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I. A net 1s an ordered triple (2, %, (£,),.1) where 2 is a set having at least two
elements (called points), & is a set of some subsets of 2 (called lines) and (&)1
is a system of mutually disjoint subsets of .#, the union of which is %, I is a set of
indices; # I > 3 and the following conditions are satisfied.

() VYPe?, Viel,Aae ¥, Pea,

(i) Vo, feLa # B, Vae L, VbeZ,, # (anb) = 1.

From (i) it follows:
VielLVa, be &,; a#b,anb=40.

The set &, is called the i pencil, its lines the t-lines. Lines of the same pencil (distinct
pencils) are called parallel (non-parallel). Points A, B are termed joinable if there is
a line p such that 4 € p, Be p; if moreover 4 # B, then this line is called a join
of 4, B and is written as AB. A point P, for which Pea, Peb with a,be ¥,
a # b is called the point of intersection and is written as a [ b. As customary we
say P is “on” p or p “passes through” P if P p. A line from the «'* pencil passing
through the point P is written as a(P). The cardinality of the set I is called the degree
of a net.

Let A, & be nets. By a homomorphism of A" into A~ we shall mean a mapping
x 1 P — P for which

Viel,Vae¥,,3d e P, a* = {X*|Xea} c d.

If 2* = 2’ we speak of an epimorphism, if x is bijective and if ™! is also an epi-

morphism, then we speak of an isomorphism. If the given nets satisfy # < 2’ and
the mapping idp is a homomorphism 4" into 4" then we say that 4" is a subnet
of A",

The subnet & = (2, L, (L), of anet /' = (P, L', (L ),e) is called a Baer
subnet if there exists for every point Xe 2’ \ & at least one line /e ¥’ passing
through X such that / n 2 # 0.

Note. Let A" be a Baer subnet of a net A7, Xe 2’ \ 2. It is easy to werify the
fact that X is exactly on one line /e .%’, for which I n 2 # 9. Namely, if there
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exist two such lines /;,l,e Z; I, # 1,, then X = [, M L e 2, is a contradiction
to Xe 2" \ P. let Ae #' \ 2. The unique line passing through A containing the
line from the Baer subnet is written as A 2.

Let /7 = (7', &', (&) ,cp be anetand A& = (P, ¥, (£)),.)) be its Baer subnet.
The ordered tetrad (P, Q, R, S) of points of 2 is called a parallelogram if there
exist o, feI; o # B such that PQ, RSe ¥, and QR, PSe £;. A tripl (4, B, C) is
called a triangle if A, B, C either is not on the same line or they are not mutually
distinct. The tetrad (P, Q, R, S) of points of 2’ \ 2 is termed an A -trapezium,
if PQ, RSe 2., QRe %y, PSe ¥, o,B,yel; B # a #y (B =y is possible) and
moreover PS = PP, QR = Q2. The triangle (4, B, C) is called an A -triangl if
A, B,Ce 2 \ 2.

\J ]
s R’ 'A ¢
\ [} !
| \ I \
. N
p)! : = Q\ \\ : : B 1
I \\ AN ! | i\
1 i \ \ i ] 1
ot/ ¥ :
P!: s \ R A E c
! |
P -\l
/ Q

Fig.lo 'Fig.ze

Let /7" = (2, %", (¥)),.) be anet and & = (P, L, (L), be its Baer subnet,
o, feI; « # f. Then Reisemeistr’s condition of the type (A", «, B) in A is defined
as the following implication: If (P, Q, R, S) is a paralelogram, (Q, R, R’, Q") and
(P, S, S', P') are A '-trapeziums such that PSe &,, PQe ¥;, P' € PP then (P, Q’,
R, §’) is a paralelogram. (See Fig. 1.)

Let &' = (2, %', (£),e) be a net of at least fourth order and A =
= (2, %,(ZL)),.) be its Baer subnet. Then Desargues’ condition of type (A7) in A
is defined as the following implication: If (4, B, C), (4’, B’, C’) are .4 -triangles
in /7, (4, B, B, A') and (4, C, C’, A') are 4 -trapeziums, points B, C are joinable
and for B# C BCn 2 = 0, then (B, C, C’, B') is an A -trapezium. (Sec Fig. 2.)

Proposition 1.

Let &' =(2',%,(Z),.) be a net of at least fourth order and A =
= (2, %,(£)).c) be its Baer subnet. If the net 4 satisfies Desargues’ condition
of the type (A7), then 4 also satisfies Reidemeister’s condition of the type (A", &, 1)
forall &,nel; &+ q.

