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1. Introduction and résumé of results .

Markus eand Moore /6/ investigated the pro-
perties of solutions of the equation y ’= (a+b.q;(t))y, where
a, bec R and q; is & (resl) almost periodic function. A spe-
cial consideration was devoted to the above equation being
disconjugate., In studying the properties of their solutions
the authors started from the associated Riccati equation
it ul - a+b.q;(t). The distributions of zeros of solutions
and the derivative of solutions in oscillatory equations are
discussed in /8/ - /10/,

The present article follows the results of /6/, The pro-
blem under consideration is the disconjugate equation
(q):y"- q(t)y, where q means a (real) elmost periodic func=-
tion., As is well known (see /1/ or /2/), every disconjugate
homogenecus lineer differentisl equation of the second order
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is either generelly disconjugete or specially disconjugate. It
is proved for the specially disconjugate equation (q) that there
exists a unique almoest periodic solution of the associated Ric-
cati equation (Thsorem 1), and conditions are given (necessary
and sufficient) for the equation (q) to be generally disconju-
gate or specially disconjugate. These conditions are expressed
either through 8 certain form of & solution of the squation

{q) (Theorem 2) or through a certain form of the coefficient g
{Theorem 6) or through a certain form of the phase of the equa=-
tion {g)} (Theorems 9, 10), Next, there are given necessary and
sufficient conditions for the existence of an (up to & multi-
plicative constant necessarily unique) almost periodic solution
of the specially disconjugate equation (q) (Theorems 3, 4)
without using the Floquet representation (see; say /5/). which
is not applicable here. Theorem 8 deals with an analogous pro-
blem for the generally disconjugate equation,

suppose H{q] 1is the hull generated by q. Then the spe-
cially disconjugate equation (q) has an almost periodic solu-
tion exactly if all equations (g™ ) have almost periodic sclu-
tions, where q*c H{ q] (Theorem 5) and if @ is a characteris-
tic exponent related to the generally disconjugate equation
{g). then & is a characteristic exponent relasted to any equa-
tion (g ), q*cH{q] (Theorem 7).

2, Basic concepts and lemmas

In this article we exclude triviasl solutions of ths squa-
tion

y = p(t)y. pec®(r), (p)

We say, that (p) is an oscilletory (disconjugate) equation if
every solution of (p) has I =< gs the cluster points of its

zeros (if every solution of (p) hes one zero et most}.
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Definition 1 (/1/, /2/). Suppose (P i8_8_disconjugate equati-
ons, Assume_the: (p) ie_s_generally.disconjugate equatign
exgctly if there exist_two independent solutions of (p) heyving
fno_zero on R Asguse_thet (p) is s _specislly disconjugats
eqyation exscrly if there exists s_unigue solugion of (p) fup
g8 multiplicative constant) haying.ng zero on R.

Say conformsbly with /1/ end /2/ thet s functiond € C%(R)
is o (first) phes ¢ o f (p) if there exiet independent
gclutione u. v of (p) such that

tgd(t) = BEL g ter - {trv(t) s 0] .
v(t)

In then foliows from /17, /2/ thetd € C3(R), £ (¢} # ©
gnd p(t) = « {‘/L .tf o A)"(t) for t€ R, where {v( ,tz ; m
2

1 ; Y,
& o(fmgt) 3 (LN

.. - ~ \t) .
7 o P00 )

Letting E be the set of phases of the equation y ‘= =y
yialde that Ed s = {Zc{.é‘e E{ is the sect of phases of (f}.
where & 13 @ phasas of (p).

The squations (p)} i3 & specially disconjugate equation
exactliy if

lia £ (£} - 118!:7((&}\ =

to - 0° Tty o°

for some {(and then for svery) Phase o of (p)e

The equation (p} is = gsneprally disconjugats squatich
oxactly 4if
[11m L (t) - liup(_(t)(<(./7
e

t>-o°

for some (and then for every) phase ol of (P).
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The solutions of (p) stand in the following relations to
the solutions of the Riccati equation

Ut ul - p{t), pEe€ CO(R). : (1)

If y=y(t) is a solution of {(p) end y(t)#0 for t ¢ j, where
jc R is an interval, then the function u(t);-.¥%?£l. . t€ 3,

is a solution of (1) on j and also reversely, if u=u(t) is a
solution of (1) on jc R, then there exists just one (up to a
multiplicative constant) solution y=y(t) of (p), y{(t)#0 for

tc j such that u(t) = y(t; for t¢ Jj.

Lemma 1. Suppose p €CO(R), Lp(t)I< M for tc R, mhere MSR

A L - o

If_a solution u of (1) _is defined on R, then

@ wn ER e DR er o on e e

[u(t)[< M, teR,

Proof. The proof follows from the remark in /6/ page 1Cl.

