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TO THE THEORY OF GLOBAL TRANSFORMATION 
OF THE SECOND ORDER 

LINEAR DIFFERENTIAL EQUATIONS 
OF FINITE TYPE, SPECIAL 

EVA TESARIKOVA 

Introduction 

In Boruvka s monograph [l], the question of global trans­

formation of second order linear differential equations in Ja-

cobian form 

y" = q(t) y (q) 

Y" = Q(t) Y (Q) 

was treated at length on the basis of a theory of general dis­

persions for the equations being on both sides oscillatory, but 

the equations of a finite type are on the periphery of author s 

interest, there. 

In this paper is formed a theory of general dispersions 

for equations (q), (Q) in Jacobian form (where q(t)eC (j) and 

Q(t)€C (J)) which are 1-special of a finite type m - 2 in 

their definition intervals j = (a,b) and J = (A,B), respective-
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l y . With regard to this property, the denoting (q^ O , (Q^ ') 

will be used in the following t e x t . Except from the monograph 

[l] the text proceeds from three publicated articles [2], [3], 

[4] where a theory of central dispersions of particular kinds 

for equations of a finite type - special was treated on the 

basis of definitions of special central dispersions. Besides, 

the special central dispersions of the 1st kind relative to the 

equation of the type (q ) form a finite cyclic group of 

m-order relative to an operation of composition in the whole 

definition interval except from points of 1-fundamental sequen­

ce . 

General dispersions of differential equation of type 

(q ) and their relation to transformation problem 

Consider now differential equations (q ), (-6) ) of the 

same finite type m, 1-special in the intervals j, J. respecti­

vely. Let us denote the space of all solutions of equation 

(q ) and (Q ) in corresponding definition intervals by r 

and R (in this order), while (u,v), (U,V) will be arbitrary 

bases of r, R, and w, W the Wronskians of these bases. Further­

more, consider a linear mapping p of the space r onto the space 

R determined by pair of bases (u,v). (U,V), i.e. mapping p 

where (U,V) = (pu,pv). The proportion of Wronskians w_:W of 

these bases is called the characteristic X of the mapping p. 

In connection with this mapping let us recapitulate same facts 

given in § 19 of [l]. 

Mapping p is uniquely ordered by pair of bases (u,v), 

(U,V), it is schlicht and has the property such that maps li-

neary independent elements of the space R. Moreover, for every 

element y€r defined in the form y = (c,u + c?v) where c,, c? 

are arbitrary constants it holds that py = Y if and only if 

Y = (c,U + c?V). To every mapping p determined in this way 

there exists an inverse mapping p whose characteristic is 

-1 
Ip-i <V • given by relationship 

A mapping cp, which maps the basis (u,v) onto the basis 

(c,U + c?V) where c i 0 is an arbitrary constant is called a 
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variation of the mapping p. The elements cpy€ R are linearly 

dependent for different c. A characteristic of the variation 
— 9 

cp of the mapping p is given by relationship X = c "¥ . 

cp P 

With respect to the expression of the elements of the 

bases (u,v) and (U,V) in the forms 

u = í fű I 

fггi 
= 6 ţ/w" 

fţn 
( i ) 

and 

El/W sin d 

fučí ФЏ a. 
fГT 

( 2 ) 

by means of arbitrary first phase oL of the basis (u,v) and by 

means of arbitrary first phase (X. of the basis (U,V), respecti­

vely, in which 6 , E take the values +1 or -1 according as the 

phases are proper or not relative to the bases (u,v), (U,V), 

and with respect to the expression the arbitrary elements y e r 

and Y € R in the form 

sin( *C +Ko) 

ifíTT 
Y = 

ffiň 
Ln(0. k 2) 

(3) 

in which k. k ? are the constants for k-, 4 g. k 2 e <0,25Г> it 

follows that the linear mapping p of the space r onto the space 

R is determined not only by a concrete ordered pair of bases 

(u,v), (U,V) but also by an ordered pair of phases of these 

bases which we call phase basis corresponding with the mapping 

P-

For every choice of basis (U,V), the second basis of 

ordered pair relative to concrete mapping p is determined 

uniquely in the form Cpu,pv). Thus for every choice of phase c<. 

of (q ), the second term A of the phase basis relative 

mapping p is determined except for integer multiplies of J/ 

The characteristic J is independent on choice of basis. 

On the contrary, an arbitrary pair of phases ( o( , CL ) of 

differential equations (q ), (Q ) forms the phase basis of 
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infinitely many linear mapping cp, c i 0, of the space r onto 

R. Then, the mapping p is uniquely determined by the phase 

basis ( oC , (X), except for its variations. 

Furthermore, let s point out a concept of normalized 

mapping. A linear mapping p of the space r onto the space R is 

called normalized with respect to the pair of points (z,Z), 

ze j, Z e J , if the implication [y(z) = 0]=>[py(Z) = 0] holds 

for every y£ r. This property is common to all variations cp 

of the mapping p. Relating to the phase basis (oC , (X.) the 

following theorem holds. 

