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In this paper we will show the existence of quasi-square root of
element in a complete locally multiplicatively convex algebra which
possesses spectrum contained in the interior of the complex unit disc.
In the case of spectrum being also positive we state a simple relation
between square roots and quasi-square roots which enables us to show
the existence of the unique positive square root of an element with
positive bounded spectrum. If, moreover, the algebra is endowed by
an involution and the elements in our consideration are selfadjaint then
the quasi-square roots (square roots) can be choosen selfadjoint too.

1. Introduction

The notion of semi-normed algebra was introduced by R. Arens as a natural
generalisation of Banach algebras. They are called locally multiplicatively convex
algebras by E. A. Michael [3]. Several properties of Banach algebras have been
proved also for semi-normed algebras [3], [7], [8]. The aim of this paper is to study
the existence of square roots for elements of these algebras. In the theory of Banach
algebras the existence of square roots [ 1], [2], [5] plays an important role in problems
concerning the spectral properties of elements in the non-commutative case. Speaking
more closely the non-commutative case does not admitt the use of Gelfand transform
in general and so the ‘“‘square root” technique together with some other algebraic
tools (as e.g. the polynomial identity for spectra) work. Let’s mention that algebras
studied in this paper are not assumed to posses a countable base of uniformity and
so we cannot use the wellknown Mittag—Leffler theorem to construct the square
root (quasi-square root) from its projections. So we have to find some refined methods
of proofs,

103



2. Preliminaries

The reader is assumed to be familiar with the basic concepts concerning topo-
logical algebras, namely the Banach algebras, including spectra, Gelfand representa-
tion for the commutative case and so on. All of them as well as proofs can be found
in [1] for Banach algebras and in [3], [5], [9] for the semi-normed algebras. Let’s
recall now some notations and facts which we shall use in this paper. Aninvolution
defined on algebra A is a mapping x — x* of A onto itself such that the following
holds for each pair x, y € 4 and for each complex A:

(1) x** = x,

(i) (Ax)* = Ax*,

(i) (x + y)* = x* + p*,

(iv) (xp)* = y*x*.

A x-algebra is an algebra endowed by an involution. An element x € 4 is said to be
regular, (selfadjoint) respectively if it holds that there exists an inverse to x (x* = x)
respectively. A topological algebra is said to be semi-normed, or locally multiplica-
tively-convex if its topology can be given by mean of a family {p,}, s of semi-norms
on A which separates points of 4. The class of all locally multiplicatively convex
algebras will be denoted by- LM C. The spectrum of an element x € A will be denoted
by o(x). If it is necessary to specify the algebra with respect to which the spectrum
is taken we shall use the notation o(4, x). The spectral radius of an element x € 4
is denoted by | x|, and it is defined as | x |, = sup {| 1 | : A € 6(x)}. Let’s mention
that the last number is not necessarily finite if 4 is semi-normed. The unit element of 4
(if exists) will be denoted by e and will be left in expressions like 4 — x. If we set
N, = {x € 4: p,(x) = 0} for some « € Z we obtain a closed ideal in 4. Let 4, denotes
the Banach algebra obtained by the completion of the normed algebra (4/N,, p,)-
By n, we denote the natural homomorphism mapping from A4 into 4,. Let’s denote
by n the mapping 7 : A — [ 4,, n(x) = (m,(x)),e; Where [] 4, is the cartesian pro-

ael a€l

duct of spaces 4, endowed by the product topology and coordinatewise defined ope-
rations. This map is a topological isomorphism. If 4 is complete the image n(A4)
is a closed subalgebra in [] 4,.

a€X

Let now A be a complete algebra from LMC with a system of semi-norms {p,},c s
as mentioned above. Write « < f for each «, f € X if p,-is continuous with respect
to p,. This relation makes of Z a directed set.since we can assume without the loss
of generality that the maximum of a finite number of members from X is again
from Z. If « < B we define a map n,; from the algebra (4/Ny, py) into (4/N,, p,)
by 7,5(n4(x)) = m,(x). This map is a continous homomorphism of 4/N, onto A/N,
and thus it can be extended to a homomorhpism of 4ginto A,. This extended mapping
will be denoted also by n,z. It’s obvious that for each «, f, y e 2 such thata < f <y
holds 7,, = m,4, m;,. So we obtained a projective system of Banach spaces (4,, « € 2)
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with respect to the set of continuous homomorphisms (7,4, « < B). This enables us to

construct the projective limit denoted by lim 4, of this system i.e. the subspace of
<

