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The Lindelöf property and pseudo-ℵ1-compactness

in spaces and topological groups

Constancio Hernández, Mikhail Tkachenko

Abstract. We introduce and study, following Z. Froĺık, the class B(P) of regular P -spaces
X such that the product X × Y is pseudo-ℵ1-compact, for every regular pseudo-ℵ1-
compact P -space Y . We show that every pseudo-ℵ1-compact space which is locally
B(P) is in B(P) and that every regular Lindelöf P -space belongs to B(P). It is also
proved that all pseudo-ℵ1-compact P -groups are in B(P).
The problem of characterization of subgroups of R-factorizable (equivalently, pseudo-

ℵ1-compact) P -groups is considered as well. We give some necessary conditions on a
topological P -group to be a subgroup of an R-factorizable P -group and deduce that
there exists an ω-narrow P -group that cannot be embedded as a subgroup into any
R-factorizable P -group.
The class of σ-products of second-countable topological groups is especially inter-

esting. We prove that all subgroups of the groups in this class are perfectly κ-normal,
R-factorizable, and have countable cellularity. If, in addition, H is a closed subgroup
of a σ-product of second-countable groups, then H is an Efimov space and satisfies
celω(H) ≤ ω.
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1. Introduction

Lindelöfness and pseudo-ℵ1-compactness (this and other notions will be defined
later in this section) are intimately related properties. For example, according to
Glicksberg’s theorem in [9], every continuous real-valued function f defined on
a product space X =

∏

i∈I Xi admits a continuous factorization through the
projection pJ of X to a subproduct XJ =

∏

i∈J Xi, for some countable set J ⊆ I,
if and only if X is pseudo-ℵ1-compact. The same conclusion remains valid for
continuous real-valued functions defined on an arbitrary Lindelöf subspace Y of
the product space X (see [16]). The stronger Lindelöf property of Y appears here
to compensate the fact that the restrictions to Y of projections pJ need not be
open, even when considered as mappings onto their images.
The Lindelöf property seems to be considerably stronger than pseudo-ℵ1-com-

pactness. However, the two properties coincide, for example, in the class of para-
compact spaces. The list of interrelations between these properties can be as long
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as one wishes, but we would like to focus attention on two groups of problems
related to the preservation of pseudo-ℵ1-compactness under taking products, and
factorization of continuous real-valued functions on topological groups. The for-
mer group of problems has its origin in Froĺık’s articles [7], [8] where the class B of
spaces was defined, while the latter takes us directly to the class of R-factorizable
topological groups studied in [11], [17], [18], [19]. A special emphasis is given
here to P -spaces in which every Gδ-set is open. It is worth mentioning that a
P -group G, i.e., a topological group which is a P -space, is R-factorizable if and
only if the space G is pseudo-ℵ1-compact (see [19, Theorem 4.16]).
The article is organized as follows. In Section 2 we study the class B(P) of

regular P -spaces X such that the product X×Y is pseudo-ℵ1-compact, for every
regular pseudo-ℵ1-compact P -space Y . We show that every pseudo-ℵ1-compact
space which is locally B(P) is in B(P) and that every regular Lindelöf P -space
is in B(P). For topological groups, the latter result admits a more general form,
namely, every pseudo-ℵ1-compact P -group is in B(P) (see Theorem 2.8).
In Section 3 we consider the problem of characterization of subgroups of R-

factorizable (equivalently, pseudo-ℵ1-compact) P -groups. It is known (see [17,
Section 5]) that every subgroup of an R-factorizable group is ω-narrow and that
every ω-narrow topological group can be embedded as a closed subgroup into an
R-factorizable group. It seems natural to conjecture that the subgroups of R-
factorizable P -groups are exactly the ω-narrow P -groups. It was shown in [11]
that if H is a topological subgroup of an R-factorizable P -group, then H can be
embedded as a closed subgroup into another R-factorizable P -group. In a sense,
this fact might be considered as an implicit confirmation of the validity of the
conjecture. We give in Theorem 3.1 new necessary conditions on a topological P -
group to be a subgroup of an R-factorizable P -group and deduce in Corollary 3.3
that there exists an ω-narrow P -group that cannot be embedded as a subgroup
into any R-factorizable P -group.
Our aim in Section 4 is to study σ-products of second-countable topologi-

cal groups and establish several common properties of all subgroups of these
σ-products. It is proved in Theorem 4.6 that all subgroups in question are per-
fectly κ-normal and R-factorizable. If, in addition, H is a closed subgroup of a
σ-product of second-countable groups, then H is an Efimov space (i.e., the clo-
sure of the union of an arbitrary family of Gδ-sets in H is a zero-set) and satisfies
celω(H) ≤ ω. In particular, the cellularity of H is countable, and the same con-
clusion clearly remains valid if H is not assumed to be closed. The main technical
tool in the proof of these results is the existence of a good lattice of continuous
retractions of the group H onto its subgroups of weight less than or equal to 2ω

(see Theorem 4.3).

1.1 Notation and terminology. A space X is called pseudo-ℵ1-compact if
every locally finite family of non-empty open sets in X is countable. It is easy
to see that every Lindelöf space as well as every space of countable cellularity
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is pseudo-ℵ1-compact. It is also clear that a continuous image of a pseudo-ℵ1-
compact space is pseudo-ℵ1-compact.
A P -space is a space in which every Gδ-set is open. A P -group is a topological

group with the same property. Evidently, every regular P -space has a base of
clopen sets. Hence, every P -group is zero-dimensional.
We use the concepts of the σ-product and Σ-product in Sections 2 and 4.

