Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Eva Tesafikova

To the theory of global transformation of the second order linear differential
equations of finite type, special

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 29 (1990), No.
1, 207--230

Persistent URL: http://dml.cz/dmlcz/120233

Terms of use:

© Palacky University Olomouc, Faculty of Science, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/120233
http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM
1990 MATHEMATICA XXIX VOL.. 97

Katedra lékafské biofyziky lékafské fakulty Univerzity Palackého
v Olomouci

Vedouci katedry: Ooc.MUDr.Zdenek Grosman, CSc.

TO THE THEORY OF GLOBAL TRANSFORMATION
OF THE SECOND ORDER
LINEAR DIFFERENTIAL EQUATIONS
OF FINITE TYPE, SPECIAL

EVA TESARIKOVA

Introduction

In BorGvka' s monograph [1], the question of global trans-
formation of second order linear differential equations in Ja-
cebian form

y" = aq(t) y
Y"o= o Q)Y

(9)
Q)

was treated at length on the basis of a theory of general dis-
persions for the equations being on both sides oscillatory, but

the equations of a finite type are on the periphery of author s
interest, there.

In this paper is formed a theory of general dispersions
for equations (q), (Q) in Jacobian form (where q(t)e Co(j) and
Q(t) e CD(J)) which are l-special of a finite type m 2 2 in

their definition intervals j = (a,b) and J = (A,B), respective-
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ly. With regard to this property, the denoting (q(l)), (Q(l))
will be used in the following text. Except from the monograph
[1] the text proceeds from three publicated articles [2], [3],
[4] where a theory of central dispersions of particular kinds
for equations of a finite type - special was treated on the
basis of definitions of special central dispersions. Besides,
the special central dispersions of the 1lst kind relative to the
equation of the type (q(l)) form a finite cyclic group of
m-order relative to an operation of composition in the whole
definition interval except from points of 1-fundamental sequen-
ce.

General dispersions of differential equation of type
(q(l)) and their relation to transformation problem

Consider now differential equations (q(l)), (Q(l)) of the
same finite type m, l-special in the intervals j, J, respecti-
vely. Let us denote the space of all solutions of equation
(q(l)) and (Q(l)) in corresponding definition intervals by r
and R (in this order), while (u,v), (U,V) will be arbitrary
bases of r, R, and w, W the Wronskians of these bases. Further-
more, consider a linear mapping p of the space r onto the space
R determined by pair of bases (u,v). (U,V), i.e. mapping p
where (U,V) = (pu,pv). The proportion of Wronskians w:W of
these bases is called the characteristic X _ of the mapping p.
In connection with this mapping let us recapitulate same facts
given in § 19 of [1].

Mapping p is uniquely ordered by pair of bases (u,v),
(U,Vv), it is schlicht and has the property such that maps li-
neary independent elements of the space R. Moreover, for every
element yer defined in the form y = (clu + c2v) where Cys C
are arbitrary constants it holds that py = Y if and only if

2

Y = (CIU + 02V). To every mapping p determined in this way

there exists an inverse mapping p—1 whose characteristic is
given by relationship Ip'l = (‘lp)—l.

A mapping cp, which maps the basis (u,v) onto the basis
(C1U + CZV) where ¢ # 0 is an arbitrary constant is called a
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variation of the mapping p. The elements cpy€ R are linearly
depencent for different c. A characteristic of the variation

cp of the mapping p is given by relationship lgp = C_Z'Xp.

With respect to the expression of the elements of the
bases (u,v) and (U,V) in the forms

i L
u - £y sind v = £ wtos& )
irdl TaT

and

u - e sind V:EN% (2)

VT a| mal’

by means of arbitrary first phase oL of the basis (u,v) and by
means of arbitrary first phase A of the basis (U,V), respecti-

vely, in which € , E take the values +1 or -1 according as the
phases are proper or not relative to the bases (u,v), (U,V),
and with respect to the expression the arbitrary elements yer
and YER in the form

sin( 4 +K,) €E ky-sin(d +k,)

=k, Yy = .
SENIFY o il

in which kl’ k2 are the constants for kl # 0, k2 e U,ZW’) it
follows that the linear mapping p of the space r onto the space

(3

R is determined not only by a concrete ordered pair of bases
(u,v), (U,V) but alsc by an ordered pair of phases of these
bases which we call phase basis corresponding with the mapping
p.

For every choice of basis (U,V), the second basis of
ordered pair relative to concrete mapping p is determined
uniquely in the form (pu,pv). Thus for every choice of phase &K
of (q(l)), the second term A of the phase basis relative
mapping p is determined except for integer multiplies of 2’,
The characteristic Ip is independent un choice of basis.

