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M. Laitoch investigated in [1] decompositions of knots of integrals of the non-
homogeneous second order linear differential equations and decompositions of knots
of the first derivatives relative to these integrals. The present paper generalizes the
above results for the functions relative to the classes of the factor space C°/S of the
space C° relative to all continuous functions modulo S, where S is a two-dimensional
space of continuous functions. This article topically forms a close continuation of

[3], [4] and [5].

1. Let C°%) be a set of all continuous functions defined on an open interval
1 < E\(= (=00, +00)). It is clear that C°(1) is a linear space and the two-dimensional
space S with the definition interval  is its linear subspace. The factor space C°/S
is then a set of all classes of elements of C° equivalent to modulo S, where the
equivalence is defined as follows: two elements x,, x, € C° are equivalent modulo S
if x; — x, € S. By this equivalence the space C° is decomposed into mutually disjoint
classes of equivalent elements. (Cf. the proof in [6]).

We assume the space S to be a regular one of a certain type with a monotone
phase a, i.e. the zeros of each two independent functions of the space S are separated.
In what follows our consideration will be done in a class of the factor space C°/S
denoted as X, X e CY/S.

Lemma 1.1. Let x, € X be an arbitrary functicn. Then any function x € X is of the
form x = y + x,, where y € S is an appropriate function.

Proof: The statement is immediate from the definition of the factor space.

Lemma 1.2. To every two numbers t, €1 and &, € E; there exists at least one
function x € X so that x(zy) = ko.
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Proof: Let x, € X and y e S. Denoting Xo(fo) = k and y(%y) = k, and putting
k, = k — k, implies for the function x = —(k2/k;) y + x, that x e X and x(1y) =
= — (kolky) . Ky + k = ky.

Theorem 1.1. Let #,, ¢, €1 be not conjugate numbers in S and let k,, k, € E,
be arbitrary numbers. Then there exists exactly one function x € X for which x(t;) = k;
(j =1, 2)is valid.

Proof: Let (u, v) be a basis of the space S and x, € X. The function xe X, x =
= c,u + c,v + X, satisfies our requirement exactly if

cu(ty) + co(ty) + xo(ty) = ky
ciu(ty) + cv(ty) + xo(ty) = ks .

Under the assumption that ¢,, ¢, are not conjugate points in S the determinant of the
system D = u(t,) v(t,) — u(t,) v(t,) is different from zero and this system of equatjons
possesses exactly one solution ¢;, ¢, uniquely determining the function xeX.

Remark 1.1. It is obvious from the independence of the functions of the basis
relative to S that if x; = x, holds for the two functions x,, x, € X on (a,b) c 1,
then the above identity is valid on the whole 1. Such functions—and so also the
function y = 0 in S—will be excluded from now on.

Theorem 1.2. Let ¢, €1 and k, € E, be arbitrary numbers. Let x,(25) = x,(f9) = ko
hold for the functions x,, x, € X. Let t, €1, t; + t,. Then x,(¢;) = x,(¢,) exactly
if t, and ¢, are conjugate points in S.

Proof: Let x,(¢;) = x,(¢;). Then we have for the function y = x, — x, that
ye S, y(ty) = 0 = y(¢,), thatis #, and ¢, are conjugate in S. If contrarywise ¢, and ¢,
are ccnjugate points in S, then, by Lemma 1.1, x, may be written in the form x, =
= y + x,, where y € Sis an appropriate function. Because of the assumption x,(#;) =
= x,(t9) we have y(t,) = 0 and since ¢, and #; are conjugate numbers in S, we have
also y(t,) = 0 and thus x,(¢;) = x,(¢,).

Corollary 1.1. Let t,e1 and ky e E; be arbitrary numbers. Let next {¢;} be

a complete system of points conjugate to ¢, in S, j = 0, +1, &2, .... Then it holds

for all j: x,(t;) = x,(t;) and x(t) + x,(t) for te 1 — | {¢;}) for each two functions
j

X1, X € X satisfying the condition x(¢,) = x,(ty) = k.

Definition 1.1. Let tye1 and ky e E; be arbitrary numbers. Next let {r;} be
a complete system of points conjugate to ¢, in S (j=0, +1, +2,...), with xoe X
being a function for which x¢(t,) = k, holds. The set of all points [#;, xo(z;)] will
be called a complete system of knots relative to the initial condition [#y, ko] written
as U(ty, ko). The neighbouring knots are called points [}, xo(t;)] and [#;+ 15 Xo(tj4+ )],
where t; and ¢;,, are the neighbouring conjugate points in S.

The set of all functions x € X, for which the initial condition x(¢,) = k, holds,
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will be called the bundle of functions relative to the initial condition [#,, ko] written
as F(ty, ko)-

Theorem 1.3. There exists exactly one system %(t,, ko) at every point [#,, ko] €
ei1xE;.