Theorem 1. 

The linear mapping of the space r onto R is normalized 

with respect to the pair of points (z,Z), z e j , Z £ J if and 

only if the values of the phases of the corresponding phase 

basis (o( , (X) differ by an integral multiple of Ji , i.e. 

(k_(z) - (X(2) - n T , where n is an integer, holds. 

Proof: Let p is a linear mapping of r onto R. From [y(z) = 

= 0] =>[Y(Z) - py(Z) = o] and from the expressions y(z), 

Y(Z) in the form (3) it follows that oL (z) + k2 = 6L(Z) + k2 + 

+ n 7T , and vice versa. 

From Theorem 1 it follows i m m e d i a t e l y that for linear 

mapping which is normalized with respect to pair of points z, 

Z there always exists a phase basis (<( , u O fulfilling the 

condition: ^ (z) = 0, d(Z) = 0. We will cai' 4"- the canonical 

phase basis of mapping with respect to points z, Z. 

So much for basic concepts of § 19 in [l] whic are 

concerned the theory of general dispersions of oscill ory 

equations (q) mentioned in introduction. In the following text, 

we will start with treating a theory of general dispi. lions as 

a transformation theory of equations ( q f ) , (Q ) of the same 

finite type m —' 2, 1-special in definition intervals. First of , 

all it is necessary to introduce some further basic concepts. 

By 1-fundamental sequences (a ) and (A ) of equation 

(q ) and (Q" ) , respectively, we mean zeros of 1-findamental 

solution of this equation in the following ordering 
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(a
(1
>) 

and 

Д
Q
< A

x
< A

2
 .... A

m
.

x
 < A

m 
(A

( 1 )
) 

Relating to these sequences, we will call the points t <* j and 

T€J, (in this order) directly or indirectly associated, if 

either 

and T = A. T = A„ 

te(ai_1,ai) and TeCA.^.A^ or T e (Am_. , Am_ . +]_) , 

where i = l,2,...,m, holds. 

We will call the phases <?C , & which are corresponding to 

(q ), (Q ) directly or indirectly similar, if they are 

taking the same values in directly or indirectly associated 

points of sequences (a ), (A ), r espec t i ve l y . 

Now consider some of 1-fundamental basis (u,,v) and 

(U,,V) of equation (q ) and (Q^ \)\ r espec t i ve l y . Let's point 

out, that u, and U, are some of 1-fundamental solutions of 

corresponding equations, v and V are arbitrary solutions inde­

pendent on u, and U,, r espec t i ve l y . Let p be a linear mapping 

of the space r onto the space R defined by pair of these bases. 

Such a mapping is always normalized with respect to all the 

pairs of elements of sequences (a ), (A ), and conversely, 

every mapping p normalized with respect to all the pairs of 

elements of sequences (a ), (A ) maps every 1-fundamental 

basis (u,,v) on the corresponding 1-fundamental basis ( p u , , p v ) . 

Such mapping p is called the canonical mapping of the space r 

onto the space R. 

To every canonical mapping p there always exists the phase 

basis ( cL , (L), which is canonical with respect to the chosen 

pair (a.,A.) or (a.,A .) of directly or indirectly associated 
1 1 ! mT\) (l) 

points of sequences (a ) or (A^ J). It s composed of directly 
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or indirectly similar phases o( ,A of the phase systems of bases 

(u,,v), (U,,V). A concrete canonical mapping p isn t determined 

only by a chosen pair of 1-fundamental bases (u,,v), (U,,V), 

but also by an arbitrary pair of bases (u,v), (U,V) where 

U = pu, V = pv. It follows that a concrete canonical mapping p 

can be determined also by a phase basis (<£,&), which is 

composed of the phases of phase systems of bases (u,v), (U,V). 

Moreover the following theorem holds. 

Theorem 2. 

Some of canonical mappings of the space r onto R is deter­

mined by the phase basis ( oC , (X. ), which is canonical to some 

directly or indirectly associated two points tn, Tn, tn6 j, 

T Q6J, if and only if the o( , CL are normal phases directly 

or indirectly s i m i l a r . 

Proof: By Theorem 1 the linear mapping p or r onto R is 

determined by the phase basis (cL , CL) which is canonical if 

and only if «K(a. ) - &(A, ) = n T (n an integer) holds for an 
1 K 

arbitrary pair of points a.,A, (where i,k e {1,2,...,m-l? ) of 
h ) k 1-fundamental sequences (a ), (A (1) ). If őĹ (tQ) 0, A(T0) 

= 0 for two directly or indirectly associated points tn,Tn, then 

tK(ai) - c2(A.) = 0 or e((a.) - ^•(Am_i) = 0 for every pair 

of directly or indirectly associated points of sequences 

(a^ ' ) , (A ) and conversely. 

Henceforward the phase basis, which is corresponding with 

the canonical mapping p and composed of directly or indirectly 

similar normal phases, will be called the forming phase basis 

of this mapping. Now to every canonical mapping p of r onto R, 

we will define the function which maps zeros of an arbitrary 

element y€ r onto corresponding zeros of element Y = py€ R. 