On the contrary, an arbitrary pair of phases (L , d ) of

Dy @D

differential equations (g ) forms the phase basis of
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infinitely many linear mapping cp, ¢ # 0, of the space r onto
R. Then, the mapping p is uniquely determined by the phase
pasis (L ,A), except for its variations.

Furthermore, let’s point out a concept of normalized
mappina. A linear mapping p of the space r onto the space R is
called normalized with respect to the pair ot points (z,2),
zej, Z€J, if the implication [y(z) = 0] = [py(Z) = 0] holds
for every ver. This property is common to all variations cp
of the mapping p. Relating to the phase basis (& , Q) the
following theorem holds.

Theorem 1.

The linear mapping of the space r onto R is normalized
with respect to the pair of points (z,Z), ze€ j, Z€J if and
only if the values of the phases of the corresponding phase
basis (« , A) differ by an integral multiple of 4 , i.e.

A (z) - A(2) = n7" , where n is an integer, holds.

Proof: Let p is a linear mapping of r onto R. From [y(z) =
= 0] =>[Y(Z) - py(Z) = 0] and from the expressions y(z),
Y(Z) in the form (3) it follows that « (z) + ky = a(z) + Ky *
+ nlJ”, and vice versa.

From Theorem 1 it follows immediately that for linear
mapping which is normalized with respect to pair of points z,
7 there always exists a phase basis (d Hﬁ) fulfilling the
condition: & (z) = 0, Q(Z) = 0. We will cai' ** the canonical
_phaSe basis of mapping with respect to points z, Z.

So much for basic concepts of § 19 in [1] whic are
concerned the theory of general dispersions of oscill ory
equations (g) mentioned in introduction. In the following text,
we will start with treating a theory of general dispc ~ions as
a transformation theory of equations (q(l)), (Q(L)) of the same
finite type m 2 2, l-special in definition intervals. First of,

all it is necessary to introduce some further basic concepts.

By l1-fundamental seauences (a(l)) and (A<1>) of equation
(q(1>) and (D(l ), respectively, we mean zeros of 1-fundamental
solution of this equation in the following ordering
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a=ag< a;<a < a_ =b | . (g(l))

and

. (1
A= Ag< A< Ay o AL <A =B (A2

Relating to these sequences, we will call the points te j and

Te J, (in this order) directly or indirectly associated, if
either :

or

te(ai_l,ai) and TE(L‘\i_l,Ai) or T€& (A A

m-1i’ m—i+l) ’

where i = 1,2,...,m, holds.

We will call the phases i, a which are corresponding to

(q(l)),

(D(l)) directly or indirectly similar, if they are
taking the same values in directly or indirectly associated

points of sequences (a(l)), (A<l)), respectively.

Now consider some of 1l-fundamental basis (ul,v) and
(Ul,V) of equation (q<l)) and (Q<1>), respectively. Let’'s point
out, that Uy and Ul are some of l-fundamental solutions of
corresponding equations, v and V are arbitrary solutions inde-
pendent on Uy and Ul’ respectively. Let p be a linear mapping

of the space r onto the space R defined by pair of these bases.
Such a mapping is aiways ncrmalized with respect to all the
pairs of elements of sequences (a(l)), (A(l)), and conversely,
every mapping p normalized with respect to all the pairs of
elements of sequences (a(l)), (A(l)) maps every l-fundamental
basis (ul,v) on the corresponding l-fundamental basis (pul,pv).
Such mapping p is called the canonical mapping of the space r
onto the space R. i

To every canonical mapping p there always exists the phase
basis (ol, ), which is canonical with respect to the chosen
pair (ai,Ai) or (ai’Am .) of directly or indirectly associated
points of sequences (a(i)) or (A(l)). It's composed of directly
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or indirectly similar phases « ,A of the phase systems of bases
(ul,v), (Ul,V). A concrete canonical mapping p isn 't determined
only by a chosen pair of 1-fundamental bases <U1’V)’ (Ul,v),
but also by an arbitrary pair of bases (u,v), (U,V) where

U =pu, V=pv. It follows that a concrete canonical mapping p
can be determined also by a phase basis (ZZ,Zi), which is
composed of the phases of phase systems of bases (u,v), (U,V).
Moreover the following theorem holds.

Theorem 2.

Some of canonical mappings of the space r onto R is deter-
mined by the phase basis (o« ,d), which is canonical to some
directly or indirectly associated two points tU’ TU’ toe I,

TOE J, if and only if the o , L are normal phases directly
or indirectly similar. st

Proof: By Theorem 1 the linear mapping p or r onto R is

determined by the phase basis (o ,d) which is canonical if
and only if K(ai) - a(Ak) = n7T (n an integer) holds for an
arbitrary pair of points a.,Ak (where i,k € {1,2,...,m—1§) of
1-fundamental sequences (a 1)), (A(l)). If « (tU) =0, A(TU) =

= 0 for two directly or indirectly associated points tO‘TU’ then

VL(a.l) - a(Ai) =0 or o((a.l) - a.(Am_i) = 0 for every pair
of directly or indirectly associated points of sequences

(a(l)), (A(l)) and conversely.