Definition 2 (/3/, /4/). A function f_is celled almost perio-
dig exacsly Af_fSC°(R) and if_there exists a number

L (=L(€)_>_0) to_every number £ > O such that a number 7

e s v e = o om @R @ @ e oo om

b4
[£(t+T) = £(t)] LE for tecR

exists_on every interval of tyge_[x,x+L) (xeR).

The set of almost periodic functions will be denoted by
S, Every almost periodic function f is bounded and uniformly
continuous on R with the mean value equal to M {f i, where

[}
Mif{ ¢= lim L f(t)dt. By the Bohr-Bochner Theorem (see
Ty T

0 .
/3/, /4/) fc S exactly if f€ C°(R) and for every sequence
ihni . hne R, we may choose a subsequence uniformly conver=-
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gent on R from the sequence of functions {f(uhn)% o

Suppose that fc< S and H {f{ 18 the hull gener a-
ted by f that is gcH §f{ exactly 1f 11:’ f(t+h ) = g(t)
uniformly on R for any sequence {hni‘ hng RYThen H{f{c S and
if ge Hff] then H{g] = H{f].

Lemma 2 (/6/). The equation

y ‘= q(t)y, qeS , (q)

is_either oscillatory or_disconjugate.

Lemma 3 (/6/). The _e_qga_t_ig.n_(s)_i_a_ generally disconjugate

exactly if there exist almost periodic_solutions u= (, (L),
u=_Yyo(t) of

u’s+ u2 = q{t), (2)

Mig{ = <My { # 0.
Lomna 4 (/6/). Suppose (q) is_s_ggnerally disconjugate squae-
Xion end u= ) (8), u= (L) are almost perigdic solytions of

L2,y Fyp . g1=Mip )12 O, Setting

fy(t) = l//l(t) - a, Vz(t)x- polt) + a for tER,
¢
yislde § ((/l(s) + Va(a))dses nd the functd
0
y (t)s= e® exp( f Y (s)ds),
0
{
yz(t);- e-a'ie,q,(fI yz(s)ds). t €R,
0
are independent solutions of (g).

Definition 3 (/6/, p.113). Let (q) be_a_generally discojugate
equation_and a >0 be_the_number occurring in_Lemma 4, called

= 35 -



ihg ghargcteristic_sxponsnt of (3)e
Lemme 5. Suppose 4<S_end_for e sequence [ h,f. h <R,

lim q(t+h“} s p{t}
(LR ’
o

uniforaly on Ry Let for g seguange {t,} .t ¢ R. gnd for
c h

sequences {hn E ' {h,(, )§ chosen_from the gseguance {h {

ST T : ¢ anl2)y o
t{:ug(t+1n¢hn } pl(:)ﬁ i{fdﬁ(t*\"&n" y e pZ{t)

unifgraly on R, This_yields p; = pj .
Proof. We proceed in the sene menner 28 we did in proviug

Theorem 1 /8/, Let E > 0 be an arbitrary number. Then there
exists a positive integer N, such that

w gm\

[a(tehy) = a(eshy) [ o

for m,n > Ny and t<R. It then follows that

£

[age+n{My =~ a(ren{®h |2 <

and elso
lateer, +nlt)) « a(eer enlZy] ¢ ,.,f:, (3)

for n > N1 end te¢ R, Further, there exiestes & positive intuger
by auch that

A
[atestynfyepy (1)) ¢ ey [ atereonf®)ep 0] ¢ £
(4)
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for n> N, and t¢ R, Setting N = max &leNz) yields Trom (3)
and {4} for n> M and T¢R

fplhw 218} & [alree 4»’*"”‘)) = Py MH +
+ [q(t+tn¢h;2})-pgst)f + fq(t+tn+h£i’) -
- Q(tﬂ: 'H’u(‘? ‘ﬁf £ E o

Thus [pl({t) - pa(t}fi £ for teéR and with reapect to the
arbitreriness of £ we obtain Py = Ppe

Lepng 6, It _holds:
(1) If _(a) 4o e gererally disconiugate equation, then,

-y - e e e

Sor every a°¢ Higl, the squation (g*) is siso gencrally dis-
Soniuostes

(1i) If _(q9)_dis @ specially disconjugete equation,_ then,
for svery q”¢ H{q{, the gauation (q*) is_slsg specially dis-
gonjuqate.

Proof. The proof follows form the Bohr-Bochmer Theorsm
and from Theorsm 1 /6/.