Definition 1 

The function X(t), which associated every point t£j at 

the directly or indirectly associted zero T€J of image 

Y = py€ R of the solution y <T r such that y(t) = 0, will be 

ca^.ed the general dispersion of equations (q ), (Q ) 
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corresponding to canonical mapping p of the space r onto R, 

for X > 0 or X ^ 0» respectively. 

If X y 0, then X(t) is a direct general dispersion. 

If X <1 0J then X(t) is an indirect general dispersion. 

From theorems about ordering of zeros of solutions rela­

tive linear dofferential equations of type (q) of [ 1 ] it 

follows that a domain of definition of the general dispersion 

is a whole interval j = (a,b), the range of values is the whole 

interval J = (A,B). 

With respect to the coincidence of zeros of images cpyfc'R 

relative to the element y e r for various variations cp of 

mapping p, from Definition 1 it is easy to see, that general 

dispersions X(t) of equations (q ), (Q ) relative to 

various variations of the same mapping p are equal identically 

in the whole definition interval. 

The Definition 1 is a certain analogy of general disper­

sions of oscillatory equations of § 20 [l], which is adapted 

to conditions of equations of type (q ). From the following 

we will see, that there is a possibility of derivating ana­

logical properties of functions introduced in such a way. These 

adaptions are formed on the basic of theorems defining a re­

lation of general dispersions and phase bases of corresponding 

canonical mapping p. 

Theorem 3 

Let p be a canonical mapping of r onto R, ( o(. , CL) be its 

forming phase basis. Thus a general dispersion X(t) correspon­

ding to this mapping fullfils the functional equation 

oL(t) --' a ( x ( t ) ) (4) 

on the whole interval j. 

Proof: If expressing element y and its image Y = py in 

zero x in the form (3) we will come to equations 

c<(x) + k
0
 = n ^ 

Л[x(x)] N I* 
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where k~€-<$<,?• 1' ) is a c o n s t a n t , n, N are i n t e g e r s . Consequen t ­

ly o((x) - fl[x(x)] = m T , m e Z . Wi th r e s p e c t to d i r e c t or in­

d i r e c t s i m i l a r i t y of phases, the r e l a t i o n -0T< OC(X) -

- <3.[x(x)]< IT holds too and wi th the above r e l a t i o n s com­

ple tes the proof of (4). 

From Theorem 3 we may derive the following p roper t i es of 

general dispersions. 

Theorem 4 

A general dispersion X( t ) of equa t ions (q ), (Q ), 

corresponding to canonical mapping p of the space r onto the 

space R, passes in the r e l a t i o n w i t h an a r b i t r a r y forming 

basis («£:,&) of this mapping the following p r o p e r t i e s : 

1) For every t € j the general dispersion X is inequelly 

d e t e r m i n e d by the r e l a t i o n 

X ( t ) = 6L1(<L(t)) (5) 

Proof: This statement immediately follows from the re­

l a t i o n (4) of Theorem 3. 

2) A d i r ec t general dispersion X is an increasing 

func t i on in i n t e r v a l j w i t h i n l i m i t s from A to B, wi th deri­

va t i ve X > 0; An i n d i r e c t general dispersion X is decreasing 

f u n c t i o n in i n t e r v a l j w i t h i n l i m i t s from B to A, w i t h deri­

v a t i v e X ' <C 0. 

Proof: The statement follows immediately from the re­

l a t i onsh ip (5) and from p roper t i es of phases oC , CI. I t follows 

that 

sign x' = signed', sign (JL - sigri(-w) .sign(-W) = 

= sign Xp • 

3) Func t ion X~ inversed to func t i on X is a general dis­

persion of d i f f e r e n t i a l equat ions (Q ), (q ), which is 

corresponding to linear mapping p of R onto r. 

Proof: From (4) follows the form of inversed f unc t i on X 

-(т) = øCҶaa)] (6) 
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But it is an expression of general dispersion corresponding to 

canonical mapping p of R onto r by means of forming phase 

basis ( d, <L ) . 

4) A general dispersion X is in j three times continuously 

differentiable function and in two homologic point t e j , 

X(t)€j fulfil the relationship as follows 

X (t) 

ă(x) 

gCjt) 
<2/(x) 

gC(t) 

x'(t) 

x"(t) = 

ІLM 

6І'
3
CX) 

[ ^ ' ( t ) ą-ҷx) - <x;чt)ci(x)] 

(7) 

ç i — [вC"(t)x'(t) - x"(t) ø(/(t)] 
X <(t) ( 8) 

Proof: We will get the above relationship (7), (8) by 

means of immediate double derivation of ( 4 ) . The phases d ,& 
are three times continously differentiable on the corresponding 

intervals j, J, and d (t) t 0, CC (X) i 0 hold for every t € j, 

X(t)e J. 