Henceforward the phase basis, which is corresponding with
the canonical mapping p and composed of directly or indirectly
similar normal phases, will be called the forming phase basis
cf this mapping. Now to every canonical mapping p of r onto R,
we will define the function which maps zeros of an arbitrary
element yer onto corresponding zeros of element Y = pyeR.

Definition 1

The function X(t), which associated every point te j at
the directly or indirectly associted zero T€ J of image
Y = pye R of the solution y&r such that y(t) = 0, will be
called the general dispersion of equations (q(l)), (Q(l))
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corresponding to canonical mapping p of the space r onto R,
for xp > 0 or XD < 0, respectively.

If Xp > 0, then X(t) is a direct general dispersion.

If Xp < 0, then X(t) is an indirect general dispersion.

From theorems about ordering of zeros of solutions rela-
tive linear dofferential equations of type (g) of [1] it
follows that a domain of definition of the general dispersion
is a whole interval j = (a,b), the range of values is the whole
interval J = (A,B).

With respect to the coincidence of zeros of images cpy €& R
relative to the element ye€ r for various variations cp of
mapping p, from Definition 1 it is easy to see, that general
(1)), (Q(l)) relative to
various variations of the same mapping p are equal identically
in the whole definition interval.

dispersions X(t) of equations (q

The Definition 1 is a certain analogy of general disper-
sions of oscillatory eguations of § 20 [1], which is adapted
to conditions of equations of type (q(l)). From the following

we will see, that there is a possibility of derivating ana-
logical properties of functions introduced in such a way. These

adaptions are formed on the basic of theorems defining a re-
lation of general dispersions and phase bases of corresponding
canonical mapping p.

Theorem 3

Let p be a canonical mapping of r onto R, (L ,) be its
forming phase basis. Thus a general dispersion X(t) correspon-
ding to this mapping fullfils the functional equation

L) = AX(t)) (4)

on the whole interval j.

Proof: If expressing element y and its image Y = py in
zero x in the form (3) we will come to equations
A(x) + ko = no”

AlXG0) + ky = NI
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where k2 €<0,27) is a constant, n, N are integers. Consequent-
ly & (x) - A[x(x)] = m7", meZ. With respect to direct or in-
direct similarity of phases, the relation -7 < &(x) -
- (ZEX(xﬂ & 7 holds too and with the above relations com-
pletes the proof of (4).

From Theorem 3 we may derive the following properties of

general dispersions.

Theorem 4 ;
A general dispersion X(t) of equations (q(l)), (Q(l)),
corresponding to canonical mapping p of the space r onto the
space R, passes in the relation with an arbitrary forming
basis (« ,@) of this mapping the following properties:

1) For every t€j the general dispersion X is inequelly

determined by the relation

X(t) = QA ) (5)

Proof: This statement immediately follows from the re-
lation (4) of Theorem 3.

2) A direct general dispersion X is an increasing
function in interval j within limits from A to B, with deri-
vative X > 0; An indirect general dispersion X is decreasing
function in interval j within limits from B to A, with deri-
vative X < 0.

Proof: The statement follows immediately from the re-
lationship (5) and from.properties of phases « ,d. It follows
that
sign X~ = sign &". sign A = sign(-w).sign(-W) =

sign XE

n

3) Function x~! inversed to function X is a general dis-
persion of differential equations (Q(l ), (q(l)), which is
corresponding to linear mapping p_lof R onto r.

1

Proof: From (4) follows the form of inversed function X~

Ly = L7Ham) . (6)

- 214 -



But it is an expression of general dispersion corresponding to
canonical mapping p_l of R onto r by means of forming phase

basis (@ ,&K).

4) A general dispersion X is in j three times continuously
differentiable function and in two homologic point te€ j,
X(t)€ J fulfil the relationship as follows
£ (t)

X (t) ;X)) = [ @l - KH D A]
a x oo

(7

n

a0 = A a0 = L [Lox ) - xn) &)
X (t) X (1)

Proof: We will get the above relationship (7), (8) by
means of immediate double derivation of (4). The phases & ,Q
are three times continously differentiable on the corresponding
intervals j, J, and «'(t) # O, A (X) # 0 hold for every te j,
X(t)e J. i )

(8)

5) For every t€j, t # a1 k = 0,1,...,m-1 holds the
relation
x(¢, ()] = er[x(t)] , . » 9

where € = sign X', d>k(t) or FkE(T) denote k-th or k-th special
central dispersion of 1st kind of equation (q(l)) or (Q(l)).