Suppose that {Xi : i ∈ I} is a family of spaces and Π =
∏

i∈I Xi is the topological
product of this family. Given a point p ∈ Π, we put

diff(x, p) = {i ∈ I : πi(x) 6= πi(p)}

for every x ∈ Π, where πi: Π→ Xi is the projection of the product space Π onto
the factor Xi. Making use of the function diff, we define

σΠ(p) = {x ∈ Π : | diff(x, p)| < ω}

and
ΣΠ(p) = {x ∈ Π : | diff(x, p)| ≤ ω}.

It is clear that both σΠ(p) and ΣΠ(p), called the σ-product and Σ-product of
the family {Xi : i ∈ I}, respectively, are dense subspaces of Π, for any choice of
p ∈ Π. The point p is called the center of the spaces σΠ(p) and ΣΠ(p).
Occasionally, the product space Π =

∏

i∈I Xi is given the box or ω-box topol-
ogy. The standard base of the box topology on Π is formed by the sets of the
form U =

∏

i∈I Ui, where each Ui is open in Xi. Basic open sets in the ω-box
topology on Π have the similar form U =

∏

i∈I Ui with each Ui open in Xi, but
there must be at most countably many indices i ∈ I with Ui 6= Xi. We then put

coord(U) = {i ∈ I : Ui 6= Xi}.

It is clear that the box topology and ω-box topology on Π coincide when the index
set I is countable.
Suppose that f :X → Y and g:X → Z are continuous mappings. We write

f ≺ g if there exists a continuous mapping ϕ: f(X)→ Z such that g = ϕ ◦ f . Let
F be a family of continuous mappings of X elsewhere. Given a subfamily γ of F ,
we denote by ∆γ the diagonal product of the mappings from γ considered as a
mapping of X onto its image. It is clear that ∆γ is continuous for every γ ⊆ F .
If τ is an infinite cardinal, we say that F is τ-directed if for every γ ⊆ F with
|γ| ≤ τ , there exists f ∈ F such that f ≺ ∆γ. The family F is τ-complete if it is
τ -directed and for every subfamily {fα : α < τ} ⊆ F satisfying fβ ≺ fα whenever
α < β < τ , the mapping ∆α<τ fα belongs to F . If F is τ -complete and generates
the topology of X , we say that F is a τ-lattice.
We use w(X), c(X), and ψ(X) to denote the weight, cellularity, and pseu-

docharacter of a space X , respectively. The power of the continuum is c = 2ω. If
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κ ≥ ω is a cardinal, we put 2<κ =
∑

λ<κ 2
λ. If λ is a cardinal and X is a set,

then [X ]λ denotes the family of all subsets Y of X satisfying |Y | ≤ λ.
All topological groups are assumed to be Hausdorff. A topological group G is

ω-narrow if for every neighbourhood U of the neutral element in G, there exists
a countable set C ⊆ G such that CU = G. The class of ω-narrow groups is
closed under taking arbitrary products, subgroups, and continuous homomorphic
images. By Guran’s theorem in [10], a group G is ω-narrow if and only if G is
topologically isomorphic to a subgroup of a product of second-countable groups.
A topological group G is called R-factorizable if for every continuous real-

valued function f on G, there exists a continuous homomorphism p of G onto
a second-countable group H such that p ≺ f . It is well known that every R-
factorizable group is ω-narrow, but the converse is false (see Proposition 5.3 and
Example 5.14 in [17]). In fact, it is shown in [5] that every uncountable ω-narrow
Abelian group G is an image under a continuous one-to-one homomorphism of an
ω-narrow group G� that fails to be R-factorizable.

2. The class B(P)

In what follows we denote by B(P) the class of all regular P -spaces X such
that for every regular pseudo-ℵ1-compact P -space Y , the product X × Y is also
pseudo-ℵ1-compact. Naturally, all spaces in this section are assumed to be regular.
The next proposition is an easy consequence of the definition of the classB(P):

Proposition 2.1. Let Y be a regular P -space.

(a) If Y is continuous image of a space X ∈ B(P), then Y ∈ B(P).
(b) X × Y ∈ B(P) if and only if X,Y ∈ B(P).

Here is an auxiliary result we need for the proof of Proposition 2.3 below. It
follows from [15, Lemma 1].

Lemma 2.2. If a regular P -space X contains a locally countable family A of
open sets with |A| = τ > ω, then X also contains a discrete family of open set of

the same cardinality τ .

Proposition 2.3. Let X be a pseudo-ℵ1-compact P -space such that each point
of X has a neighborhood that belongs to B(P). Then X ∈ B(P).

Proof: Let Y be a regular pseudo-ℵ1-compact P -space, and suppose that γ is
an uncountable locally finite family of open sets in X × Y . Let us show that γ is
countable.
For each x ∈ X , take a neighbourhood Ux of x in X with Ux ∈ B(P). Since

the product space Ux × Y is pseudo-ℵ1-compact, the family γx = {O ∈ γ :
O∩(Ux×Y ) 6= ∅} is countable. This means that the family F = {πX(O) : O ∈ γ}
of open subsets of X is locally countable, where πX :X×Y → X is the projection.
To finish the proof, it suffices to apply Lemma 2.2. �
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We say that a space X has property (F) if for every uncountable pairwise
disjoint family U of non-empty open sets in X , there exists a subfamily {Uα : α <
ω1} of distinct elements of U such that

⋂

F∈F

⋃

α∈F

Uα 6= ∅,

for every countably complete filter F of subsets of ω1.

Theorem 2.4. Suppose that a regular P -space X has property (F). Then X ∈
B(P).