L tvaseey

Lenms 7. Suppose éf” (/’)6 S and M{(ﬂa U, Then the fumction

t Pﬁﬁ
g oxp(\ ¢{T)d7 )ds (5)
(3 "o’ ‘

i@’@ﬂ nﬂa&ng‘ﬁ ”“R?O ® "o

Proaf. Let us set qit)ss « -}w (‘,ﬂ (%) +?(/ (t,}, t& R,
Then g€ & and ¢he Tun-tion -::i- (f{t) is a solution of (2). The
function y(t)e exp(--S({(a)d-) is a solution of (q) and with
respect to f-»i’l(,t & r-md H{‘—YZ = Q, snd by Leoma 3, (q) is
8 specially dieconjuqata 2quation, Hence
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oo

[+
S _ds oo, S‘ -—%‘——. oo and the function

y2(s) y“(e)
- 00 [+]
t t 8
-—-z-———d' = exp( (T)dT)ds 1s mapping R onto R,
5 y“(e) So o"”
o

Losma 8. Suppose that (/. (/’¢S and M{y}# 0. Then function
(5) is mapping R onte 3. J # R.
Proof. Setting in analogy to the proof of the preceding
Lemma q(t):---lz (/‘(t) +%- L,’*(t). t&R, then q¢ S and the
A\
function y(t) = exp(-% j' (/(e)da) is a solution of (q). The
(-]
equation (q) is disconjugate end is necessarily generally
disconjugate with respect to Lemma 3, Then necessarily at

o o0
least one of the improper 1ntegralsS ge ’ g_s conver-
S (s) y“(s)
- (-]

ges, whence immediately follows the statement of the Lemma.

Lemma 9. Suppose a is_the characteristic exponent_of the ge-
perelly disconjugate eguation (q). Let_(q)_have solutions of
the form

). o™ h o), where 4. fp s

]
Ih]_e_n__tﬂe_e_egigt_fgngt;og_s Y1, (/2 such_that (/3. o Y1r
V2 €8 M{Y1{ =M{pl= 0 ang
t
‘#1('5) = ky.exp( %_(o)ds) for teR, where k,e R (is1,2),
° .
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Proof, By Lemma 4 there exist functions {/., (/2 such
that /), e (/1. (/2 € s, M1 = M{¢y{ = 0 and the functi-
t t
ons e""exp(S (fl(s)dﬁ). eatﬂxp(g </2(ﬂ)ds) are independent
o ()
solutions of (q). Let (q) have a solution of the form e'at‘h(t)
where %le S. Then there exist numbers a;, ass

t t
et (1) = ale'”exp(S fy(0)de) + @a@‘”"exp(s @ q(e)ds).
[+ o

, t
Since i.m e"’exp(%- 5 (/l(s)ds) =e"8,1,
=00

4

lim e exp(-]t'- S (/z(s)ds) = e® > 1, it turns out that
t>®

t>o°

°
t t
1im e'atexp(s {;(s)de) = © and lim a®%exp( S / ,(s)ds) =,
[}

t
Therefore a, = 0 and 471(1:) @ alexp(g (/l(e)ds). Likewise
A .
. t
we can prove the equality <f>2(t) = kzexp(Sv %l,a)ds), where
o

k2 is an appropriate number.

Remark 1, Suppose (q) is a generally disconjugate equation
and a is its characteristic exponent., Since (q) has solutions
of the form e'atJDl(t), et 2(t), with at least one of the
functions 1° {52 belonging to S, then, respecting the proof
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of Lemma S and Lemma 4, it follows thet necessarily both
functions 951. %2 are lying in S slresdy.

3, Main results

Theorem 1. The equation_(q) is_a_specially disconjugate
gxectly if there exists just one almost perigodic solution u
af_(2)_and M{u{ = O,

Proof. (==)) If there exists just one almost periodic
solution u of (2), then, respecting Lemme 2 and Lomme 3,
squation (q) is specially disconjugate and it follcows from
Theorem 15 /6/ that M {u{ = O,

, (G&===) Let (g} be a specislly disconjugats eguation.
Then there exists just one soluticm u of (2} defined on R
being bounded by Lemma 1., Assume next thet u € 8, Then there
exists a sequence {hnf. h,€ R, such that %&ﬁoq(t@hn) = plt)
uniformly on R, without eny possibility to choose & subssquen=
ce uniforamly convergent on R from the seqguence of functions
{u(t+hn)} « Thus there exist e number & > O, incressing
sequence of positive integer {kn( . {rng . 8nd 8 soquance
{tal (£, € R, [ty —>oo for n—>o0):

}u(tnmkn) - u(tn-thrn){ > 8,0 = 1,2, cee o (8)