Proof: Assume first Ip> 0 and thus X > 0.

From functional equation (4) follows in the point ‘-‘Pk(t),
tej, t # Ak the following relationship

AL (D] = AKX (t)] (10)

Using (4) on a modification of Abel equation (1) of [3] for
special central dispersions of (q(l)) we will come to the

expression

axm] + kT sign &~ for te(a,a, )
Alx, (0] =

- sl .
( a[x{t‘;j - (m-k)& 519110( for té(am_k,,b?



With respect to egualities

X(am-k) : AmAk ’

lim, X(t) = A, lim_ x(t) = 8B,
tra tab

sign d " = sign X sign @, = sign AU >

and after using the modification of Abel equation for special

central dispersions of equation (le)) for the expression of
right side of (11) in the form

arx] + k% sign @ for X(t)E€ (A,Am_k)

alF (x¢enN] = , (12)

Alx()] - (m-k)T sign @ for x(t) € (AL _»B)

we will come to the equation (9).

b) In case that X: < 0 one of the phases of the forming phase
pasis (&, Q) is increasing, the other one is decreasing. Zeros
of these phases are associated points indirectly. Also in this
case we come from (4) through (10) to (11). With respect to
equalities

X( ) = A,

-k K
Lim, X() = B, lim_ X(1) = A,
tsa tab~
sign & = sign X 'sign @ = -sign A >

and by using the modification of Abel s equation for special
central dispersicn of (Q(l)), the right side of the equation
(11) will be expressed in this form:
alx(v)) - kTsign @ for X(t)€ (A,B)
(,{[Fm_k(x(t))] z LA

alx()] + (m-k)W sign @
for X(t)€ (A,Ak)
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With respect to validity of F__, (X(1)) = F_, (X(t)) for X(t)€J,
X(t) # A, we will come to the equality (9).

6) The general dispersion X(t) is a solution of the non-
linear differential equation of the 3rd order

- {xt} v e00x? = ) . @M
for every t €j.

Proof: Again, we will proceed from relationship (4). When
expressing the Schwarz s derivative of a composed function
GL[X(t)] in the sence of the formula (17), 8, § 1 of [1] and by
using of (7), (8) we will come to the eqguation

{X,‘t} + [{Q,X} + a’_Z(X)}X'2 = {O(,t( + o('z(t)

By using (16) § 5 of [1] to expres the carrier of the equation
(q(l)) and (Q(l)) by means of lst phase, we will get the vali-
dity of 6).

7) The function x(T) = x~1 inverse to general dispersion
X represents a solution of nonlinear third order differential
equation

_{x,T{ + g(x) >'(2 = Q1) . (q(l)Q(l))

in the whole interval J.

Proof: The statement follows immediately from properties
(3) and (6) of this theorem.

Theorem 5

Consider three differential equations (q(l)) and (Q(l))

and (ﬁ(l)) of the same finite type m, l-special on intervals
j = (a,b) and J = (A,B) and J = (A,B), respectively. Let p be a
cannonical linear mapping of the space r of all the solutions

(l)) onto the space R of the solutions of (Q(l)),

of equation (g
P be a cannonical linear mapping of the space R onto the space
R of all solutions of the equation (ﬁ(l)). Let X(t) and X(t)

be general dispersions relative to the mappings p and P, res-
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pectively. Consequently, a composed mapping Pp is a cannonical
linear mapping of the space r onto R and the general dispersion
X relative to Pp is a function X(X(t)).

Proof : "In agreement with property 1) from Theorem 4 it
follows that

X(t)

AL ()] for te j ' ’

s

X(t)

it

C-l_l[@(T)l for Ted

’

and thus also

Xx(t) =araa K] = L t)  for tes

)

where (£ ,QA) is a forming phase basis of mapping p, (c(,ﬁ)
is a forming phase basis of mapping P, and (« ,ZZ) is a forming
phase basis of mapping Pp. As a result holds X(X(t)) = X(t).
X is a direct dispersion, if both dispersions X, X are direct
at the same time or indirect.

Otherwice X is an indirectly
dispersion, since I

Pp : X‘P : xp

Now, we take up the question as to how far general disper-
sions are characterized by having a given cannonical linear -
mapping p as their generator.

With respect to the fact, that
the function

X(t) associated only direct or indirect associated

image py€ R to zeros of arbitrary element yer,
the sence of definition,

zeros of its in
the general dispersion is definate
uniquely by concrete cannonical mapping p.