Proof: Let Y be a pseudo-ℵ1-compact P -space. We shall prove that every
uncountable family W of non-empty open sets in X × Y has an accumulation
point. Without loss of generality we can assume that W consists of rectangular
sets, i.e., W = {Uα × Vα : α < ω1}. Let us consider two cases:

1) There exist a point x ∈ X and a subset A ⊆ ω1 such that |A| = ℵ1 and
every neighbourhood of x intersects every element of U = {Uα : α ∈ A}, except
perhaps a countable number of them. By Lemma 2.2, the family {Vα : α ∈ A}
cannot be locally countable. Let y ∈ Y be a complete accumulation point of
{Vα : α ∈ A}. It is clear that (x, y) is an accumulation point of {Uα×Vα : α ∈ A}
and, therefore, of W .

2) For every uncountable set A ⊆ ω1 and every point x ∈ X , there exists a
neighbourhood U of x such that {α ∈ A : Uα ∩ U = ∅} is uncountable. Since
X is a regular pseudo-ℵ1-compact P -space, we can construct by recursion a set
A ⊆ ω1 with |A| = ℵ1 and non-empty open sets Wα ⊆ Uα, for α ∈ A, such that
the elements of the family {Wα : α ∈ A} are pairwise disjoint. Again, we can
assume that A = ω1. By Lemma 2.2, the family {Vα : α < ω1} has a complete
accumulation point y ∈ Y . Denote by N (y) the neighbourhood base of Y at
y. For every V ∈ N (y), let ϕ(V ) = {α ∈ ω1 : V ∩ Vα 6= ∅}. It is easy to see
that {ϕ(V ) : V ∈ N (y)} is a base of a countably complete filter F in ω1. Since

X ∈ B(P), we can find a point x ∈
⋂

F∈F

⋃

α∈F Wα. One readily checks that
(x, y) is an accumulation point of the family {Wα × Vα : α < ω1} and, hence,
of W . �

Since every Lindelöf space has property (F), the theorem above implies the
following:

Corollary 2.5. Every Lindelöf P -space is in B(P).

Let Π =
∏

i∈I Xi be the product of a family {Xi : i ∈ I} of spaces, and suppose
that a ∈ Π. By a theorem of W. Comfort in [3], the σ-product σΠ(a) ⊆ Π endowed
with the ω-box topology inherited from the product space Π is Lindelöf provided
that each Xi is countable. Here we extend this result to σ-products of Lindelöf
P -spaces. Our argument, however, is close to that given in [3].
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Proposition 2.6. An arbitrary σ-product of Lindelöf P -spaces endowed with

the ω-box topology is a Lindelöf P -space.

Proof: Let {Xi : i ∈ I} be a family of Lindelöf P -spaces. Pick a point a ∈ Π =
∏

i∈I Xi and consider the σ-product σΠ(a) of this family with center at a. Since
each Xi is a P -space, the product Π with the ω-box topology is also a P -space,
and so is the subspace σΠ(a) of Π. Suppose that γ is a cover of σΠ(a) by basic
ω-boxes in X . It suffices to show that γ contains a countable subcover of σΠ(a).
Given a set J ⊆ I, we put

σJ (a) = {x ∈ σΠ(a) : diff(x, a) ⊆ J}.

If J ⊆ I is countable, then σJ (a) is the union of the countable family {σF (a) :
F ⊆ J, |F | < ω}, where every summand σF (a) ∼=

∏

i∈F Xi is Lindelöf by Noble’s
theorem in [14]. Therefore, σJ (a) is also Lindelöf.
Let J0 be a countable non-void subset of I. Since σJ0(a) is Lindelöf, there

exists a countable subfamily γ0 of γ such that σJ0(a) ⊆
⋃

γ0. Suppose that for
some n ∈ ω, we have defined increasing sequences

J0 ⊆ . . . ⊆ Jn ⊆ I and γ0 ⊆ . . . ⊆ γn ⊆ γ,

where |Jn| ≤ ω and |γn| ≤ ω. Then the set Jn+1 = Jn ∪
⋃

{coord(W ) : W ∈ γn}
is countable, so σJn+1

(a) is Lindelöf and we can find a countable subfamily γn+1

of γ such that γn ⊆ γn+1 and σJn+1
(a) ⊆

⋃

γn+1.
Consider the set J∗ =

⋃

n∈ω Jn ⊆ I and the family γ∗ =
⋃

n∈ω γn ⊆ γ.
Clearly, γ∗ is countable, and we claim that γ∗ covers σΠ(a). Indeed, let x ∈
σΠ(a) be arbitrary. Since the set diff(x, a) is finite, there exists n ∈ ω such that
diff(x, a) ∩ J∗ ⊆ Jn. Denote by y the point of σJ∗(a) such that yi = xi for each
i ∈ J∗. Then y ∈ σJn

(a). Since γn covers σJn
(a), we can find W ∈ γn such that

y ∈W . Then coord(W ) ⊆ Jn+1 ⊆ J∗, whence it follows that x ∈W . This proves
that γ∗ covers σΠ(a) and, hence, σΠ(a) is Lindelöf. �

Combining Proposition 2.6 and Corollary 2.5, we obtain the following:

Corollary 2.7. Let Π =
∏

i∈I Xi be the product of a family {Xi : i ∈ I} of
regular Lindelöf P -spaces and S = (σΠ(a))ω the corresponding σ-product that
carries the ω-box topology, where a ∈ Π. Then S ∈ B(P).

It is known that an arbitrary product of pseudo-ℵ1-compact P -groups is
pseudo-ℵ1-compact (it suffices to combine Theorems 4.16 and 5.5 of [19]). The
theorem below complements this fact.