Proof. Let Pe 2’ \ 2#; we choose the points P, Q,Se # \ P such that
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PSe %, PQe#,, P eP?,Enel; ¢ # . Furtherlet R := &Q) M n(S)e ' \ 2
then (P, Q, R, S) is a parallclogram, Q' 1= Q2 M y(P')e P’ \ Z then (P, 0, Q', P')
is A -trapezium, R := RZ 11 &Q)e #' \ P then (Q, R, R, Q') is N -trapezium,
S = SP M EP)e P \ P then (P, S, S P)is A -trapezium. The points P, Q, R,
S, P',Q', R, S’ satisfy the assumptions of Reidemeister’s condition of the type
(N, & u). Since P'S"e £, 'R € £, and P'Q" e &, it suffices to prove: R'S" € &,.

We choose o€ I; o 5 &, 1, PP ¢ £,. Such an o exists, for, the net A4 is at least
fourth order. Necessarily «(P) n 2 = ) and «(P’) n & = 0. Now we consider the
points X = a(P) M p(S)e ' \ P and X' = a(P) M XP e P \ 2. Then the points
P, X,S, P, X', S satisfy the assumptions of Desargues’ condition of the type (A")
in A, Hence n(X’) = n(S’). Simultaneously we consider the points ¥ = a(P) [
Mé&Qe? \Pand Y =a(P)M YPec P \ P ThenthepointsP, Q, Y, P, Q", Y’
satisfy the assumptions of Desargues’ condition of the type (A) in A7, too. Hence
E(Q') = &(Y’) and thus the points @', Y', R’ are on the same ¢&-line. Finally, the
points Y, X, R, Y', X', R’ satisfy the assumptions of Desargues’ condition of the
type (A7) — as well. Hence n(X") = n(R’, = #(S") and thus R'S" € Z,. (See Fig. 3.)

%F’ //Q np)

Figese
Proposition 2.

Let /7 = (2, %', (Z).eD be a net of at least fourth order and the Desargues’
condition A" = (2, %, (£ ).c1). Let (4, B, B, A'), (4, C, C’, A’) and (B, D, D', B')
be A -trapeziums in A such that points C, D are joinable and for C # D, CD n P =
= . Then (C, D, D', C') is an A4 -trapezium. '
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Proof. Let the points A4, B, C, D, A’, B’, C’, D' satisfy the assumptions of the
above proposition. If 4, B, C, D are on the same line, then (C, D, D', C’) is trivially
an A/ -trapezium.

a) Let 4, B, C, D not be on the same line and (4, B, D, C) be a parallelogram.
Then the points 4, B, C, D, A', B', C', D’ satisfy the assumptions of Reidcmeister’s
condition of the type (A4, &, ) for suitable &, n € I. By proposition 1. this condition
is valid in A”'; hence (4’, B’, D', C’) is a parallelogram. Lines A’B’, D'C’ are from
the same pencil and by our assumption the lines 4B, DC as well. Thus (C, D, D', C’)
is an A -trapezium.

b) Let (4, B, D, C) not be a parallelogram. The points C, D are joinable and
for C # D, CD n 2 = # (by the assumptions of our proposition). Since (4, B, D, C)
is not a parallelogram, there exists at least one of the points X = ABM CD, ¥ =
= AC ] BD and it is from 2’ \ 2.

Let us consider the existence of the point X. As the points 4, B, C, D are not on
the same line, the tripls (4, C, X) and (B, D, X) are A4 -triangls. Determine X' :=
:= X2 [ n(A") where for ne I A'B’€ £, holds. Now the points 4, C, X, A', C’, X,
as well as B, D, X, B’, D', X' satisfy the assumptions of Desargues’ condition of the
type (/") in the net 4. Thus (C, X, X', C') and (D, X, X', D) are A -trapeziums,
which means that the lines CX and C'X’ are parallel and DX, X'D’ as well. Since
X e CD, then also X’ e C’'D’ and hence (C, D, D', C’) is A -trapezium. (See Fig. 4.)

In analogy with the above proceeds the prove for the point Y.

Figed.

1. Let % : & — 2 be an automorphism of the net A". Obviously it follows

{X*|Xel}e & and {(X*"" | Xel}e & forall le &. Thus x induces a permutation %
of @ with I := {X*| Xel}.