5) For every t6i, t i a , , k 3 u' m-k 
relation 

X(4k(t)] = Fk£[x(t)] , 

0,1,...,m-l holds the 

(9) 

where £ - sign X , *fo,(t) or F, f(T) denote k-th or k-th special k£ (1)> central dispersion of 1st kind of equation (q ) or (Q 

Proof: Assume first X > 0 and thus x' > 0. 
P 

,(1) ). 

From functional equation (4) follows in the point 4>, (t). 

t € j , t ^ a . the following relationship 

(<E.«k(t)] - a [x( 4>kct)>] (10) 

Using (4) on a modification of Abel equation (1) of [3] for 

special central dispersions of (q ) we will come to the 

expression 

a[x(Флt))i 

íl[x(t)] + kTsign cC for t Ê ( a , a ^ ) 

j flf[x(t)] - (m-k)^sign oC' for te(affl_k)b) 

(U) 
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With respect to equalities 

X ( a m - k } 

l i m + X ( t ) 
fc*a 

m-k 

= A , l i m X ( t ) = B , 
t-*b 

s i g n c\. = s i g n X ' s i g n OC = s i g n & 

and after using the m 
odification of Abel equation for special 

central dispersions of equation ( Q U J ) for the expression of 

right side of (11) in the form 

a [ F k ( x c t ) ) ] = \ 

a[x(t)] + kiTsign OC for X(t)€ (A,Am_k) 

, (12) 

[ a[x(t)] - (m-k)rsign 01 for X( t) 6 (Am_k ,B) 

we will come to the equation (9). 

b) In case that 1 < 0 one of the phases of the forming phase 

basis (<*,&) is increasing, the other one is d e c r e a s i n g . Zeros 

of these phases are associated points i n d i r e c t l y . Also in this 

case we come from (4) through (10) to ( 1 1 ) . With respect to 

equalities 

X ( an-k } = 

Iim+ X(t) 
U a 

lim_ X(t) - A , 
t4tì 

sign c\' = sign x'sign 0C = -sign QS \ 

and by using the modification of Abel's equation for special 

central dispersion of ( Q ( 1 ) ) , the right side of the equation 

(11) will be expressed in this form: 

a[x(t)] - kTsign Oi for X(t)£ (Ak,B) 

. (13) 
Ф«љШ»ì = iтi-k 

[ a[x(t)] + (m-k)'Tsign OS 
for X(t)e (A,A

k
) 
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With respect to validity of Fmk(X(t)) = F_k(X(t)) for X(t)ej, 

X(t) ^ A, we will come to the equality (9). 

6) The general dispersion X(t) is a solution of the non­

linear differential equation of the 3rd order 

- {X,t} 4 Q(X)X'2 = q(t) . (Q(1)q(1)) 

for every t € j. 

Proof: Again, we will proceed from relationship (4). When 

expressing the Schwarz s derivative of a composed function 

£t[x(t)] in the sence of the formula (17), 8, § 1 of [l] and by 

using of (7), (8) we will come to the equation 

{X,t] 4 [{0.,x| + 012(X)]X'2 = {<*,t( + cr('2(t) . 

By using (16) § 5 of [l] to expres the carrier of the equation 

(q ) and (Q ) by means of 1st phase, we will get the vali­

dity of 6). 

7) The function x(T) = X~ inverse to general dispersion 

X represents a s o l u t i o n of nonlinear third order differential 

equation 

- |x,T| 4 q(x) x2 = Q(T) . (q(1)Q(1)) 

in the whole interval J. 

Proof: The statement follows immediately from properties 

(3) and (6) of this theorem. 

Theorem 5 

Consider three differential equations (q ) and (Q^ }) 

and (U ) of the same finite type m, 1-special on intervals 

j = (a,b) and J - (A,B) and J = (A,3), r espec t i ve l y . Let p be a 

cannonical linear mapping of the space r of all the solutions 

of equation (q ) onto the space R of the solutions of (Q ), 

P be a cannonical linear mapping of the space R onto the space 

R of all solutions of the equation (Q ( 1 )). Let X(t) and X(t) 

be general dispersions relative to the mappings p and P, res-
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p e c t i v e l y . Consequently, a composed mapping Pp is a cannonical 

linear mapping of the space r onto "R and the general dispersion 

X relative to Pp is a function ~X(X(t)). 

Proof: In agreement with property 1) from Theorem 4 it 

follows that 

x(t) = a - 1 U ( t ) ] 

x(t) = a_ 1[a.(T)] 

and t h u s a l s o 

x(x(t)) = a:1 a.(Tl[o(.(t) 

f O Г t <£ j 

f o г T Ê J 

0 . _ 1 ^ ( t ) for t € j , 

where (c(,tJL) is a forming phase basis of mapping p, ((X , (X) 

is a forming phase basis of mapping P, and (o( , CL) is a forming 

phase basis of mapping Pp. As a result holds X(X(t)) = X(t). 