Theorem 2.8. Every pseudo-ℵ1-compact P -group belongs to B(P).

Proof: Let G be a pseudo-ℵ1-compact P -group and {Uα : α < ω1} a disjoint
family of non-empty open sets in G. We can suppose that the family consists



The Lindelöf property and pseudo-ℵ1-compactness 683

of clopen sets. Moreover, combining item (b) of Lemma 2.1 and Lemma 3.29 of
[19], we may assume that each Uα has the form p−1α pα(Uα), where pα:G → Hα

is a continuous homomorphism and Hα is a discrete countable group. Consider
the diagonal product of these homomorphisms, say f :G →

∏

α<ω1
Hα = Π. It

is easy to see that f−1f(Uα) = Uα for every α < ω1. Observe that the product
group Π and its subgroup f(G) have weight ≤ ℵ1. Denote by H the topological
group obtained when we endow f(G) with the quotient topology with respect
to f . Then H is a pseudo-ℵ1-compact P -group and, since the topology of H is
finer than the topology of f(G), we have that ψ(H) ≤ ℵ1. Hence, combining
Corollaries 3.32 and 4.11 of [19], we conclude that H is Lindelöf. The mapping f
is a quotient homomorphism and, consequently, is open.
Suppose that F is a countably complete filter of subsets of ω1. Since H is a

Lindelöf space, we have
⋂

F∈F

⋃

α∈F f(Uα) 6= ∅. Making use of the fact that f is
open, we deduce that

∅ 6= f−1
(

⋂

F∈F

⋃

α∈F

f(Uα)
)

=
⋂

F∈F

f−1
(

⋃

α∈F

f(Uα)
)

=
⋂

F∈F

f−1
(

⋃

α∈F

f(Uα)
)

=
⋂

F∈F

⋃

α∈F

f−1f(Uα)

=
⋂

F∈F

⋃

α∈F

Uα.

It follows that G ∈ B(P). �

We close this section with an example of a pseudo-ℵ1-compact P -space which
is not in B(P). The existence of such a space shows that Theorem 2.8 is not
valid outside the class of topological groups. The construction that follows was
outlined by Alan Dow and it is placed here with his kind permission.
For brevity, we slightly change the usual terminology and call a family γ of

subsets of an infinite cardinal κ almost disjoint if |X ∩ Y | < κ, for all distinct
X,Y ∈ γ. The next lemma is well known (see [4] or [12]), but we supply the
reader with a short proof.

Lemma 2.9. If 2<κ = κ, there exists an almost disjoint family of 2κ subsets
of κ.

Proof: Let S be the set of all 0-1 sequences of length less than κ, i.e., S =
⋃

α<κ{0, 1}
α. Clearly |S| = κ. For every f :κ → {0, 1}, let Af be the set Af =

{s ∈ S : s ⊂ f} = {f ↾ α : α ∈ κ}. It is easy to see that |Af ∩ Ag| < κ if f 6= g;
thus, {Af : f ∈ {0, 1}κ} is an almost disjoint family of 2κ subsets of S. Since
|S| = κ, we are done. �
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From now on, we shall assume that 2ℵ1 = ℵ2. Hence, there exists a maximal
almost disjoint family Γ of subsets of ω1 with |Γ| = ℵ2, i.e., Γ = {Aα : α ∈ ω2}.
Let us use the function σ = {(0, α)} as index instead of α. For each σ, there exists
a maximal almost disjoint family of subsets of Aσ of cardinality ℵ2. The indices
now will be extensions of σ to {0, 1} with values in ω2. Continuing this way, we
obtain a family {Aσ : σ ∈ ω<ω

2 } ⊆ [ω1]
ω1 such that for every σ: {0, 1, . . . , n} →

ω2 and all ordinals α, β ∈ ω2 with α 6= β, we have Aσ ⊇ Aσ∧α ∪ Aσ∧β and
|Aσ∧α ∩ Aσ∧β | < ω1. Here σ ∧ α is the function with domain {0, 1, . . . , n + 1}
that extends σ and takes the value α in n+ 1. We may assume that

Aσ =
⋃

α∈ω2

Aσ∧α

and that for each A ⊆ ω1 with |A| = ω1, there exists σ ∈ ω<ω
2 such that Aσ ⊆ A

(see [4, Theorem 12.11]).
Take X = ω1 ∪ ω

<ω
2 . Each point x ∈ ω1 is declared to be isolated in X , and if

x ∈ ω<ω1
2 , basic neighbourhoods of x in X are the sets of the form

(1) {x} ∪Ax \
⋃

{Ax∧α : α ∈ S},

where S ∈ [ω2]
ω. It is easy to see that X is Hausdorff and the family of basic

neighborhoods of every point x ∈ ω<ω1
2 is closed under countable intersections.

Therefore, X is a P -space. Moreover, the sets in (1) are clopen, so X is regular
and, hence, Tychonoff. Now, let

Te = {σ ∈ [ω2]
<ω : | domσ| is even} and Xe = ω1 ∪ Te.

We considerXe as a subspace ofX . Since, for everyA ∈ [ω1]
ω1 , there exists σ ∈ Te

such that |Aσ \A| ≤ ω, the space Xe is pseudo-ω1-compact. Similarly, with To =
{σ ∈ [ω2]

<ω : | domσ| is odd}, the subspace Xo = ω1 ∪ To of X is Hausdorff and
zero-dimensional. Again, Xo is a pseudo-ω1-compact P -space. Finally, Xe ×Xo

is not pseudo-ω1-compact since the diagonal {(α, α) : α ∈ ω1} consists of isolated
points in X × X , is contained in Xe × Xo, and has no accumulation points in
Xe ×Xo.