Let 47 = (2, %", (L)) beanetand & = (2, L, (£ )).e)) be its Baer subnet.
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By an A -automorphism of a net 4~ we mean such an automorphism for which
I* = I for every line /e # with I n # # §. We say that the net A" is A -transitive
if there exists an 4 -automorphism such that 4* = A4’ for any two points 4, 4’ €
EP \P, A €AP.

Note. It is easy to verify that a net A" is 4 -transitive whenever there exists a line
ly, lg N 2 # @ such that for any pair of points A, 4" € [, there exists an 4 -auto-
morphism with 4 —» A4'.

Theorem.

Let &' = (2,2, (%)), be a net of at least fourth order and let &/ ="
= (2, Z,(¥,),-) be its Baer subnet. Then the net .4 satisfies Desargues’ condition
of the type (/") if and only if it is 4 -transitive.

Proof. 1. Let &' be A -transitive and the points 4, B, C, A’, B, C' satisfy the
assumptions of Desargues’ condition of the type (A4") in A". If 4, B, C are not
mutually different, obviously (B, C, C’, B') is an A4 -trapezium. Let 4, B, C be
mutually different, and let us consider an 4 -automorphism x» with 4* = A4’. We see
that (AB)* = A'B’, (AC)* = A'C’, (B#?)* = B2, (CP)* = CP so that C* =
= (AC T CPY* = (ACY* M (CP)* = A'C’' M CP = C’and also B* = (AB M BP)" =
= A'B' 1 B? = B'. Hence (BC)* = B'C’ and since x» is an automorphism of
a net A, then the lines BC and B'C’ are parallel. Therefore (B, C, C', B) is an
A -trapezium.

2. Let A" be a net satisfying Desargues’ condition of the type (A7) and (4, 4")

A\

AP

be a pair of points such that 4, 4'e 2’ \ ? and A’ € 4P?. Now define a mapping
Haq 2 P — P as follows:

1A% = A

2.Vlel,, K, 1el

3. VXe?, Xel, X,y €l
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4. forXe P\ Plet X*, - := X'is apoint for which there exists an intermediating
pair of (X,, Xg), so that (4, X, X3, 4") and (X,, X, X', X;) are A -trapeziums.

We show that the point X’ is thus determined in a unique way independently of
Xy, Xg. There exists at least such a one pair of points (X,, Xg), because we can choose
arbitrary indices o, feI; o # B with AP ¢ £, AP ¢ L. Now put X, := a(4) M
M BAX), Xg:= Xo2 M (4", then X' = X2 1 B(X,)- Furthere the independence
of X’ on the choice of (X,, Xg) is guaranteed immediately by proposition 2. It is
obvious that x,,. must be bijective (and thus it is a permutation of #’) and
{X* ' | Xel} = Ifor every line Ie &', [ n P # 0.

] \ m(x,c‘)

—~ o i)

i X! H g
A9 | L

! x@;' ."
— : I///?b/(A)

A ! Xg

X
l,e éC %
Figo6o

It remains to prove that the mapping x . is parallelity preserving for all remaining

lines, i.e.
VieLLVieZ, ,{X*,, | Xel}eZ,.

Let/n 2 =0,le £,. We choose B € I; B # « such that AP ¢ #;. Now put X, :=
= pA) ML Xgi= B(A) M Xo2?. Let Xel. Determine X*,,. by means of the
pair of points (Xo, Xg). Then X*, . € a(Xg) ie. {X*,, | Xel,leP.}e Z..

Construction. Let T be a field and F be a subfield of T such that the dimension
of the vector space T over F is two.

Define:

P = {(x,y) | xyeT} »

L ={Nlx=cyeTlceTtu{{(x,)) |y =mx + c,xeT}meF,ceT}
A system (£)),c; is defined as follows:

Let/, = {(x, M|y =mx+ ¢}, b ={0)) |y =mx + c;} thenl, ||, <> m, =

= m,.
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Clearly, /" = (2, &', (£)),.) is a net. Now we define the sets 2, &, (&) in the
same way under the condition x, y, ce F. Then (2, &, (£)),c1) is a Baer subnet
of the net 4.

Proof. Let (a,0) = &' \ 2. Then either ae T \ForaeF.

1. Let a € F, then the unique line passing through (a, b) containing a line from £
is the line {(x,»)|x =a, ye T}. Suppousing (a,b)ep, pn P # 0, pe ¥, the
line p would have the form p = {(x, ») |y = mx + ¢, m, ce F}.