The validity cf the
following theorems follows from this. | 3

Theorem 6

By means of two arbitrary directly or indirectly similar
normal phases « , & of eguations (q(l)), (Q(l>) there is de-

termined only one solution of functional equation &K (t) =

A(X(t) . This solution is a general dispersion of presented

equations relative to every cannonical mapping p for which

(«,QA) represents the forming phase basis.

Proof: The validity follows from the statement above. In

accordencs with Theorem 2, the pair of normal similar phases
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determinates a cannonical mapping of r onto R, for which (£ ,A)
is a forming phase basis. This mapping is determined uniquely,
except its variations. But to various c the images cpye R of
arbitrary element ye€ r are dependent solutions of (Q(l)),

whose corresponding zeros coincide. General dispersions,
corresponding to this variations cp, ¢ # 0 are identically

equal and by Theorem 3 they represent a unique solution of
equation of (£) = A(X(t)).

Theorem 7

Let t0 = a5, X0 = Ai or t0 = ay, X0 = Am—i be some direct-
ly or indirectly associated points of l-fundamental sequences
(a<1)), (A(l)) relative equations (q(l>), (D<l>), let Xd >0
or Xé < 0, Xa are arbitrary numbers. Thus there exists, res-
pectively, exactly one direct or indirect general dispersion
X(t) of equations (q(l)), (Q(l>) fulfiling initial conditions
X(tg) = Xg, X (tg) = Xg, X"(ty) = Xg.

Proof: The existence a uniqueness of general dispersion
X(t) fulfilling the above conditions follows from the existence
and uniqueness of the second part of forming phase basis (o , A
at the fast chosen &« .At choosing the phase & of (q(l)) which
fulfils the initial conditions

Atg) =0, At =1, «"(ty) =0, : L)

from relationships (3) and (8) follow uniquely the follecwing
initial values of direct or indirect similar normal phase 4

Xil
Ax) =0, ax) =+, a2, . . U
0 0 X 0 X 3 ;
0 0
and with their help the phase A of the equation (Q(l)) is
determined uniquely. Consequently the general dispersion X(t)
corresponding to cannonical mapping p with forming phase basis
(L ,dA) is unigquely determined, too and it complete the proof.
Theorem 7 is in accoedance with the statement about
existence of fwo-parametric system of similar phases vanishing

in associated points of l-fundamental sequences. At general
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choice of associated points to, XU’ the existence of the phase
Aa, similar to the phase « , fulfilling conditions (15)
wouldn 't be guaranteed, with respect to existence of only one-
-parametric system of corresponding similar phases.

The above mentioned results allows us to define all the
regular solutions of equation (Q(l)q(l)) defined on the whole
interval j, i.e. the solutions of the class C(B)(j) whose de-

rivative is always non-zero.
Theorem 8

All the regular solutions X(t) of the differential equa-
tion (Q(l)q(l))

initial condition

being defined on interval j and fulfilling the

X(ai) = A, or X(ai) = Am—i s

where (ai’Ai) or (ai,A ), respectively, are some pairs of

m-1i
direct or indirect associated points of 1-fundamental sequen-

(l))’ ( (1))’ (Q(l))’

ces (a A(l)) of equations (q represent

exactly all the direct or indirect general dispersions of this
pair of differential equations.

Proof:
a) If X is a direct or indirect general dispersion of

1y Dy,

equations (q corresponding to some cannonical

mapping p of r onto R, thus it is fulfilling the condition
X(ai) = A.1 or X(ai) = Am—i’
Theorem 4 it is regular solution of equation (Q

respectively, and by 4) and 6) of
(l)q(l))'

b) Let X is a regular solution of equation (Q(1>q(l))
defined in j, fulfilling the condition X(ai) = Ai for X > 0
or X(ai) = Am—i for X~ & 0. Choosing a phase « of the phase
system of some l-fundamental basis relative to equation (q(l)),
which is vanishing in the point as for example the phase de-
termined by conditions

d(ai) =0, ok’(ai) =1, «"(ag) =0

With respect to it we will choose the phase @ of (Q(l)) ful-
filling initial conditions
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. o1 ; _ 0
A =0, @) == Al < - Ty

0 0

where XO’ Xd, Xa are values of function X and its first and
second derivative in the point a, . Thus, this phase A is with
respect to the phase A directly or indirectly similar phase
of some l-fundamental basis of equation (Q<1)). By relation-
ship (18) of § 5 and (17) of § 1 from [1], from following
expressions of carriers of both equations on corresponding in-

tervals in the forms
- {tad,t} = q(t), - ftoax{ = Q00
follows the relationships
ot - {teax} o x P - - frak ),
ftaaoo,tf = {tak,t} ,

and thus, from the point of view of 8, § 1 of [1], also the
relationship

] c1 tgl (L) + 19
c,y to K (1) + Cyp

tg A(X)

where Cpps-++2Cgp aTE the constants. By putting the initial
conditions of phases £ , A we get: Cip = 0, Cyp = Cpgs Cpp = 0.
It follows that the function X(t) is the solution of functional
equation