X is a direct dispersion, if both dispersions X, X are direct 

at the same time or indirect. Otherwice X is an indirectly 

dispersion, since 1,- л
P
 • X

 r 
L
Pp " "*P - - p 

Now, we take up the question as to how far general disper­

sions are characterized by having a given cannonical linear 

mapping p as their generator. With respect to the fact, that 

the function X(t) associated only direct or indirect associated 

zeros of its image pye R to zeros of arbitrary element ye r, in 

the sence of definition, the general dispersion is definate 

uniquely by concrete cannonical mapping p. The validity cf the 

following theorems follows from this. 

Theorem 6 

By means of two arbitrary directly or indirectly similar 

normal phases oC , (X of equations (q ), (Q ) there is de­

termined only one solution of functional equation cC(t) -,,, 

= $.(X(t)'. This solution is a general dispersion of presented 

equations relative to every cannonical mapping p for which 

( c( , (X ) represents the forming phase basis. M 

Proof: The validity follows from the statement above. In 

accordence with Theorem 2, the pair of normal similar phases 
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determinates a cannonical mapping of r onto R, for which (oC ,<#.) 

is a forming phase b a s i s . This mapping is determined uniquely, 

except its variations. But to various c the images cpye R of 

arbitrary element y«£ r are dependent solutions of (Q ), 

whose corresponding zeros c o i n c i d e . General dispersions, 

corresponding to this variations cp, c i 0 are identically 

equal and by Theorem 3 they represent a unique solution of 

equation d (t) = &(X(t)) . 

Theorem 7 

Let tQ = a i ; XQ Ai o г ł0 
a., X n = A . b e some direct-
l' u m-i 

ly or indirectly associated points of 1-fundamental sequences 

( a ( 1 ) ) , ( A ( 1 ) ) relative equations ( q ( 1 ) ) , ( Q ( 1 ) ) , let X Q > 0 

or x' < 0, X" are arbitrary n u m b e r s . Thus there exists, res­

pectively, exactly one direct or indirect general dispersion 

X(t) of equations (q ), (Q ) fulfiling initial conditions 

n = n' o ~ n' ^̂ ̂ n = n * 
Proof: The existence a uniqueness of general dispersion 

X(t) fulfilling the above conditions follows from the existence 

and uniqueness of the second part of forming phase basis (o7, , ̂  ) 

at the fast chosen <K .At choosing the phase (k of (q ) which 

fulfils the initial conditions 

c?C(tn) 0 ^'(tQ) 1 c<
м
(t

0
) = 0 (14) 

from relationships (3) and (8) follow uniquely the following 

initial values of direct or indirect similar normal phase & 

4 ( x n ) = o , a ; ( x n ) ч
o 

Ö:(X 0 ) 
xö 
•3 

(15) 

and with their help the phase <X of the equation (Q ) is 

determined uniquely. Consequently the general dispersion X(t) 

corresponding to cannonical mapping p with forming phase basis 

(oC , $.) is uniquely determined, too and it complete the proof. 

Theorem 7 is in accoedance with the statement about 

existence of two-parametric system of similar phases vanishing 

in associated points of 1-funaamental sequences. At general 
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choice of associated points t
n
, X

n
, the existence of the phase 

(X, similar to the phase tX , fulfilling conditions (15) 

wouldn t be guaranteed, with respect to existence of only one-

-parametric system of corresponding similar phases. 

The above mentioned results allows us to define all the 

regular solutions of equation (Q q ) defined on the whole 

interval j, i.e. the solutions of the class C (j) whose de­

rivative is always non-zero. 

Theorem 8 

All the regular solutions X(t) of the differential equa­

tion (Q q ) being defined on interval j and fulfilling the 

initial condition 

X(a.) = A. oг X(a. ) = A . 
1 m-i 

where (a.,A.) or (a.,A _ • ) , respectively, are some pairs of 

direct or indirect associated points of 1-fundamental sequen­

ces ( a
( 1 )

) , ( A
( 1 )

) of equations ( q
( 1 )

) , ( Q
( 1 )

) , represent 

exactly all the direct or indirect general dispersions of this 

pair of differential e q u a t i o n s . 

Proof.: 

a) If X is a direct or indirect general dispersion of 

equations (q ), (Q ), corresponding to some cannonical 

mapping p of r onto R, thus it is fulfilling the condition 

X ( a .) = A. oг X(a.) = A
п 

respectively, and by 4) and 6) of 

Theorem 4 it is regular solution of equation (Q (D.(l) 

b) Let X is a regular solution of equation (Q q ) 

defined in j, fulfilling the condition X (a . ) = A. for X > 0 

or X(a.) = A . for X < 0. Choosing a phase o( of the phase 
l m l /,\ 

system of some 1-fundamental basis relative to equation (q
 J ) , 

which is vanishing in the point a., for example the phase de­

termined by conditions 

<<(a
i
) = 0 , ^

>
( a

i
) = 1 , K"(a.) 0 . 

