s,t.<s R+ , 

2. f — 0 for every (t,u)eR+x Rn and f is nondecreasing in 

the second argument for every fixed t e R + , 

3. for every constant vector a > 0 and every teR + the ine­

quality 

t 

J X(t,s)f(s,a)ds * | 

0 

holds. 

Then for every bounded solution x of (1.2) there exists a 

solution y of (2.14) on R+ which is a locally uniform limit of 

the nondecreasing sequence 

uQ(t) = x(t) 

t 

uk(t) = x(t) + J X(t,s)f(s,^(uk-1;h(s)))ds, 

0 k = 1,2,..., te R+ . 

Corollary 2.2. Let the hypotheses of Theorem 2.3 be sa­

tisfied, except of (2.6). Let instead of (2.6) 

N(t)f(t,u) -S oo(t,|u|) for a.e. t e R + 

hold. Then for every x of (1.2) with |x(0)| = rC q there exists 

a solution y of (2.14) on R+ such that |y(t)| -= M(t)N(0)q is 

true for each teR . 
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