Since the sequences {”é!n*hk )i . {u&tﬁéhf 3; are bounded,
. n SR ]

it wmay be realized (in pessing to suitable eubsequences,

whereby, for brevity, the same notation of indexes is retained)
that

m e

lim q(t+t_+h t), lim g{eet_<+h © 4
n kﬁ) = py{t). Mmq( n fn} popit)
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urifermly on R and

lim u(t_+h_ ) =, 1lim u(t +”fn) " /2'
mypes N kn hA>oe n

t
where &.,/? € R and because of (6) wf ge

[d - f]2a. )

2) m 1,2,000
By Lemme 5 (in setting hgl) = hk ’ hg " hrn' . e )
n

we heve py = pl=ta). Since u(t+tn+hun) and u(t+tn+hrn) are

the solutions of the ecquations

. 2 .
uoeut e q(t@tﬁ¢hkn)

and
u o+ ua q(t+t +h_ ),
n

reepectively, we sese that

lim uft+t _+h, ) o uy(t), lim u(Setpysh ) = uz(t)
"y o? n kﬂ .1 n-»o? n

uniforaly on every compact interval, where u;, u, are the
eolutions defined on R of the following equation

TR a(t)

sacisfying the initial conditions uy(0) = £ o, uy(0) = £ . By
Lemma 6 (p) is & specially disconjugate equation, hence there
exists just one solution of (8) defined on R. This yields
Uy B Uy, consequantly X:a,@ . which, however, contradicts
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(7). Therefore u is an almost periodic eolution of (q) and by
Theorem 15 /6/ M{u{ = O,

Remark 2. Theorem 1 makes precise the statement of Theorem 16
/6/ by which there exists at most just one almost periodic so-
lution of a specially disconjugate equation (q) whose mean
value then necessarily vanishes.
Theorem 2. (q) is_a_specially disconjugate equation_exactly
if_the_function
t
y(t):= Oxp(S {f(s)ds), t ¢ R, (9)

o
is_a solution of (q). where (¢, V’é s ang M{y] =0,

Proof, (&= ) Let the function y defined as in (9) be a
solution of (q), where V, V'é S and M{(/E- O, The function
U= V(t) is an almost periodic solution of (2) and from Lemma
4 it follows that (q) is not a generally disconjugate equation,
consequently it is necessarily specially disconjugate.

(==>}) Let (q) be a specially disconjugate equation. By
Theorem 1 there exists a solution (/ of (2) such that (¥ ,

: { z Yy

ES, M s 0, Th = (t) for t € R d -
(/ . (/ en (t) (/ ) o ana any 8o
lution Y of (q) ® Y(D) = 1 and this by 1"teg| ation Yields (9).

Definition 3 (/6/ page 119), Let (q) be a specially disconju=-
gate_equation. O is called_the_characteristic exponent_of (q).

Remark 3, We known from the Floquet theory (see e.g. /5/)

that the specially disconjugate eguation (q) with a periodic
coefficient q has just one (up to the multiplicative constant)
periodic (and so also bounded) solution. If the coefficient q
of (q) is not a periodic function, then the situation is more
complicated. This becomes apparent from the example on page
119 /6/ with a concrete equation (q), 9 € S, specially discon-
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jugate, whereby its all solutions are unbounded, i.e. this
equation has not almost periodic solutions,

Corollary 1. Let (q) be_a specially disconjugate equation
heying_en slmost_periodic solution v, Then
t
y(t) = k.exp(S (/ (e)ds), t s R , (10)

o

where k € R, %'V)ésgngM[V{'Q'

- o

Proof. By Theorem 2 there exists such a function ¥ that

t
Y, V\é S, M {(/{- 0 and the function y;(t):= exp(j Y (s)ds),
°
t
t € R, is a solution of (q). Set y,(t):= ylét)g —%—— '
o Yi(e)

t € R, Suppose (q) has an almost periodic solution. To prove
the corollary it is sufficient to show that y, 4 S. In the
contrary case y, is a bounded function and since

o .
o ., J ¢ oo then 1im y;(t) = O and
2 2 tgtw
“» Yl(a) ° Yl(.)
therefore 1im (/ (t)y;(t) = lim yj(t) = O, From the other side
t>loo g

lim _ 1 alim B TX ) I lim yi(t) = O, which contra=
tate yy(r)  tolte J‘ A4 toto
0 I,{‘(A)

dicts the boundedness of the function Yoo

Corollary 2. Suppose (q) is_a_specially disconjugate equation
heying an slmost_periodic solution vs Then,
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Proof. Suppose y € S is a solution of a speciaslly disconw

jugate equation (q). By Corollary 1, y may be written s

2

) ‘

y(t) = k,exp(j V (s)de), where ¢, Yes, M{tfgm 0 and

(]
k € R, Without any loss of generality we may sscume k = L,
Let }2{ | y(t)] = 0. Then there exists a sequence {tn{ .
t_€ R, such that lim y(t_) = O, which yields lim y'{t_ ) =
n ™) n "> oo n