3. Subgroups of R-factorizable P -groups

It was shown in [11] that every subgroup of an R-factorizable P -group can be
embedded as a closed subgroup into another R-factorizable P -group, and that
closed subgroups of R-factorizable P -groups may fail to be R-factorizable. It is
also clear that an arbitrary subgroup of an R-factorizable P -group is an ω-narrow
P -group. These facts motivated the authors to ask whether every ω-narrow P -
group is a subgroup of an R-factorizable P -group (see [11, Problem 4.1]). In
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Corollary 3.3 below we answer this question in the negative. To some extent, this
seems to be unexpected, since every ω-narrow group is a closed subgroup of an
R-factorizable group [17, Theorem 5.15].
We start with a theorem describing an interesting property of subgroups of

R-factorizable P -groups.

Theorem 3.1. Let H be a subgroup of an R-factorizable P -group. Then H is

ω-narrow and every continuous homomorphic image G of H satisfying w(G) ≤ ℵ1
is a subgroup of a Lindelöf topological group.

Proof: Suppose that H is a subgroup of an R-factorizable P -group H0. By [17,
Proposition 5.3], every R-factorizable group is ω-narrow, while every subgroup of
an ω-narrow group is ω-narrow. Hence, the group H is ω-narrow as well.
Let h:H → G be a continuous homomorphism onto a group G with w(G) ≤

ℵ1. We will prove that the Răıkov completion ̺G of G is Lindelöf. Indeed,
let {Uα : α < ω1} be a local base at the identity of G. For each α < ω1, let
πα:H0 → Lα be a continuous homomorphism to a second-countable group Lα

such that π−1α (Vα)∩H ⊆ h−1(Uα), for some neighbourhood Vα of the identity in
Lα. Consider the diagonal product π = ∆α<ω1πα:H0 →

∏

α<ω1
Lα. Then our

definition of π implies that H ∩ kerπ ⊆ kerh. It is also clear that L0 = π(H0)
is a subgroup of

∏

α<ω1
Lα, so that w(L0) ≤ ℵ1. Denote by L the underlying

group L0 endowed with the quotient topology with respect to the homomorphism
π:H0 → L. According to [19, Lemma 2.1 c)], L is a P -group. Since the identity
isomorphism of L onto L0 is continuous, we have that ψ(L) ≤ ψ(L0) ≤ w(L0) ≤
ℵ1. Also, notice that L is a continuous homomorphic image of an R-factorizable
P -group H0. Hence, by [19, Theorem 4.16], L is Lindelöf. Since L is a P -group,
it follows from [19, Proposition 2.3] that the group L is Răıkov complete. Let
K = π(H). Now, from the inclusion H ∩ kerπ ⊆ kerh it follows that there exists
a homomorphism g:K → G such that h = g ◦ p, where p = π ↾ H . Our choice
of the families {Uα : α < ω1}, {Vα : α < ω1} and the definition of π imply that
the homomorphism g is continuous at the identity of K, i.e., g is continuous. We
describe the situation in the following diagram:

H

h

��

p

  B
B

B

B

B

B

B

B

�

�

// H0
π

  A
A

A

A

A

A

A

A

G K
g

oo �

�

// L

Denote by K∗ the closure of K in L. Since the group L is Lindelöf and Răıkov
complete, so is K∗. In particular, K∗ ∼= ̺K. Therefore, the homomorphism g

admits an extension to a continuous homomorphism g∗:K∗ → ̺G. Finally, since
G = h(H) = g(K), we see that G is a dense subgroup of the Lindelöf group
g∗(K∗) which in its turn is a subgroup of ̺G. �
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Corollary 3.2. Let H be a Răıkov complete P -group with w(H) = ℵ1. If H is
not Lindelöf, then it cannot be embedded as a subgroup into an R-factorizable

P -group.

Proof: Suppose to the contrary that H is a subgroup of an R-factorizable P -
group, but H is not Lindelöf. Clearly, the group H is ω-narrow. Since H is a
P -group and w(H) = ℵ1, Theorem 3.1 implies that H is a subgroup of a Lindelöf
group, say, H0. Since H is Răıkov complete, it must be closed in H0. Hence, H
is Lindelöf. This contradiction completes the proof. �

In [18], an example of a Răıkov complete, ω-narrow, non-Lindelöf P -group H
with w(H) = ℵ1 was constructed. Therefore, according to Corollary 3.2, we have:

Corollary 3.3. There exists an ω-narrow P -group that cannot be embedded as

a subgroup into any R-factorizable P -group.

4. σ-products of topological groups and their subgroups

The cellularity is not monotonous when passing to a subspace — c(Y ) can
be arbitrarily bigger than c(X), for a subspace Y of a space X . Neither is the

cellularity monotonous in topological groups, but the inequality c(Y ) ≤ 2c(X)

holds in this case, for any subgroup Y of a topological groupX [17, Theorem 4.28].
We show in Theorem 4.6 that the situation is completely different in the case of σ-
products of second-countable groups — their subgroups have countable cellularity,
are perfectly κ-normal and R-factorizable.
First we need several auxiliary results regarding continuous retractions defined

on Lindelöf subspaces of Σ-products of “small” spaces.