ACt) = AX(L))

with definition interval j = (a,b) taking the corresponding
values from the interval J = (A,B), with respect to similarity
of phases. Conseguently, X(t) is a direct or indirect general
dispersion of equations (q(l)); (Q(l)), relative to the canno-
nical mapping of the space r onto R, determined by forming
phase basis (dy,éLB. Thus the proof is completed.

Now, we will investigate the relation of general dispers-
ions of equations (q(l)), (Q(l)) to the Kummer s transformation
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problem. By transformation of equation (Q(l)) to (q(l)) in
accordance with definition of [1] we mean the two members
sequence [w,X] of functions w(t), X(t), which are defined in

the open interval i< j with properties
D owbecP@m, xwecPay
2) W)X () £ 0 for t€i . . .. . (16)

3)  x(i)cJ

such that for every solution Y of (Q(l)) the function y(t)
defined by the relationship

y(1) = w(t) . Y(X(1) an
(1

is a solution of differential equation (q If i = j, that
the transformation is said to be global. Function X(t) is
called the transformation function of (q(l)), (Q<l)), the
function w(t) is called the multiplicator of transformation.
From § 12 of [l] we know that every transformation function X

(1)), (D(l)) is also a solution of nonlinear

of equations (g
differential equation (Q(l)q(l)) on its own definition inter-
val. Besides, multiplicator is uniquely determined by the
transformation function X, except for multiplicative constant
k # 0.

From Theorem 8 it is evident that general dispersion is
in near relation to the transformation problem of considered

equations.
Theorem 9

Let X(t) be direct or indirect general dispersion of equa-

(1))’

tions (q (Q(l)) corresponding to canonical mapping p of

onto R.

a) Let y be an arbitrary element of the space r, Y = py
is its image in the space R. Consequently, Y(X) : |[X'| is a
solution of equation (q(l)) on the whole interval j and at thev

same time the relation

Y(X('t)) " 11 yt) syites sl e ey
FIx ()] IEN v P TR B
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where + or - isn’'t dependent on the choice of Y, is fulfilling,
too.

b) There exists such a variation cp = p* of mapping p,
where

Y¥(x(£)

> y(t) . : - (19)
X" ()] : L

holds for an arbitrary element yer and his image v - p*ye R
on the whole interval j. Besides, the characteristic of the
mapping p is determined by the relationship xpx = sign X",

c) If (ul,v) come 1-fundamental basis of equatiog_(Q(l))
and W is a Wronskian of this basis, then (U;,(X) : JT;’L
V(X)) : {]x']) is a 1-fundamental basis of (q 1)y and for its
Wronskian w the relationship w = W sign X  holds.

Proof: a) If (o« ,d) is a forming phase basis of mapping
p, then the functional equation «(t) = Q(X(t)) holds in the
whole interval and for solutions y(t), Y(X(t)) the relationship
(3) holds. From it and from the expression & (t) = @ OOX ()
follows that the relationship (18) is proved.

b) At choice of mapping p* = cp = €E V! Tp]p, where

£ = I according as the phases o , ({ are proper or unproper
with respect to the bases determining the mapping p, y¥ o=

= YEE VT?E;\ holds. General dispersions corresponding with

mapping p and cp = p* are coinciding identically and the re-
lationship (19) follows immediately by putting into the re-

lationship (18). Besides, from 7§ x = c? XD follows that

| xpx| = 1 and thus Ipx = sign Ip = sign X.

c) If (Ul,V) is a l-fundamental basis of equation (Q(l))
and W is its Wronskian, then there exists a canonical mapping
p which maps some l-fundamental basis (ul,v) of (q<l>) onto
(Ul,V). With respect to the validity of (18), the solutions
uy, Ul(X) : VT;71 or v, V(X) : VT;ii, respectively, are de-
pendent. Consequently, (Ul,(X) : VT;TW, V(X) : VTQTT) is also
a 1-fundamental basis of equation (g ). The relationship
w = W sign X  follows immediately from the direct commputation
of w.
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From the first part of Theorem 9 it follows that every
direct or indirect general dispersion X of (q(l)), (Q(l)) is
the transformation function of these equation, which is de-
fining in the whole interval j and fulfilling the initial con-
dition X(ai) = Ai or X(ai) = Am—i’

of directly or indirectly associated points of (a

respectively, for some pair

Every transformation function of these equations has such

(1 (D

property, that it is satisfying the equation (Q From

Theorem B8 it follow immediately the following statements.