Let {l,g}, geT \F be a base of T over F. Then b = b, + b,g, a = a, + a,g
with a,, a,, b,, b, € F. If ae F then a, = 0. Then b, + b,g = m(a; + a,g) + ¢ and
it follows:

by =ma; + ¢

b, = ma,

in a contradiction to a, = 0, b, # 0.

2. LetaeT \Fie. a, # 0. Then m = b,/a,, c = b, — b,a,/a, and m, ce F are
thus determined uniquely and there exists only one line in % whose extension contains
the point (a, b).

Theorem.

The net 4" from the above construction is A -transitive.

Proof. Let ¢ be an automorphism of the vector space T over F for which x? = x
for any x e F. We show that a mapping (x, y) = (x¥, »*) is an A -automorphism
of #'. Let ce T, then {(x,3) | x = c}? 1= {(x", y") | x® = ¢*} = {(x,») | x = ¢*}.
Let meF, ceT, then {(x,»)|y=mx + ¢c}? = {(x% ") |y = mx? + ¢} =
= {(x,») |y = mx + ¢*}.

The mapping, for which (x, y) = (x%, %), maps any line to a parallel line, i.e.
the pencils are preserved, it preserves the lines for c e F.

Now, we show A" being A -transitive: Let (a, b), (@', b') be a pair of points
from 2’ \ & on the same line / such that [ n 2 # 4.

LetaeT \F, than ! = {(x,y) |y = mx + ¢}, m,ce F and {1, a} be a base of T
over Fandletz =2z, .1 + z, .4, z;, z, € F for any ze T. Choose ¢ such that z¥ =

=2z,.1+4+z,.a. Since b =ma + ¢ and b =ma’ + ¢ and a - a’ we obtain

b=ma+c—ma +c=0.

LetaeF, then! = {(x,») | x = a} and hence @ = a’. Thenbe T \ F and choosing ¢
such that b* = &' i.e. the base {1, b} is mapped into the base {1, b'}.
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SOUHRN

SPECIELNI AUTOMORFIZMY TKANT
S BAEROVOU PODTKANI

JAROSLAVA JACHANOVA

V &lanku se zavadi pojem tkdng& A4~ s Baerovou podtkani A7, t. j. takové tkang,
Ze kazdym bodem tkan& A" nepatficim do /4" prochazi pravé jedna ptimka pod-
tkdng€ A", Zavadi se jisté modifikace Reidemeistrovych a Desarguessovych konfigu-
raci pravé vzhledem k Baerové podtkani. VySetfuji se pfislusné modifikace Reide-
meistrovy a Desarguessovy uzaviraci podminky a studuje se podgrupa grupy vsech
automorfizml dané tkané s Baerovou podtkani a to podgrupa automorfizmi repro-
dukujicich tuto Baerovu podtkaii. Ukazuje se, Ze souvislosti mezi zminénymi modi-
fikacemi jsou stejné, jako pro obvykly pfipad. V zavéru je uveden algebraicky
konstruovany pfiklad 4 -transitivni tkang.

PE3FOME

CHHEUUAJIBHEIE TUIIBI ABTOMOP®U3MOB CETEU
NMMEIOHUX INIOACETU BOPA

SAPOCJIIABA JAXAHOBA

CraThsl OTIMCUBACT HOHSITHE CETU A" HMeroIed noacets bspa A7, T. €. ceTH B KO-
TOPOi KaXA0# TOUKOM U3 A" HEBXOIsLIeH B A" MPOXOAUT TOYHO OIHA NPSIMAS MPH-
HaIexamas noacetu A . Jaislie u3yyaroTCs CieNUalbHBIe THIIBI YCIOBHIA 3aMbl-
kanus Peiinemeilictpa u [esapra, ¥ moarpynma IpyImbl asTOMOPOU3MOB CceTH
¢ noxcerbio Bapa — moxrpymma aBTOMOP(GM3MOB PECTPUKIMS KOTOPBIX Ha A~
SIBJISIETCST TOXIECTBOM.

Janpuie 37ech OOKa3bIBAETCS YTO CBSI3HOCTH MEKIY YCIOBWSIMM 3aMbIKAHHS
Peiinmemetictpa u [e3apra 3Tux CneuualbHBIX THIOB TaKKe KaK B OOBLIKHOBEHHOM
ciayyae. B xoune ommcaH anre6pauyecky IMOCTPOCHHBIA NMpumep A -Tpan3MTUBHOM
ceTy.
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