= %ﬁf;(f(tn)y(tn) s 0, Set zn(t)sny(wtm)n tER, N21l,2,000 o
Then z, is a solution of the equation y"“= q(tst )y,

lim z (0) = }i: 25(0) = 0, With the assumption of y, q¢ §

M -»oo
hence it can be assumed without loss of generality that
:iﬂ z (t) = %ig,y(t+tn) = z(t), }iﬂ’q(t+tn) = g(t) uniforaly

en R, Then z, d*e S and z is the solution of (q°) satisfying
the initial conditions z(Q) = O, =" (D) = O. Thie yields

z(t) = 0 and then naturally }ig y(t+t, ) = O uniformly on R.
Hence y(t) = O, which 18 a contradiction. Conseguently
g-gglv(t)bov .

Theorem 3, Suppose (q) is_sa_specially disconjugate equation.

The equetion (q)_has_an almost_pericdic solution y exagtly

. \4
Af y may be written in the form of (10), wherg S ¢ (s)de,
, ]
Y.y es, nigl=o0gnd ker,

Proof, (==>) Letting y be an almost periodic solution
of (q) yields that by Corollary 1 we mey use the form (10),
where (/, w)é.S, M{yim 0 and k € R, It then followe from
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t
Corollery % that the function g U (s)ds is bounded from below
“u
and from the boundedness of y we find that this function is
t
8iso bounded from sbove. Hence, the function j V(s)ds is

°
bounded and thus alsc elmost periodic,
t
(==} Lot there exist cuch a functien | that S (f (sjde,
(]

¢, cs, m[ple 0 and let y be defined by (10), where k ¢ R,
ie & eolution of (Q). It then follows from the properties of
alwont periodic functions thst y € S, i,e. (q) has an almost

' mardodic solution,

Iheorem 4. {0} is_s= specislly disconjugats equation having
an elmgst perigdic solution exactly if

alry = ¢ (s} + yRr)  for te R, (11)
Zhere

¥ )

g Yleyde, ¥ oY end m{pis= o, (12)

©

Proofe (==} Let (q) be a epecielly disconjugate
equation having an almost periedic solution y. By Theorem 2
y may be written in the form (10), where V satisfies (12).

Yy  (t)

From the eguelity g(t) =
y(t)

we obtain (11},
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((—) Let a function Y satisfy (12) and let q be de-
3

fined by (1l1). Then g¢ S and the function exp(g Y (s)ds)e s

]
be its solution. Then (g) is & specially disconjugate equation
as it follows from Theorem 2,

Theorem 5. Supposs () is_es_specially disconjugate equetion.
Lf At hes an_slmost perigdic solution. then the equation (q*)

hes also sn almost periodic selution for_every q*< H {af .

Proof, Let (q) have an almost periodic solution y and
let q*c H{q{ 1.e. q"(t) = ii!.q(t+hn) uniformly on R, where
{hn( is an eppropriate sequence of numbers. By Theorem 3,

y may be written in the form of (10), where V satisfies (12)
and k € R, Since y* = (,y, y° and y) (=qy) are almost pe-
riodic functions and passing to a suitable sequence selected
from {hn{ it ay be realized (for brevity, the seme notation
of indexes is retained) that

lim q(t+h,) = q°(t),  lim y(t+h;) = y*(t),
My m >
E':—'Y (t+hn) - sl(t)l :-i':_y (t"'hn) = az(t)a

uniformly on R, Evidently y*(t)a# 0, y*c S and by a limiting
process (n—><=°) in the equalities y(t+h ) - y(hn) =

t t
- X y'(s+h )ds, y*(t+h ) = y(h ) = g Y “(s+h )ds,
o

o
y '(t+hy) = q(t+h,)y(t+h ) we obtain 83 = y*', s, « y*" ,
y*! = q.y* . Thus y* 1s s solution of (q) end this solution
is an almost periodic function.

From Theorem 5 immediately follows
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Corollary 3. Suppese (q) is_s_specislly disconjugats equetion.
If (g)_hes_not_sny_almost periodic_solution, then likewise

(%) hes not eny almost periodic solution_for every q* ¢ H{q{.

Theorem 6. (q), is_a_generally_disconjugate gquation and s _is
its charscteristic exponent exgctly if_

q(t) = (/’(t) + () - e)2 for t € R, (13)
where 7, Y'es and M{y{=o.