I1 4, formed by all those “sequences” (x,),.r that for each «, B € %, « < B holds

a€X

Tap(xp) = x,. It's wellknown [3], [9] that n(4) = lim 4, and so we have that each
“—

complete algebra from LMC is topologicaly isomorphic to the projective limit of Ba-
nach algebras. We can identify A and the projective limit lim A4,. This yields that an ele-
-

ment x € A is regular iff for each «€Z its projection n,(x) is regular in 4, and we easily
see for each x € A4 the equality o(x, 4) = (] a(n,(x), 4,). For the spectral radius holds

acl
| x|, = sup | m,(x) |, where the last term is taken in 4,. We got that the spectrum

a(x, A) is a nonempty, in general unbounded set of the complex plane. The mentioned
topological isomorphism yields also that a sequence (x,),. s € | | 4, belongs to 4 iff
xel

for each pair «, § € X such that « < f holds m,4(x5) = x,.

3. Quasi-square roots and square roots

3.1. Definition: Let A be an arbitrary algebra. For each pair of its members x, y
we define their quasi-product x . y by formula

X.y=Xx+Yy—Xxp

where xy means the usual algebra product in A.

3.2. Definition: Given x € A a quasi-square root of x is an element y € 4 with
y.y =2y — y* = x. A square root of x is an element z € 4 with zz = x.

Let 4 be a topological algebra. Given a € A we denote by B(a) the least closed
subalgebra of 4 containing a. B(a) exists [1] and it is formed by the closure of the set
of all polynomials P,(a). Obviously each pair of elements x, y € B(a) is a commuting
pair. The subalgebra B(a) is contained in the maximal commutative subalgebra C(a)
of A containing the element a.

Recall now the original quasi-square root theorem for Banach algebras which is
due to J W. Ford [1], [2].

3.3. Theorem: Let A be a Banach algebra and let be ae 4 with |a|, < 1. Then
there exists the unique quasi-square root x of @ in 4 with | x |, < 1. Moreover is

x € B(a).

Proof: See for [1] p. 44.



We shall make a substantial use of this result. In the rest of this paper denotes A
a complete algebra from LMC endowed by topology which is given by a directed set
of pseudonorms {p,, x € Z}. For each a e 4 and for each « € £ we denote by a, the
projection 7,(a).

3.4. Proposition: lLet ae A and o € 2 are such that | a, [, < 1. Then there exists
the unique quasisquare root x € 4, of a, so that | x |, < 1. Further holds (¢, — a,) =
= (e, — x)?, Re a(e, — x) > 0 and x € B(a,).

Proof: The existence of unique x € B(a,) is a consequence of 3.3. and for the rest
we can easily see:

(ea—a“)z(e——a)a=ea—2x+x2=(ea—x)2.
By the condition | x |, < 1 and by the polynomial identity for spectrum we get

Re o(e, — x) = Rea(e,) — Rea(x) =1 — Reo(x) > 0.
Q.E.D.

3.5. Proposition: Let be a € 4 and o € 2 such that a(a,) = 0 and | q, |, < 1. Then
for the quasi-square root x € 4, of a, holds a(e, — x) > 0.

Proof: It is immediately seen by 3.4. that Re o(e, — x) > 0. Further holds
(e, — a,) = (e, — x)%. From the fact that a(a,) = 0 follows a(e, — a,) = ((e — a@),) >0
and so o((e, — x)%) > 0. By the polynomial identity for spectrum we get

a((e, = x)*) = (a(e — x))* > 0.
Now, we conclude by the elementary properties of complex numbers that

a(e, — x) > 0.
Q.E.D.
Propositions 3.4. and 3.5. base a simple relation in the case of positiveness of spectrum
between the square roots and the quasi-square roots as showes the next proposition.

3.6. Proposition: Let be a e 4 and a € 2. Then the following holds:

(i) Provided o(a,) > 0 and | a, |, < 1 there exists the unique square root y € 4,
of a, for which holds | y |, < 1 and a(y) > 0. Moreover is y € B(a,).