Lemma 4.1. Let Π =
∏

i∈I Xi be the product of a family of spaces satisfying

|Xi| ≤ c for each i ∈ I, p ∈ Π, and ΣΠ(p) the corresponding Σ-product of this
family. Then every Lindelöf subspace H of ΣΠ(p) has an ℵ1-complete lattice of
continuous retractions that can be identified with some family of projections of

H to subproducts ΠJ =
∏

i∈J Xi with |J | ≤ c.

Proof: Let [I]≤c be the family of all subsets J of the index set I satisfying
|J | ≤ c. For every J ∈ [I]≤c, we put

H(J) = {x ∈ H : diff(x, p) ⊆ J}.

Then we define a family L ⊆ [I]≤c by

L = {J ∈ [I]≤c : pJ (H) = pJ (H(J))},

where pJ : Π → ΠJ =
∏

i∈J Xi is the natural projection. It is clear that the
restriction of pJ to H(J) is a topological embedding of H(J) to ΠJ , for each
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J ∈ [I]≤c. Identifying H(J) with pJ (H(J)), we conclude that the restriction of
pJ to H is a continuous retraction of H onto H(J), for each J ∈ L.
To finish the proof of the theorem, it suffices to establish the following two

properties of the family L:

Claim 1. For every A ∈ [I]≤c, there exists J ∈ L such that A ⊆ J .

Claim 2. If {Jα : α ∈ ω1} is an increasing subfamily of L, then the set J =
⋃

α∈ω1
Jα also belongs to L.

It will follow from Claim 1 that the family {pJ↾H : J ∈ L} is ℵ1-directed
and generates the topology of H , while Claim 2 will imply that this family of
retractions is ℵ1-complete.
Let us start with Claim 1. Since H ⊆ ΣΠ(p) and |Xi| ≤ c, for each i ∈ I, it

follows that |pB(H)| ≤ c, for each B ⊆ I satisfying |B| ≤ c. Take an arbitrary
set A ⊆ I with |A| ≤ c and put A0 = A. Suppose that for some α < ω1, we have
defined a sequence {Aν : ν < α} of subsets of I and a sequence {Hν : ν < α} of
subsets of H satisfying the following conditions for all ν, µ < α:

(i) Aν ⊆ Aµ and Hν ⊆ Hµ if ν < µ;
(ii) |Aν | ≤ c and |Hν | ≤ c;
(iii) pAν

(Hν) = pAν
(H);

(iv) diff(x, p) ⊆ Aν+1, for each x ∈ Hν .

If α is limit, we put Aα =
⋃

ν<αAν . By (ii), we have that |Aα| ≤ c. Since
|pAα
(H)| ≤ c, there exists a subset Hα of H such that

⋃

ν<αHν ⊆ Hα, |Hα| ≤ c,
and pAα

(Hα) = pAα
(H). It is easy to see that the sequences {Aν : ν ≤ α} and

{Hν : ν ≤ α} satisfy (i)–(iv) at this step.
If α = β + 1, we put Aα = Aβ ∪

⋃

{diff(x, p) : x ∈ Hβ}. By (ii), the set Aα

satisfies |Aα| ≤ c. Therefore, there exists a subset Hα of H such that Hβ ⊆ Hα,
|Hα| ≤ c, and pAα

(Hα) = pAα
(H). Again, the sequences {Aν : ν ≤ α} and

{Hν : ν ≤ α} satisfy (i)–(iv). This finishes our construction.
We claim that the set J =

⋃

α<ω1
Aα belongs to L. It is clear from (ii) that

|J | ≤ c, so it suffices to verify the equality pJ(H) = pJ (H(J)). This follows from
(iii), (iv), and the fact that the space H is Lindelöf. Indeed, take an arbitrary
point y ∈ pJ (H) and choose x ∈ H with pJ(x) = y. According to (iii) and

(iv), the intersection p−1Aα

(pAα
(x)) ∩H(J) is non-empty. Since the space H(J) is

Lindelöf (as a closed subset of H), we infer that
⋂

α<ω1
p−1Aα

(pAα
(x)) ∩H(J) 6= ∅

or, equivalently, p−1J (y) ∩H(J) 6= ∅. It follows that pJ (H) = pJ (H(J)). Claim 1
is proved.

The proof of Claim 2 is almost the same as the final part of the proof of Claim 1.
Indeed, let {Jα : α < ω1} ⊆ L be an increasing sequence of length ℵ1 of subsets
of I. This means, in particular, that the equality pJα

(H) = pJα
(H(Jα)) holds

for each α < ω1. Put J =
⋃

α<ω1
Jα and take an arbitrary point y ∈ pJ (H).

Again, choose x ∈ H satisfying pJ (x) = y. If α < ω1, the obvious inclusion
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H(Jα) ⊆ H(J) and the equality pJα
(H) = pJα

(H(Jα)) together imply that the

intersection p−1Jα

(pJα
(x)) ∩H(J) is non-empty. Since H(J) is Lindelöf, it follows

that H(J) ∩
⋂

α<ω1
p−1Jα

(pJα
(x)) 6= ∅. We conclude that H(J) ∩ p−1J (y) 6= ∅ and,

hence, y ∈ pJ (H(J)). This proves Claim 2 and the lemma. �

Similarly, one can prove the following result (we omit the corresponding argu-
ment):

Lemma 4.2. Let Π =
∏

i∈I Xi be the product of a family of spaces satisfying

|Xi| ≤ ℵ1 for each i ∈ I, and σΠ(p) the corresponding σ-product of this family, for
some p ∈ Π. Then every Lindelöf subspace H of σΠ(p) has an ℵ1-complete lattice
of continuous retractions that can be identified with some family of projections

of H to subproducts ΠJ =
∏

i∈J Xi with |J | ≤ ℵ1.