Proof. (=) Let {q) be a generelly disconjugate equa-
tion and a be its characteristic exponent, By Lemma 3 and
Lemma 4 there exists such a solution Y of (2) that M {\f'i-—a

and the function y(t):= exp(s‘ (//(s)ds). t € R, is a solution
(<}
of (q). Setting (/1=  + a, then (/.‘7/)6 S, H{(ﬂ = 0 and from

y" (t) 2

the equality q(t) = © then q(t) = ¥ (t) + ("(t) =
yit

=)+ (p(e) - @2,

) (=) Let there exist such a function Y/ that ¢,
§ €s, m{p] = 0 and let equality (13) be valid. Then q € S
and the function Y 1= (/-a is a solution of (2). Since
M{y(- -a, it follows from Lemmas 3 and 4 that (q) is gene=-

rally disconjugate equation and e is its characteristic expo-
nent,

Theorem 7. Let (q) be s disconjugate equetion snd_a be its

Sharacteristic_expongnt. Then the number_a_is the characte-
ristic_exponent gf_a_qy__esug_t_;.op_ (6%), q9¥¢ H {q i .

Proof. If (q) is a specially disconjugate equation, then
the statement of the Theorem immediately follows from Lemma 6,
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Suppose (q) is a generally disconjugate squation. By
Lemma 4 there exist functions {;, (/,€S, Mf{,ﬂlg = a,
M {yz{ = -3, being solutions of (2). Setting %1 tm Vl 8,
yz 1= Y, +a, then the functions yl(t):u eatexp( 3 yﬁ(s)ds),
t o
yz(t)xu a-ataxp(g Yz(s)ds). t € R, are independent solutions
of {q). o

Suppose q*e H {q% . Then there exists such a ®equence
{h { ., h_ e R, that q*(t) = lim q(t+h_) uniformly un R, Pasving
n n "y os n

to a suitable sequence ihk } selected from the seguence {hn{
n

»
we arrive at lim t+h = t) uniforaly on R, i=l,2,
e paleshye ) =y (0) /

The functions : € S are solutions of u’ + u2 = q*{t),
M{yil = o, M{yHl = -a. serring 1= Yi-a, (ie Yiea
yields M{(fi( = M{(/5] = 0 and the functions yj(t}:=

t t
e ®Foxp( i fie2de), ya(r)sm & texpl [ yferas), v e &,
o

are (independent) sclutions of (g*) - consequentily a is the
characteristic exponent of {g*}.

Remmark 4, Suppose the coefficient q of the gsnerally discon-~
jugate equation (q) is periodic and a is the charscterisiic
exponent of this equation. From the Floquet theory {esse /5/)
then follows the existence of such solutions Yio Y2 of {qg)
that the functions eatyl(t), e'atyz(t) are pariodic {(hence
also bounded). If the coefficient q of {y) is not a periodic
function, then the situation is more complicored ee may be
seen from the example on page 113 /6/, with & concrete form
of a generally disconjugate equation whose cheracteristic
exponent is equal to a and for every solution y of this equa=-
tion the functions eaty(t), e'aty(t) are unbounded (hence,
they do not belong to the set S).
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Thsorem 8. Supposg 8 4s_8_Positiva number, (q) is_a generally

disconjugste equation, & 18 its characteristic_exponent heving
two independent solutions of the form

o8t §yit). 0T Po(r), mhere $. P8 . (14)

da

xgcrly Aif_equslity {13} is valid, whers (,7 satisfiem the
ssuaptions of (12).

- on an e

1)

§

Proof. {==—>) Suppose (q) ie a generally disconjugate
enuation, a is the characteristic exponent of (q) and (q) hae
twe independsnt solutions of the form of (l4). It then follows

from Lemma 9 that rfﬁi(x) = kiaxp(j (/i(s)ds) for t € R, whers
o

)
Yo, vy es, migd a0, ki€ R (121, 2)., Letting ¢, be &

golution of (g;) yields g, = %. 7’1' q; € S and it follows
from Theorswm 2 thst (ql} ie & speciaglly disconjugate equation
Ji
end from Thecres & 3 ‘\,”l(a)ds € S, Then & calculation shows
o
that q(t) = gy(t) + e = 28 Yy(t) = Pi() + (¢ (t) = 8)°
honce (L2} end {13) are velid, where we put i};):n (/l.