(ii) Provided the existence of a positive K so that | (¢,) |, < K and a(a,) > O there
exists the unique square root y € A4, of a, such that |y |, < K% and a(y) > 0.
Moreover is, again, y € B(a,).

(iii) The square root y from (i) is the unique one which posses a positive spectrum
and for which holds |y |, £ (|l a, |2

Proof: To prove (i) we apply 3.4. and 3.5. on the element (e, — a,), for which
holds that o(e, — a,) > 0 and | e, — a, |, < 1. There exists the unique quasi-square
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root x € Bla,) for (e, — a,) in A, so that | x |, < 1. We obtain
au=(ea_(ea—au))=(eu—x)2=ea—2x+x2=ea~x~x-

Now we set y = (e, — x) and the last element is obviously a square root of a,. By
the polynomial identity for spectra we obtain o(y?) = (6(»))*> and so we get that
| ¥ |, < 1. It remains to prove that y is the unique square root of @, in 4, with positive
spectrum and satisfying the condition | y |, < 1. Let’s assume the converse and let
0 € A, be such that
1> a(e, —0) > 0.
and
(e, —0).(e, —0) =¢€,— 0> =e, — a,

The last equality implies that (e, — 0) is a quasi-square root of (e, — a,) and so by 3.4°
we get (e, — 0) = (e, — y) and thus o0 = y.

Q.E.D.
To prove (ii) it’s enough to apply (i) on the element a/K.

Q.E.D.
To prove the remaining part (iii) let be ¢ > 0. Let’s take K = | a, |, + &. Then by
(ii) there exists the unique square root y € 4, of a, such that o(y) > 0 and |y |, <
< KV? = (| a, |, + €)'/%. Applying the standard technique we get that y is the unique
square root of a,, y € B(a,) such, that for each integer n holds

V1o £ (agle + /)2,

The last inequality implies |y |, < (| a, |,)'/%
Q.E.D

3.7. Proposition: Let be ae A. Let’s suppose the square root x € 4 of a exists.
Then the following holds:

(i) If |a], <1 then | x|, <1 too.

(ii) If for some a € Z holds | a, |, < 1 then | x, |, < 1 holds too.

Proof: We prove only the first statement the second having an analogous proof.
From the equality x> = a follows that a(x?) = (a(x))* = o(a) and this implies for the
spectral radius

lal,=sup{ld|:lea(@} =sup{|¢*:(ea(x)} < L.
The required result follows be the elementary properties of multiplication of complex

numbers.
Q.E.D.

3.8. Corollary: Letbeae 4 and o € X. Let’s suppose that (a,) > Oand | ¢, |, <.
Then there exists the unique square root x € 4, of a, with positive spectrum and,

moreover, is x € B(a,).
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Proof: Immediately follows from 3.7. and 3.6.

Q.E.D.
Now we are able to state first of the main results.

3.9. Theorem: Letbea e A and | a |, < 1. Then there exists the unique quasi-square
root g € A of a such that | ¢ |, < 1. If, moreover, the algebra A4 is a *-algebra and «
i selfadjoint then g is selfadjoint too.

Proof: Because the index set ¥ is of arbitrary cardinality and we don’t make
additional requirements on existence of countable cofinal subset in Z we cannot use
the Mittag—Leffler theorem to prove that the required set of quasi-square roots
being nonempty.

Obviously there exists a positive n so that for each a € ¥ holds |a,|, <7 < 1.
By 3.3. and 3.4. there exists for each a € X the unique quasi-square root ¢, A4,
of @, so that | g, |, < 1, g, € B(a,). By the definition of B(a,) there exists a sequence
{Pi(a),}2., from B(a,), such that for each integer n is | Pi(a,) |, < 1 and

q, = lim P§(a,).
Now we set ¢ = (g,).e: and we have to prove that g is the required quasi-square
root of a. At first we have to show that ¢ belongs to 4. Because of the fact that 4 =
= lim A, we must prove that for each pair «, f € X satisfying « < B holds n,4(q5) = g,.