,(1). With respect to it we will choose the phase d of (Q ) ful­

filling initial conditions 
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a ( x 0 ) = 0 , ff(X
0
) = - 4 , 0.(X

Q
) = - -2y , 

x
o
 x

o 

where X
 n
, X

 n
, X« are values of function X and its first and 

second derivative in the point a.. Thus, this phase (X. is with 

respect to the phase <X directly or indirectly similar phase 

of some 1-fundamental basis of equation (Q ). By relation­

ship (18) of § 5 and (17) of § 1 from [l], from following 

expressions of carriers of both equations on corresponding in­

tervals in the forms 

- [tqoL ,t| - q(t) , - {tg#,xj = Q(X) 

follows the relationships 

- [X,%\ - {tg a,XJ . x'
2
 = - {tg *,tj , 

{tg fl(X),tj = {tg*(,t{ , 

and thus, from the point of view of 8, § 1 of [l], also the 

relationship 

tgO.(X) = 
c-^ t g o ( ( t ) + c,

 2 

c
2 1
 tg rЛ(t) + c

2 2
 ' 

where
 c

1 1
>*-->

c
22

 a r e
 ^

n e c o n s
t a n t s . By putting the initial 

conditions of phases oi , d we get: c
1 2
 = 0, c,, = c

2 2
, c

?
, = 0. 

It follows that the function X(t) is the solution of functional 

equation 

o((t) = 6l(X(t)) , 

with definition interval j = (a,b) taking the corresponding 

values from the interval 3 = (A,B), with respect to similarity 

of phases. Consequently, X(t) is a direct or indirect general 

dispersion of equations (q^ ' ) , (Q
 J ) y relative to the canno-

nical mapping of the space r onto R, determined by forming 

phase basis ( cK. , £1). Thus the proof is completed. 

Now, we will investigate the relation of general dispers­

ions of equations (q ) , (Q ) to the Rummer's transformation 
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problem. By transformation of equation (Q ) to (q ) in 

accordance with definition of [l] we mean the two members 

sequence [w,X] of functions w(t), X(t), which are defined in 

the open interval ic j with properties 

,(2), 1) w(t)€ Cv"(i) , 

2) w(t)x'(t) i 0 

3) X(i)C 3 

X(t)є C
( 3 )

(i) 

ÍOГ t € І (U) 

,(!)> 
such that for every solution Y of (Q ) the f u n c t i o n y(t) 

defined by the relationship 

y(t) Kt) . Y(X(t)) 

cn-
(17) 

that is a solution of differential equation (q ). If i = 

the transformation is said to be global. Function X(t) is 

called the transformation function of (q ), (Q ), the 

function w(t) is called the multiplicator of transformation. 

From § 12 of [l] we know that every transformation function X 

of equations (q
 ;

) , (Q^ '') is also a solution of nonlinear 

differential equation (Q^
 } q^ ^) on its own definition inter­

val. Besides, multiplicator is uniquely determined by the 

transformation function X, except for multiplicative constant 

k { 0. 

From Theorem 8 it is evident that general dispersion is 

in near relation to the transformation problem of considered 

e q u a t i o n s . 

Theorem 9 

Let X(t) be direct or indirect general dispersion of equa­

tions (q ), (Q ) corresponding to canonical mapping p of r 

onto R. 

a) Let y be an arbitrary element of the space r, Y = py 

is its image in the space R. Consequently, Y(X) : y |X | is a 

solution of equation (q ) on the whole interval j and at the 

same time the relation 

Y(X(t)) 

ìí-lx ( t ) | 
,1 

нҖ 
ÿ(t) (18) 
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where + or - isn t dependent on the choice of Y, is fulfilling, 

too. 

b) There exists such a variation cp = p of mapping p, 

where 

YX(X(t)) 

,|x'(t)| 
y(t) (19) 

mapping p is determined by the relationship X * 

c) If (U,,V) come 1-fundamental basis of equation (Q }) 

and W is a Wronskian of this basis. 

holds for an arbitrary element y € r and his image Y = p y e R 

on the whole interval j. Besides, the characteristic of the 

= sign X . 

,(!)> 

then (U1,(X) : (\\\ , 

V(X) : f|x'|) is a 1-fundamental basis of (q ( 1 )) and for its 

Wronskian w the relationship w = W sign X holds. 

Proof: a) If (oC , CL) is a forming phase basis of mapping 

p, then the functional equation c^(t) = d(X(t)) holds in the 

whole interval and for solutions y(t), Y(X(t)) the relationship 

(3) holds. From it and from the expression tX (t) = (X(X)X (t) 

follows that the relationship (18) is proved. 

b) At choice of mapping p cp = ЄE |/ÎҖ I p , w h e г є 
E = - 1 according as the phases o( , (X. are proper or improper 

with respect to the bases determining the mapping p, Y
x
 = 

= Y £ E V I X I holds. General dispersions corresponding with 

x 

mapping p and cp = p are coinciding identically and the re­

lationship (19) follows immediately by putting into the re­

lationship (18). Besides, from \ x = c~ X follows that 

I Xp*l = 1 and thus \ x = sign Y = sign X.' 