In the case when the factors of the Σ-product ΣΠ(p) in Lemma 4.1 are second-
countable groups and H is a closed subgroup of the corresponding σ-product
σΠ(p), we can find an ℵ1-complete lattice consisting of continuous homomorphic
retractions of H onto its subgroups of weight less than or equal to c. These
retractions will automatically be open.

Theorem 4.3. Let Π =
∏

i∈I Gi be the product of a family of second-countable

topological groups Gi, and σΠ the corresponding σ-product of the same family of
groups. Then every closed subgroup H of σΠ is Lindelöf and has an ℵ1-complete
lattice of continuous open homomorphisms onto topological groups of weight ≤ c.

In fact, this lattice consists of continuous homomorphic retractions of H that can

be identified with a family of projections of H to subproducts ΠJ =
∏

i∈J Gi,

where |J | ≤ c.

Proof: Since the subproduct ΠJ is second-countable (hence, is Lindelöf) for
every finite set J ⊆ I, the subspace σΠ of Π is Lindelöf, by a result from [13].
Therefore, the closed subgroup H of σΠ is also Lindelöf. By assumptions of the
theorem, each group Gi has a countable base and, hence, satisfies |Gi| ≤ c. So,
we can apply Lemma 4.1 to find an ℵ1-complete lattice P of projections of H to
subproducts ΠJ with |J | ≤ c such that each of these projections can be natu-
rally identified with a retraction of H onto its subgroup. Since each continuous
retraction is a quotient mapping, we conclude that the family P consists of open
homomorphisms onto groups of weight ≤ c. �

For a space Y , we write celω(Y ) ≤ ω if for every family γ of Gδ-sets in Y , there
exists a countable subfamily λ of γ such that

⋃

λ is dense in
⋃

γ. The space Y
satisfying celω(Y ) ≤ ω is called ω-cellular .

Lemma 4.4. Let Y be a subspace of a product space X =
∏

i∈I Xi. Suppose

that celω(pJ (Y )) ≤ ω, for every J ⊆ I with |J | ≤ ℵ1. Then celω(Y ) ≤ ω.

Proof: For every non-empty set B ⊆ I, let pB be the natural projection of the
product space X to XB =

∏

i∈B Xi. A non-empty subset P of the space X is
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called a canonical Gδ-set if it has the form P =
∏

i∈I Pi, where each Pi is a Gδ-set
in Xi, and Pi 6= Xi for at most countably many indices i ∈ I. The countable set

B(P ) = {i ∈ I : Pi 6= Gi}

is called the base of P . It is clear that if B ⊆ I is the base of a canonical Gδ-set

P in X , then P = p−1B pB(P ) and pB(P ) is a Gδ-set in XB . In fact, pJ (P ) is a
Gδ-set in XJ , for each J ⊆ I.
Suppose that γ is a family of Gδ-sets in Y such that

⋃

λ is not dense in
⋃

γ,
for any countable family λ ⊆ γ. By recursion on α < ω1, we can define families
{Pα : α < ω1} ⊆ γ and {Qα : α < ω1} satisfying the following conditions for all
α, β < ω1:

(i) Qα is a non-empty Gδ-set in Y and Qα ⊆ Pα;

(ii) Qα ∩
⋃

ν<α Pν = ∅.

For every α < ω1, pick a point xα ∈ Qα and take a canonical open set Uα in X
such that xα ∈ Uα and Uα ∩ Pν = ∅, for each ν < α. Then choose a canonical
Gδ-set Fα in X such that xα ∈ Fα and Fα ∩ Y ⊆ Qα. Clearly, there exists a

countable set Jα ⊆ I containing the base of Fα such that Uα = p−1Jα

pJα
(Uα) and

Fα = p
−1
Jα

pJα
(Fα).

Let J =
⋃

α<ω1
Jα. Then |J | ≤ ℵ1, and the definition of J implies that

Uα = p−1J pJ (Uα) and Fα = p−1J pJ(Fα) for each α < ω1. Evidently, pJ (Fα) is a
Gδ-set in XJ and Rα = pJ (Fα)∩ pJ (Y ) is a non-empty Gδ-set in pJ (Y ), for each
α < ω1. It is also clear that Vα = pJ (Uα) ∩ pJ(Y ) is a non-empty open set in
pJ (Y ) since pJ (xα) ∈ Vα, and we claim that Vα ∩Rν = ∅ for each ν < α.

Indeed, if ν < α, it follows from the equalities Uα = p−1J pJ(Uα), Fν =

p−1J pJ (Fν), and Uα ∩ (Fν ∩ Y ) = ∅ that

∅ = pJ (Uα ∩ Fν ∩ Y ) = pJ (Uα) ∩ pJ(Fν ∩ Y ) = pJ (Uα) ∩ pJ(Fν) ∩ pJ(Y ).

This implies immediately that Vα ∩ Rν = ∅. In addition, we have that pJ (xα) ∈
Vα ∩ Rα 6= ∅, for each α < ω1. Therefore, the family θ = {Rα : α < ω1} of
Gδ-sets in pJ(Y ) does not contain a countable subfamily whose union is dense in
the union of θ. This finishes the proof. �

We say that a Tychonoff space X is an Efimov space if for every family γ of
Gδ-sets in X , the closure of

⋃

γ is a zero-set in X . The class of Efimov spaces is
quite wide; it includes arbitrary products of regular second-countable spaces [6],
[21] and of Lindelöf Σ-groups [17].

Theorem 4.5. Let H be a closed subgroup of a σ-product of a family of second-

countable topological groups. Then celω(H) ≤ ω, and H is an Efimov space.