Let be « < f. By the definition there exists a positive K so that for each xe 4 is
Po(X) = Kpy(x). This easily implies N; = N, and

o(a,) < a(ag). Q)
As 7,4 is 2 homomorphism for exch integer » holds
n.5(Ph(ap)) = Pl(a,) < B(a,) < 4,

{P%(as)}. | being a Cauchy, sequencein A;sois {Pya,)in= 1 in A,. Thelast fact together
with that of B(a,) being closed implies the existence of an element ¢, € A, such that
q. = lim P¥(a,) € B(a,). By the continuity of the quasi-product follows immediately
lim (P4(ay) . P(ay)) = a,
R 00
and again by the continuity of n,; we get
lim (P4(a,) . P2(a,)) = a,.
n—o0

Now by (1) we easily see that for each integer n holds the inequality
| Pk(a) |, < 1.
So we got ¢,, g, € B(a,), both commuting quasi-square roots of a,, satisfying the

condition of spectral radius being less one. (The last fact follows by using the Gelfand
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representation theory for B(a,)). By 3.4. we conclude that g, = ¢,. Now, again using
the continuity of m,s we get
Tup(qp) = Tap lim P¥(ap)) = lim n,,(P4(ap)) = lim P3(a,) = q,.

So we see that g€ 4 and a simple application of Gelfand’s representation on the
algebra C(a) showes that | ¢ |, < 1. (The converse assumption leads to the existence
of a suitable sequence of continuous multiplicative functionals on C(a), denoted by
{f.}- such that | f,(g) | — 1, but on the other hand at the same time must hold
for each integer n

1216@ 1 = L@ P = 121! - /gD £
S12@ - K@ = 1@ <n <l

So we get a contradiction that 1 < 5 < 1.
To prove the rest of the theorem let’s suppose that A is a *-algebra and a is a self-
adjoint element of 4. We get immediately

q.q9=a=a*=q*.q*

From the fact that in each *-algebra holds | g |, = | ¢* |, and by 3.4. follows that
q=q*.
Q.E.D.

3.10. Theorem: The following holds for a € 4 such that a(a) > 0:

(i) Let be | a |, < 1. Then there exists the unique square root s € A of a such that
a(s) > 0. The square root s commutes with a. If, moreover, a is selfadjoint, so is s.

(if) Let K positive be given so that | a |, < K. Then there exists the unique square
root s € A of a such that it’s spectrum is positive and | s |, < K'/2, s commuting with a.
If, again, a is selfadjoint, so is s.

Proof: It’s obviously enough to prove (i) beczuse (ii) follows from (i) if applied
on a/K. To prove (i) we apply 3.9. on the element (¢ — a). Thus we get the unique
quasi-square root g € 4 of (e — a) and by 3.4. we easily see that the required square
root is the element s = (e — ¢q).

Q.E.D.
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Souhrn

O ODMOCNINACH A QUASI-ODMOCNINACH
V LOKALNE MULTIPLIKATIVNE KONVEXNICH
TOPOLOGICKYCH ALGEBRACH

DINA STERBOVA

V prici se dokazuje existence quasi-odmocniny prvku se spektrem obsaZenym ve vnitiku jednot-
kové koule komplexnich &isel. V pfipadé, Ze spektrum prvku je kladné, je ukazan jednoduchy vztah
mezi odmocninou a quasi-odmocninou, ktery umoziiuje najit jedinou odmocninu s kladnym spektrem
pro kaZdy prvek lokalné multiplikativné konvexni uplné algebry,jenZ ma kladné a omezené spektrum.

Pesiome

O KBAJIPATHBIX KOPHAX M KBA3N-KOPHAX
B IIOJIYHOPMUPOBAHHBIX KOJIBIIAX

JAUHA HTEPBEOBA

B HacTOsLIEH CTaThe IMOKA3LIBACTCA CYLIECTBOBAHUE KBAaIPATHBIX KBa3U-KOPHEH IUIA IEMEHTOB
[OJIYHOPMHPOBAHHBIX KOJIEL, CIIEKTPEI KOTOPKIX JIEXAT BO BHYTPEHHOCTH eXUHUYHOrO Kpyra. Korna
3TU CHEKTPHI MOJOKHTENbHEl, MOXHO HAWTH MPOCTYIO CBSA3b MEXAY KODHSMH U KBa3U-KODHSIMH,
C NOMOIIBIO KOTOPOM MOXKHO JIETKO I10Ka3aTh CYyIIECTBOBAHHUE M €AMHCTBEHHOCTh KBaAPATHHIX
KODHEl TeX 3IeMEHTOB, CUEKTPbI KOTOPhIX IOJOXKUTEThHLL B OT PAHUYCHEL.
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