Theorem 10
(1))’ (Q(l)),

Transformation functions X(t) of equations (g
defined in the whole interval j and satisfying the initial con-
dition X(ai) = A; for X >0 or X(ai) = A, for X < 0 where
(ai’Ai) or (ai’Am-i)’ respectively, is some pair of directly
or indirectly associated points of 1-fundamental sequences
(a(l)), (A(l>) are exactly all the general dispersions of
equations (q(l)), (0(1)).

Proof: By a) of Theorem 9 and 4) of Theorem 4, every ge-
neral dispersion of considered equations satisfies the proper-
ties (16), (17). So, it is a transformation function satisfying
the initial mentioned above and conversely, by 2, § 11 of [l]
every transformation function of equations above is a regular

(1) (D]

solution (Q If satisfying the initial condition above,

(1))

it is, by Theorem B, a general dispersion of eguations (q

@)y,

If we use yet the statement (3. § 27 of [1] about a
structure of a set of global solutions of a differential equa-
tion (Qq) for equations (g), (Q) of a finite type, we may say
the following corollary is true.

Corollary 1

Global transformation function X of equations (q(l)),
(Q(l)) are exactly all the general dispersions, in the sence
of Definition 1, of these equations.
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Proof: The statement follows from Theorem 10 and from 3
§ 27 of [l]. It is evident, now, that every complete solution

of equation (Q<l)q(l)) satisfies the initial condition men-

tioned in Theorem 10.

In accordance with this statement, we may describe the
structure of a set all general dispersions (q<1>), (Q<l>),
corresponding with different canonical mapping of space r onto

R, in the following way.

Theorem 11

A set M of all general dispersions X of equations (Q(l)),

(Q(l>), composed of two disjunct subsets Mp and Mn, respective-
ly, of direct or indirect general dispersions, is a two-para-
metric system which we will call the bunch. The bunch of
general dispersions is a one-parametric system of one-para-
metric subsystems Mg , where G is a real number, which are
called bundels. Every bundel MG is composed of two disjunct

subbundels MU‘ y M@ composed of only direct or only indirect
n

P
general dispersions of equation mentioned above. All curves

[t,x(t)] for Xe Mip or for &s M5n’ respectively, pass through
m-1 common points P(ai,Ai) or P<ai’Am—i> with coordinates formed
by pairs of directly or indirectly associated points of
sequences (a(l)), (A<l)). Besides all the curves [t,X(t)] for
X€& MG.p or for X€ Mc‘n with fixed value G pass through m

), where . € (ai—l’ai)

1 +
common points P(ti,Ti) or P(ti,Tm_i+l
for i = 1,2,...,m are l-conjugate points of (q ) and
T.«(A. ,A.) for i = 1,2,...,m are l-conjugate points of
Loy i-171
(@°"7), respectively.

Proof: Consider some of l-fundamental bases (ul,v) of the
space r. To this basis there exists three-parametric system of
canonical linear mappings which map this basis to some of
1-fundamental basis of the space R. Every such mapping is de-
termined by some pair of bases (ul,v), (¢ Ul,G\H-EUl) where @
G, G are real numbers, @(5 £ 0, (Ul,V) is arbitrarjly chosen
fixed 1-fundamental basis of the space R. With respect to the
fact that proportional second bases of given pair determining

1

ro

~

1
i



mapping p are corresponding with different variations of the
same mapping p, the canonical independent mappings forms only
two-parametric system defined by pairs of bases (ul,v), (€ Ul’
V+6lﬁ) and a system of agpropriate general dispersions cor-
responds with it. Besides, all the general dispersions map
points ay of (a(l)) at the points Ai or Am-i of l1-fundamental
sequence (A(l)). Thus, corresponding curves of general disper-
sions pass through the points P(ai,Ai) or P(ai’Am—i)’ respecti-
vely. At concrete choice of parameter G we talk about a bundel
of dispersions. For different @ we obtain different elements
of bundel Mg and all of them have a property such that they
map zeros in the points ti of solution v onto directly cr in-
directly associated zeros in the points Ti or Tm—i+1 of so-
lution V + G'Ul, respectively. Hence, their curves pass through

the points P(ti,Ti) or P(ti’Tm—i+1) for i = 1,2,...,m.
The structure of a set of general dispersions corresponds
with the structure of a set of normal phases A of equation

(Q(l)), which are similar to some of chosen phase & of (q l)).