({(===) Supposs the function (/ satisfies the assumptions
of (12) and the cesfficient g of (q) ie defined by (13). Put
g = (/ * “”' » By Thacrem 4 (q-.i} 48 a specislly disconjugats

sguation with an slmust periodic eclution exp{ !; (j’(s)ds). It

followe from (14 that the funcrion (/3= U/ - 8¢S ie & solu=-
tion of (2}, Since M{L/’l% « -8, (q) i&8 & generally disconju-
getw equation and thers sxists such a solution (/,€S of (2)
that M] % = a, which follows from Lemma 3, Consequently a
i3 a cherscteristic axpeonent of (q) and the remaining part

i
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of the statement follows immediately from Lemma 4,

Then_there_exists such a_function V that V, V'é S, M {({ga (o]
angd the function

Theorem 9. Suppose (q) is_a_specially disconjugate equation,

t s
A (t) = arctg g‘ oxp(j (/('r)d’:")ds, téER, (15)
o o

is_a_phase_of _(‘q_l.__A_r‘r_d_v_:l_..cg‘ y.e;sg,__ii the function ( having

the form (15), where ¢/, y'es, M{yi= 0, is_the_phase_of (p).
then pe S and (p) is_sa _specially disconjugate equationg

Proof, Let (q) be a specially disconjugate equation. By
1
Theorem 2 there exists such a function (/1 that Vl' (/1 €S,
t
M{([lg = 0 and y,(t):= exp(jv 3(T)dT), teR, is a solution
°
' ds
of (q). If we put yy(t):=y (t)g
2 1 A yz(.)

,» t€R, Yy, 18 a

yo(t)
solution of (q) and the function o{(t) = arctg y (t)  °©

t de t s -
= arctg J‘ 3 = arctg S exp( S L/ (77)d T)ds, where
o Yl(8 o (°]

(3= =2/}, 18 a phase of (q). Obviously l/. (/)és and
{yi- o

)
Let the functiono(,be defined by (15), where V. V €s,
M{yl= O, is & phese of (p). By Lenma 7KL (R) = (-—’(é: ,%) .

hence (p) is a specially disconjugate equation and it follows
from the equalities
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), 1
pe) = = {&,ef = L0 » -3 Yo PR
that p£ S,

Jheorem 10. Suppgose (p) 3-3_5..93_n2"§\1_];y_d_1_320m jugate equation
and a is_its_characteristic exponent, Then_there exists such

8 function y that v, ‘/lé's' M{¢{= 2a and the function

-
t 8

A(t) = arctg S eXP(S (f/(T)d'T")ds. teR, (1s6)
(o] o

is_a_phase of (q). And also conversely, if the function ,/ is_
defined as_in (16), where ¢, y'es, o . is_a phase
of_(p), then p € S, (p) is_a_generally

and /a! is_its_characteristic exponent

P - - -

Proof. (=—=}) Let (q) be a generally disconjugate equa-
tion and a be its characteristic exponent. By Lemma 4 there
exists such a function ‘/1, that kfl' 4//1'6 S, M{ L/I{ = «-a and

t

yi(t)s= exp(j kfl(s)ds, t € R, 18 a solution of (q). Setting
(]
t ds
ya(t)s= yl(t)S —% "+ t €R, yields that y, is a solution
o Y18
of (q) and analogous to the first part of the proof of Theorem
- t s
9 we also show that the function £ (t) = arctg ‘fexP(Slf(ﬂdﬂds‘
o ()

where = -2 Y1 is a phase of (q). Obviously U, y/’e S and

Migle —2m{y 1 = 2a.

(&) Let the function «{ be defined as in (16), where
¥ (/)6 S and ﬂ{lf/i- 2a (#0) is a phase of (p). By Lemma 8
AL(R) ﬁ (- g R ié-), hence (p) i® a generally disconjugate
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equation end it follows from the equalities
‘ 2 1, 1,2
p(t) = = {Loe] = ol (£} = =5 @lr) + &y 3(n

that p € S, If we put Yy 1 - % ., thon y i3 an slimost

!
periodic solution of the squetion ¢+ u?a ple), [ {L/l{f =
s & 'Mi v/q- [a [. Thus |[&a| is a characteristic sxponent of (p).
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SOUHRN

O NEKTERYCH VLASTNOSTECH RESEN! DISKONJUGOVANE ROVNICE

.

y°* = q(t)y SE SKOROPERIODICKYM KOEFICIENTEM q

SVATOSLAV STANEK

V préci jsou vySetiovény vlastnosti *efeni diskonjugované
rovnice

y** = q(t)y, q & CO(R), (q)