c) If (U, ,V) is a 1-fundamental basis of equation (Q ) 

and W is its Wronskian, then there exists a canonical mapping 

p which maps some 1-fundamental basis (u,,v) of (q ) onto 

(U,,V). With respect to the validity of (18), the solutions 

u 1 ? u\(X) : |/1X' I or v, V(X) : /|x' | , respectively, are de­

pendent. Consequently, (U, , (X) : ]/|x' | , V(X) : ̂ |x' j ) is also 
(1) 

a 1-fundamental basis of e q u a t i o n (q ). The relationship 

w = W sign X' follows immediately from the direct commputation 

of w. 
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From the first part of Theorem 9 it follows that every 

direct or indirect general dispersion X of (q ), (Q ) is 

the transformation function of these equation, which is de­

fining in the whole interval j and fulfilling the initial con­

dition X(a.) = A. or X(a.) = A ., respectively, for some pair 
1 1 m - i (i ^ ("l •> 

of directly or indirectly associated points of (a ), (A ). 

Every transformation function of these equations has such 

property, that it is satisfying the equation (Q q ). From 

Theorem 8 it follow immediately the following statements. 

Theorem 10 

Transformation functions X(t) of equations (q ), (Q ), 

defined in the whole interval j and satisfying the initial con­

dition X(ai) = A£ for x'>0 or Xia^ = A ^ for x'<0 where 

(ai»Aj_) or ^ai»An_i)» respectively, is some pair of directly 

or indirectly associated points of 1-fundamental sequences 

(a ), (A ) are exactly all the general dispersions of 

equations (q ( 1 )), (Q ( 1 )). 

Proof: By a) of Theorem 9 and 4) of Theorem 4, every ge­

neral dispersion of considered equations satisfies the proper­

ties (16), (17). So, it is a transformation function satisfying 

the initial mentioned above and conversely, by 2, § 11 of [l] 

every transformation function of equations above is a regular 

solution (Q q ). If satisfying the initial condition above, 

it is, by Theorem 8, a general dispersion of equations (q ), 

(Q ( 1 )). 

If we use yet the statement (3* § 27 of [l] about a 

structure of a set of global solutions of a differential equa­

tion (Qq) for equations (q), (Q) of a finite type, we may say 

the following corollary is true. 

Corollary 1 

(1) Global transformation function X of equations (q ), 

(Q ) are exactly all the general dispersions, in the senee 

of Definition 1, of these equations. 
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Proof: The statement follows from Theorem 10 and from 3 

§ 27 of [ 1] . It is evident, now, that every complete solution 

of equation (Q q ) satisfies the initial condition men­

tioned in Theorem 10. 

In accordance with this statement, we may describe the 

structure of a set all general dispersions (q ), (Q ), 

corresponding with different canonical mapping of space r onto 

R, in the following way. 

Theorem 11 

A set M of all general dispersions X of equations (q ), 

(Q ), composed of two disjunct subsets M and M , respective­

ly, of direct or indirect general dispersions, is a two-para­

metric system which we will call the bunch. The bunch of 

general dispersions is a one-parametric system of one-para­

metric subsystems M- , where (: is a real number, which are 

called bundels. Every bundel M̂ . is composed of two disjunct 

subbundels M^> , M..- composed of only direct or only indirect 
P n 

general dispersions of equation mentioned above. All curves 

[t,X(t)] for X€ Mg. or for X e M^ , respectively, pass through 

m-1 common points P(a.,A.) or P(a.,A .) with coordinates formed 
1 1 l m-i 

by pairs of directly or indirectly associated points of 

sequences ( a ( 1 ) ) , ( A ( 1 ) ) . Besides all the curves [t,X(t)] for 

X ^ M ^ or for X £ M ^ with fixed value (j pass through m 

common points P(t.,T.) or P(t.,T . , ) , where t.€(a. , , a. ) 
l l i m - i + 1 /i\ 1-1 l 

for i = 1,2,... , m are 1-conjugate points of (q ) and 

T. €• (A. i,A. ) for i = l,2,...,m are 1-conjugate points of 
1 Q \ 1 - 1 1 

(Q ), respectively. 

Proof: Consider some of 1-fundamental bases (u,,v) of the 

space r. To this basis there exists three-parametric system of 

canonical linear mappings which map this basis to some of 

1-fundamental basis of the space R. Every such mapping is de­

termined by some pair of bases (u-, , v ) , (fU,,e>V+<5U,) where f, 

(5 , <o are real numbers, Q d> t 0, (U, , V) is arbitrarily chosen 

fixed 1-fundamental basis of the space R. With respect to the 

fact that proportional second bases of given pair determining 



mapping p are corresponding with different variations of the 

same mapping p, the canonical independent mappings forms only 

two-parametric system defined by pairs of bases (u,,v), (fi U,, 

V+C5U,) and a system of appropriate general dispersions cor­

responds with it. Besides, all the general dispersions map 

points a. of (a ) at the points A. or A . of 1-fundamental 
1 (1) 1 m~1 

sequence (A ). Thus, corresponding curves of general disper­

sions pass through the points P(a.,A.) or P(a.,A _ • ) , respecti­

vely. At concrete choice of parameter <o we talk about a bundel 

of dispersions. For different Q we obtain different elements 

of bundel M^ and all of them have a property such that they 

map zeros in the points t. of solution v onto directly cr in­

directly associated zeros in the points T. or T . , of so-
1 m-i+1 

lution V + <o U,, respectively. Hence, their curves pass through 

the points P(t.,Ti) or P( t. ,Tm_i+1) for i = l , 2 , . . . , m . 