Corollary 2

Let A, B are an arbitrary number such that (B-A) = ol .
Then every increasing or decreasing first phase o« (t) of (q(l))

satisfying the condition

lim, & (t) = A or lim & (t) = B
taa” tra’

is a direct or indirect general dispersion of equation (q(l)),
(—1(1)), where (—l(l)) is a differential equation Y" = - Y,
considered in the interval (A,B), respectively.

Proof: Every increasing or decreasing phase « of equation

(q(l ) satisfies the differential equation

- {&@,t) + £Fw ey = e,

in the interval (a,b), with accordance with statement from 5 § 5
of [1].
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The phase & fulfilling the condition

lim, 4 (t) = A for &°>0 or lim A (t) =B
tra tsa

for «°<0 ,

where A,B are arbitrary numbers such that (B-A) = m7 , repre-
sents a regular solution of equation (—l(l)q(l)) where (—1(1))

is equation Y" = - Y, l-special type m in the interval (A,B)
which is m%7 long and satisfying the assumptions of Theorem 8.
Thus, it is direct or indirect general dispersion of (q(l)),

(—1(1)) corresponding with some of canonical mapping of the
space r onto the space of all the solution of equation (-1(1)).

Corollary 3

To every increasing or decreasing phase &« of an arbitrary
equation (q(l)) there is always such a definition interval
(1)), that the phase ® is di-
rect or indirect general dispersion of equations (q(l)),

(A,B), m¥ long, of equation (-1

(-1 1)) with respect to some of canonical mapping p of the
space r onto the space of all the solution of equation (—1(1)).

Proof: For an increasing phase X we will consider the
interval (c,c+m%), where ¢ = lim&(t) for t — a'. For a de-
creasing phase we may consider the interval (d-m# ,d) where
d = lim« (t) for t — a*. Consequently the assumptions of
Corollary 2 are fulfiled and the validity of the statement
above, too.
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SOUHRN

K TEORII GLOSBALNICH TRANSFORMACT LINEARNICH DIFERENCIALNICH

ROVNIC 2.RADU, KONECNEHO TYPU - SPECIALNICH

EVA TESARTKOVA

V ¢lénku je rozpracovdna teorie transformaci pro homogenni
linedrni diferencidlni rovnice 2.7ddu y" = q(t)y konecného typu
m 2 2 specidlnich na ptislusném konec¢ném &i nekoneéném definic-
nim intervalu j = (a,b) za vyuzit{ vysledkd z teorie dispersi,
formulované v literature [l] pro rovnice oboustranné oscilato-

rické ve vztahu k transformac¢nimu problému Kummera.

Cilem ¢lanku je zavedeni pojmu obecnych dispersi dvou rov-
nic y" = q(t)y, ¥' = a(Dy,q(t)ec’y), a(Mecd), 1-specidl-
nich téhoZ? konecného typu m - 2 na pfisludnych defini&nich in-
tervalech j = (a,b), J = (A,B), vySetfeni jejich vlastnosti a
jejich vztahu k problému globdlnich transformaci téchto rovnic.



PE3KOME

K TEOPYM TJIOBAJEHHX TPAHC®OPMAIMR JIMHEMHHX LN$®EPEH IMAJEHHX
YPABHEHM 2. MNOPAJKA, KOHEYHOI'O THMIIA -
CHELMAJIBHHX

3. TECAPEMKOBA

B aTo#f craTne paspaGoreHa TpaHcopMenuoHHas Teopus
AJf OXHOpPOAHHX auHelHNX nudfepeRumarpHHX ypaBHeHu#t 2.mo-
pazka y" = q(t)y koHewHOro Tvme& p 2 2, CHenMeJbHHX Ha
npUHeRJexameM KOHEYHOM uJM GeCKOHEeYHOM MHTepBaJsaxX onpepe-
axeuus j=(a,b) npu nmoMomyu K8K MOXHO GoJee MMPOKOTO NpuMe-
HEHuUs pesyJbTATOB M8 Teopuu aucnepcuit, ocHoBaHHON HE Au-
Teparype /1/ Ias ypeBHeHult ¢ OCUMIMPYDMMMM DEMEHMUSI MM,
B cBfisu ¢ pemeHueM TpaHcPopmanmoHHO! mpoSiremH Kyumepa.

Ieapo paloTH aBJASeTCS BBeJeHue NOHATHI oOmux Aucnep-
cuk nByx ypesremm#t y" = q(t)y, Y" = Q(T)Y, q(t)e C(U)(j),
aMe C(D)(J)l-cnenuexbnnx TOro Xe caMoro Thna m - 2 He
npoMexyrxex onpenexeHus j = (a,b), J = (A,B), uccaeno-
BaHME MX CBOJCTB- U MX OTHOmMEHME K npolxeMe rao0eJbHHX
rpeHchopmMannit moAxoAsmMX ypeBEHEHuit.
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