kde q je skoroperiodické funkce. KaZzdé diskonjugovand rovnice
(q) je bud obecn& diskonjugovand (tzn., existuji dv& nezévislé
reSeni této rovnice, kterad nemaji na R nulovy bod) a nebo spe-
cidlnd diskonjugovand (tzn. existuje aZ na multiplikativni
konstantu jediné reSeni rovnice (q), které nemd na R nulovy
bod). Je dokézéno, %e rovnice (q) je specidlné& diskonjugovand
prévé kdyz pfidruzend Riccatiho rovnice u’ + u2 = q(t) md je-
diné skoroperiodické FeSeni (véta l). Dédle jsou uvedeny nutné
a postadujici podminky, aby rovnice (q) byla bud obecn& dis=~
konjugovand a nebo specidlnd diskonjugovand. Tyto podminky
jsou vyjédi¥eny bud prost¥ednictvim jistého tvaru Fesdeni rovni
ce (q) (véta 2), nebo prostiednictvim jistého tvaru koeficien
tu q (véta 6) a nebo prostiednictvim féze rovnice (q) (vé&ta 9
a véta 10), Uvedeny jsou nutné a postatujici podminky, aby
existovalo skoroperiodické FeSeni specidlnd diskonjugované
rovnice (q) (véta 3 a v8ta 4), Obdobna uloha pro obecnd dis-
konjugovanou rovnici (q) je vy8etiena ve vé&té& 8,

Necht H{q | je obal generovany skoroperiodickou funkci
q. Pak specidln& diskonjugované rovnice (q) mé skoroperiodic=
ké FeSeni pravé kdyz maji skoroperiodické FeSeni vSechny rov-
nice (q*), kde q*¢ H{ q} (v&ta 5) a je-1i a charakteristicky
exponent obecné& diskonjugované rovnice (q)., pek je a charekte-
risticky exponent kazdé rovnice (q* ), kde Q"¢ H{q| (véta 7).
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PESIOME

L4
OB HEKOTOPHX CBOJICTBAX PEUEHNM/ YPABHEHMA V¥  =q(t) y BE3
COTiPSIKEHHHX TOUEK C TOUTH-TIEPMOJIMUECKMM KODSSMIMEHTOM  Q

CBATOCJNIAB CTAHEK

B pa6ore usyuanTcs cBoiicTBa pemeHult ypaBHeHUS

Y= a®)y, g€ c® (R), (@
Ge3 CONPSAXEeHHHX TOUeK, raeq — NOYTU-NepUOAUUecKas DYHKIMS.
Beakoe ypaBHenue () 6es CONpAXEeHHHX TOUeK ecTb MIM obmee ypa-
BHeHMe Ge3 conpsxeHHHX Touyek (OYCT) (cymecTBYyDT IBe HesaBuCU-
MHE pelleHUsi ITOr'0 ypaBHeHMs, KOTODHe He MMeDT HyJas Ha R)
WIN cleuMalbHOe ypaBHeHMe Oes3 conpsXeHHux Touekx (CYCT) (cymecr-
ByeT 10 MYJNbTUMJIMKATUBHON MOCTOSHHON eIZMHCTBEHHOe pelleHue YPaB-—
HeHuss (q ), KoTopoe He uMeeT Hyasa Ha R ). JlokasaHo, uTO ypaB-—
nenue (q ) ecrb CYCT TOrze m TOJABKO TOorna, Korma ypaBHeHHUe
Puxxarn u’+ u2= q(t) uMeeT enmMHCTBEHHOe NMOUYTU-NEPUOLUUECKOE
pemeHnue (Teopema 1). Jlaree npuBOAATCH YCIOBUSA, KOTODHE HeOoO6X0-
nVMHE W NOCTAaTOYHHe AJAd TOro, uTo6n ypaBHeHue (Q ) OGmmo mau OYCT
wnu CYCT. OTu ycnoBus BHPEESOTCH MNPV NOMOmM MJIM HeKOTOpoit dopmu
peweHus ypaeHenus (g ) (Teopema 2), waM HeKOTODPON POPMH KOBD-
¢uumenTa q (reopema 6), wau dasm ypasHedusa (4 ) (reopema 9 u
Teopema 10). IIpMBOASTCA HEOOGXONMMHE M NOCTATOYHHE YCAOBUA CY=—
e CTBOBAHUS NOUTKH-nepuonudeckoro pemeHus CYCT ( Q) (reopema 3
¥ TeopeMa 4). AHanorumunas sepauva gaa OYCT ( Q) peueHa B TeopeMe
8.

Tlyers qu{ - 060J0YKa NOPOXNEHHA&s MNOuYTU-nepuonuueckoit dy-
uxkuveit q . Torma CYCT ( Q) uMeeT nOUTHU-NEepUOLMUECKOE pemeHMe
TOrga M TOJNbKO TOrZa, KOrha MMeNT IOUYTHU-IepMOAMUYeCKOe pemeHUe
Bce ypaBHenns (%), ¢ € H{q} (reopema 5). IlycTb a xapakTepuc-
Tugeckuit Myaprunaukarop OYCT (9 ). Toraa a - xapakTepucTHyec-
KUl MyIbTUMAMKATODP Kezoro ypassemus (Q*), a*€ H{Q{ (Teopema 7).
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