Proof: Suppose that H is a closed subgroup of σΠ, where Π =
∏

i∈I Gi is the
product of a family of second-countable groups.
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First, we show that celω(H) ≤ ω. By Lemma 4.4, it suffices to verify that
celω(pB(H)) ≤ ω for each B ⊆ I with |B| ≤ ℵ1. Given such a set B, we apply
Theorem 4.3 to find J ⊆ I such that B ⊆ J , |J | ≤ c, and the restriction of pJ

to H is a retraction of H . In particular, pJ(H) is a closed subgroup of H and,
hence, of both σΠ and σΠJ (we identify each face ΠJ with the corresponding
subgroup of Π). It is clear that pB(H) ⊆ σΠB , for each B ⊆ I. According to [1,
Theorem 1], σΠJ is a Lindelöf Σ-space for each J ⊆ I with |J | ≤ c. Therefore, so
is the closed subgroup pJ (H) of σΠJ . According to [20, Theorem 2] (see also [17,
Theorem 4.14]), the Lindelöf Σ-group pJ (H) satisfies celω(pJ (H)) ≤ ω. Since
pB(H) is a continuous image of pJ(H), we have that celω(pB(H)) ≤ ω. This
implies the inequality celω(H) ≤ ω.
It remains to show thatH is an Efimov space. Let γ be a family ofGδ-sets inH .

We can assume without loss of generality that every element P ∈ γ has the form
P = p−1B (E) ∩ H , where B is a countable subset of I, pB: Π → ΠB =

∏

i∈B Gi

is the projection, and E is a Gδ-set in pB(H). Since celω(H) ≤ ω, we can find a
countable subfamily λ of γ and a countable set B ⊆ I such that

⋃

λ is dense in
⋃

γ

and each P ∈ λ has the form P = p−1B (EP ) ∩H , for some Gδ-set EP in pB(H).
Again, we use Theorem 4.3 to find a set J ⊆ I such that B ⊆ J , |J | ≤ c, and the
restriction π = pJ ↾ H is a retraction of H . Since every retraction is quotient,
the homomorphism π is open. It follows from B ⊆ J that for every element
P ∈ λ, there exists a Gδ-set FP in pJ (H) such that P = p−1J (FP ) ∩H . Arguing
as above, we conclude that pJ (H) is a closed subgroup of σΠJ and, therefore,
is a Lindelöf Σ-group. It is known, however, that every Lindelöf Σ-group is an
Efimov space [20]. Let D =

⋃

{FP : P ∈ λ}. Since
⋃

λ is dense in
⋃

γ and the
homomorphism π is open, we have:

⋃

γ =
⋃

λ = π−1(D) = π−1(D),

where the closure of D is taken in pJ (H). Since D is the union of a family of
Gδ-sets in pJ(H) and the group pJ (H) is an Efimov space, it follows that D is a

zero-set in pJ (H). Therefore,
⋃

γ is a zero-set in H . The theorem is proved. �

We recall that a Tychonoff space X is called perfectly κ-normal (or an Oz-
space, see [Bla]) if the closure of every open set in X is a zero-set. Clearly, every
Efimov space is perfectly κ-normal, but not vice versa. We also need one more
concept. A subspace Y of a Tychonoff space X is said to be z-embedded in X if
for every zero-set Z in Y , there exists a zero-set Z ′ in X such that Z ′ ∩ Y = Z.
The following result is an easy corollary of Theorem 4.5.

Theorem 4.6. Let K be an arbitrary subgroup of the σ-product of a family of

second-countable topological groups. Then K has countable cellularity, is per-

fectly κ-normal and R-factorizable.

Proof: Let K be a subgroup of σΠ, where Π is the product of a family of second-
countable topological groups. Denote by H the closure of K in σΠ. It follows
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from Theorem 4.5 that c(H) ≤ celω(H) ≤ ω. Since K is dense in H , we conclude
that c(K) = c(H) ≤ ω.
Again, by Theorem 4.5, H is an Efimov space and, therefore, is perfectly κ-

normal. It follows from [2] that every dense subspace of H is perfectly κ-normal
and z-embedded in H , which is the case of K. According to [17, Theorem 5.17],
every z-embedded subgroup of an R-factorizable group is R-factorizable as well.
Since Lindelöf topological groups are R-factorizable (see [17, Theorem 5.5]) and
the group H = K is Lindelöf by Theorem 4.3, we conclude that the group K is
also R-factorizable. �

Corollary 4.7. Let Π =
∏

i∈I Gi be the product of a family of second-countable

topological groups. Then every subgroup of σΠ is z-embedded in Π.

Proof: It follows from [17, Theorem 5.16] that if a subgroup K of an arbitrary
topological group G is R-factorizable, then K is z-embedded in G. It remains to
refer to Theorem 4.6. �

5. Open problems

Problem 5.1. Denote by B(ℵ1) the class of (regular, Tychonoff ) spaces X with
the property that the product X ×Y is pseudo-ℵ1-compact, for every pseudo-ℵ1-
compact (regular, Tychonoff ) space Y . Find an internal characterization of the
spaces in the class B(ℵ1).

Our last problem is motivated by Corollary 2.7 and the results of Section 4.

Problem 5.2. Let X and Y be pseudo-ℵ1-compact subspaces of the σ-product
σΠ(p) of a family {Xi : i ∈ I} of regular Lindelöf P -spaces satisfying |Xi| ≤ ℵ1,
for each i ∈ I, where Π =

∏

i∈I Xi carries the ω-box topology. Is the product

space X × Y pseudo-ℵ1-compact?
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