The structure of a set of general dispersions corresponds 

with the structure of a set of normal phases (X of equation 

(Q ), which are similar to some of chosen phase cL of (q ). 
Corollary 2 

Let A, B are an arbitrary number such that (B-A) = nfiT . 

Then every increasing or decreasing first phase oC(t) of (q ) 

satisfying the condition 

lim+øt(t) = A 
t*a 

lim+<* (t) = B 
t-»a 

is a direct or indirect general dispersion of equation (q ), 

(-1(1)), where (-1^) is a differential equation Y" = - Y, 

considered in the interval (A,B), r e s p e c t i v e l y . 

Proof: Every increasing or decreasing phase d of equation 

(q ) satisfies the differential equation 

- {<K(t),t| + «K'2(t).(-l) = q(t) , 

in the interval (a,b), with accordance with statement from 5 § 5 

of [1]. 
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The phase cL fulfilling the condition 

lim+oC(t) = A for 0( ' > 0 or lim+ <^'(t) = B 
t-»a t-»a 

for tX'< 0 , 

where A,B are arbitrary numbers such that (B-A) = mTT, repre­

sents a regular solution of equation (-1 q ) where (-1 ) 

is equation Y" = - Y, 1-special type m in the interval (A,B) 

which is mTT long and satisfying the assumptions of Theorem 8. 

Thus, it is direct or indirect general dispersion of (q ) , 

(-1 ) corresponding with some of canonical mapping of the 

space r onto the space of all the solution of equation (-1 ). 

Corollary 3 

To every increasing or decreasing phase <A. of an arbitrary 

equation (q ) there is always such a definition interval 

(A,B), m ^ long, of equation (-1 ) , that the phase TN. is di­

rect or indirect general dispersion of equations (q ) , 

(-1 ) with respect to some of canonical mapping p of the 

space r onto the space of all the solution of equation (-1 ). 

Proof: For an increasing phase o(. we will consider the 

interval ( c , c + m ^ ) , where c = limo<(t) for t —> a . For a de­

creasing phase we may consider the interval (d-mX"",d) where 

d = limoC(t) for t —> a . Consequently the assumptions of 

Corollary 2 are fulfiled and the validity of the statement 

above, too. 
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SOUHRN 

K TEORII GLOBÁLNÍCH TRANSFORMACÍ LINEÁRNÍCH DIFERENCIÁLNÍCH 

ROVNIC 2.ŘÁDU, KONEČNÉHO TYPU - SPECIÁLNÍCH 

EVA TESAŘÍKOVÁ 

V článku je rozpracována teorie transformací pro homogenní 

lineární diferenciální rovnice 2.řádu y" = q(t)y konečného typu 

m - 2 speciálních na příslušném konečném či nekonečném definič­

ním intervalu j = (a,b) za využití výsledků z teorie dispersí, 

formulované v literatuře [l] pro rovnice oboustranně oscilato-

rické ve vztahu k transformačnímu problému Kummera. 

Cílem článku je zavedení pojmu obecných dispersí dvou rov­

nic y" = q(t)y, Y" = Q(T)Y,q(t)6 C°(j ) , Q(T)<sC°(J), 1-speciál-

ních téhož konečného typu m - 2 na příslušných definičních in­

tervalech j = (a,b), J = (A,B), vyšetření jejich vlastností a 

jejich vztahu k problému globálních transformací těchto rovnic. 



РЕЗЮМЕ 

К ТЕОРИИ ГЛОБАЛЬНЫХ ТРАНСФОРМАЦИЙ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ 

УРАВНЕНИЙ 2. ПОРЯДКА, КОНЕЧНОГО ТИПА -

СПЕЦИАЛЬНЫХ 

Э. ТЕСАРЖИКОВА 

В этой статье разработана трансформационная теория 

для однородных линейных дифференциальных уравнений Е.по­

рядка у" = рС"Ь)у конечного типа щ - 2, специальных на 

принадлежащем конечном или бесконечном интервалах опреде­

ления з=(а,Ь) при помощи как можно более широкого приме­

нения результатов ив теории дисперсий, основанной на ли­

тературе /1/ для уравнений с осцилирующими решениями, 

в связи с решением трансформационной проблемы Иуммера. 

Целью работы является введение понятий общих диспер­

сий двух уравнений у" = д(Оу, V" = СКТ)У,
 ч
(т.)€ С ( 0 )

(^), 
п
(Т)еС^ 4 3 ) 1-специальных того же самого типа

 т
 - 2 на 

промежутках определения ^ = (а,Ь), О = (А,В), исследо­

вание их свойств и их отношения к проблеме глобальных 

трансформаций подходящих уравнений* 
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