Proof: In view of Lemma 1 [4] there obviously exists at every ?, exactly one
complete system of points {t;} conjugated to #, in S. The statement follows from
Theorem 1.2.

Corollary 1.2, The bundle of functions ¥ (¢, k) is uniquely determined by an
arbitrary knot relative to %(t,, ko).

Corollary 1.3. All functions x € $(ty, ko) have exactly the knots relative to the
system %(to, ko) in common.

Corollary 1.4, Let [1y, ko] €1 % E; be an arbitrary point with ¥ € X being a func-
tion not passing through this point. Then the function X is not passing through any
point of the system %(t,, ko).

Theorem 1.4. Let [#y, ko] € 1 X E,; be an arbitrary point and x € X, x € £(t,, ko).
Let further [¢;, x(#;)], [#j+1, X(t;.1)] € %(t,, ko) be neighbouring knots and X e X
be a function not passing through these knots. Then there exists exactly one point
T € (2}, 1j44) such that [7, x(r)] = [, X(z)].

Proof: Let x,e X and x, € #(ty, ko). By Lemma 1.1 the functions x and X
may be written in the form x = y + x, and X = y + x,, where y, 7€ S are ap-
propriate functions. Evidently y(t,) = 0, hence y(t;) = 0, y(t;,;) = 0 and therefore
¥(t;) =+ 0. This implies with respect to the regularity of the space S that the functions
y and y are independent. Now it holds for the function z =y — y:z€S; zand y
are independent and due to the separation of zeros of each two independent functions
in S, there lies exactly one zero of the function z in the interval (¢;, t;,,) denoted
as 7. The relation z(r) = 0 yields then y(z) = y(r) and therefore x(7) = %(x).

Theorem 1.5. Let [1,, ko], [70, %0] €1 x E; be two different points. Let further
Xo, X; € X and xg € Pty ko) and x; € F(tq, %o). Let [2;, xot)], [tj+15 Xoltj+1)] €
€ ULy, ko) or [tj, x1(t)], [Tj41,> X1(t;41)] € %(zo, %,) be neighbouring knots. Then
there lies exactly one knot in the zone <t}, t;,,) X E; or {t;, t;,,) X E; relating to
the system %(tq, %o) or U(ty, ko), respectively.

Proof: With respect to Theorem 1.3 and to its Corollaries, the statement follows
immediately from the separation of points in two different systems of conjugate
points in S.

Remark 1.2. It follows from Theorem 15 [7] that the space of integrals relative
to the nonhomogeneous 2nd order linear differential equation

y' =0y =r@), (xx)
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where Q and r are continuous functions on 1, is a class of the factor space C?/S,
where S is a two-dimensional space of the solution relative to the equation

Y =0t)y=0. x)

Under the assumptions of [1] the space containing integrals of the differential
equation (x) is a regular space of a certain type with a monotone first phase o, so
that the Theorems proved for the functions of the class X relative to the factor space
C9/S are valid even in the space of integrals of the differential equation (xx). The
same results were obtained in the space containing integrals of the differential equa-
tion (xx) from the properties of the solution of the equations (xx) and (x), which was
the main purpose of paper [1].

2. Let C!(1) be a space of all functions defined in an open interval 1 < E;, possess-
ing a continuous first derivative on 1. Further Ict S* be a two-dimensional space of
the functions defined on 1 possessing a continuous first derivative on 1. We suppose
the space S* in the sense that the set of derivatives S’ of all functions of S* constitutes
a two-dimensional space of continuous functions and the spaces S* and S’ being
regular, of a certain type, with monotone phases.

By the same equivalence as in part 1 we constitute the factor spaces C'/S! and
C’/S’, where C’ is the set of derivatives of all functions of the space C!(1), whereby
S'eC.

We are going to make further consideration in a class of the factor space C!/S?,
which we denote as X!, X' e C!/S™.

Lemma 2.1. Let x, € X' and X’ € C’/S’ be that class in which xj is lying. Then X’
is a set of derivatives of all functions relative to X?.

Proof: Let x,e X'. Then X' = {x, + y;yeS}. Let x,e€ X eC’'/S’. Then
X ={x4 +y;y €S}, hence X’ is a set of derivatives of all functions relative
to X

Lemma 2.2. Let x, € X! and x{, € X’ be its derivative. Then X, is the only primitive
function to the function x; lying in X

Proof: Letting x, € X! and X, e X' be two primitive functions to xj, we get
for them x, — %, = ¢ and at the same time x, — %, € S'. By Theorem 1.2 [5] this
is possible only for ¢ = 0, so that x, = X.

Theorem 2.1. Let X’ be a set of derivatives of all functions relative to X*. The
mapping X! onto X’ is defined by the operator D = -adT (=") is an isomorphism

of X! onto X'.

Proof: By Lemma 2.1 DX' = X’ and by Lemma 2.2 this mapping is schlicht,
The remaining part of the statement follows from the rules for differenciating the
sum of functions and the constant multiple of the function.
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Theorem 2.2. Let ¢, €1 and kg, ky € E, be arbitrary numbers. Then there exists
exactly one function x € X! so that x(z,) = k, and x'(to) = kq.

Proof: Let (u,v) be a basis of the space S* and x, € X*. The function x e X!,
X = cu + c,v + Xx, satisfies our condition exactly if

cu(te) + cu(to) + xo(to) = ko
cu'(ty) + cv'(ty) + xp(tg) = ky.

On the understanding that S* is a space with a monotone phase o, the determinant
of the system — the Wronskian of the functions of the basis (v, v) — is different
from zero (See Theorem I.11 [5]), which implies that this system has exactly one
solution ¢;, ¢,. This pair of numbers then uniquely determines the function x e X*
for which x(ty) = ko and x'(¢,) = kg.

Remark 2.1. In view of the fact C!(1) = C°(1) and C’'(1) = C°() all statements
from part | are valid for the systems of the knots of functions and bundles of functions
of the class relative to the factor spaces C!/S* and C’/S".

On the assumptions of [1] the space containing the derivatives of integrals of the
differential equation (x) is a regular space of a certain type with a monotone phase.
Consequently the Theorems of part 1 are valid in the space containing the derivatives
of integrals of the differential equation (xx), which has been also obtained from the
integral properties in the equations (x) and (xx) (See [1]).
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Shrnuti

NEKTERE VLASTNOSTI FUNKCI
ZE TRID JISTYCH FAKTOROVYCH PROSTORU

JITKA KOJECKA

Necht S je dvojrozmérny prostor spojitych funkci definovanych na otevieném
intervalu 1 = E; a C%) je linedrni prostor viech spojitych funkci na 1. Za pred-
pokladi, Ze S je reguldrni prostor ur€itého typu s monotonni fazi «, plyne pro rozlo-
Zeni uzld funkci libovolné tfidy X faktorového prostoru C9/S nasledujici zaveér:

Véta 1.4. Necht [1,, ko] €1 X E, je libovolny bod. Budte déle x € X, x € ¥ (t,, ko)
a [t;, x(2))], [tj+1,x(t;41)] € %(to, ko) sousedni uzly. JestliZe Xe X je funkce,
kterd témito uzly neprochdzi, pak existuje pravé jeden bod 7 e (t;, t;+,) takovy,
ze [7, x(1)] = [r, ®(x)].

Vysledky této prace obsahuji ve specidlnim pfipadé modifikaci Sturmovy véty
pro nehomogenni linedrni diferencidlni rovnici 2. ¥adu, kterd je dokazana v [1.]

Pesrome

HEKOTOPBIE CBOJICTBA ®VHKIUN
NMPUHAJJIEXANUX KIIACCAM
CIHEUUVUAJNBHBIX ®AKTOP-ITPOCTPAHCTB

MUTKA KOMELKA

Ilycte S — OBYMEpHOE NPOCTPAHCTBO HENPEPHIBHBIX (YHKIMH ONpeNeSIeHHBIX
B OTKPBITOM NpoMexyTke i = E; u C°(i) — nuHeifiHOE NPOCTPAHCTBO BCEX HENMPEPHIB-
HbIX B [ ¢yHkuumi. Ecim S perynspHoe NpocTpaHCTBO ONpPEJEJEHHOTO TUIA C MOHO-
TOHHOI (ha30i o, TO U1 pacnpeneaeHus y3i0B GpyHKuumii Jr060ro kiacca X daxrop-
-npoctpanctBa C°/S noiyuaercs caeayroILuii pe3yabTar:

Teopema 1.4. Ilycte [ty, kolei x E; — mobas touka. Ilycts mambiie x € X,
xeSL(ty, ko) m [t;, x(¢)), [tj+1, x(tj+1)]€ U(ty, ky) — mnocmenoBaTENBLHBIE
y3nbl. Ecim X € X dyHxkuusa Hempoxopsiiasi ¥epe3 3T y3JIbl, TOTJa CYLIECTBYET
TONILKO OfIHA TOYKA T € (¢}, tj4,) Takasd, uyro [7, x(v)] = [1, X(7)].

ITonyyeHHBIE B CTaTbhe Pe3yJbTATHl COACPKAIOT KaK CIHELUAJIbHBIA Cly4aid mo-
xazanHoe B [1] Bumonsmenenue Teopemsl HITypMa mis HEOXHOPOAHOTO JUHEHHOTO
mudbepeHIabHOIO YpaBHEHHS 2-0T0 MOpsiaKa.
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