
Commentationes Mathematicae Universitatis Carolinae

Danilo Gligoroski; Svein Johan Knapskog
Edon-R(256, 384, 512) -- an efficient implementation of Edon-R family of
cryptographic hash functions

Commentationes Mathematicae Universitatis Carolinae, Vol. 49 (2008), No. 2, 219--239

Persistent URL: http://dml.cz/dmlcz/119717

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119717
http://project.dml.cz


Comment.Math.Univ.Carolin. 49,2 (2008)219–239 219

Edon–R(256, 384, 512) — an efficient implementation

of Edon–R family of cryptographic hash functions

Danilo Gligoroski, Svein Johan Knapskog

Abstract. We have designed three fast implementations of a recently proposed family of
hash functions Edon–R. They produce message digests of length n = 256, 384, 512 bits

and project security of 2
n

2 hash computations for finding collisions and 2n hash com-
putations for finding preimages and second preimages. The design is not the classical
Merkle-Damg̊ard but can be seen as wide-pipe iterated compression function. Moreover

the design is based on using huge quasigroups of orders 2256, 2384 and 2512 that are
constructed by using only bitwise operations on 32 bit values (additions modulo 232,
XORs and left rotations). Initial Reference C code achieves processing speeds of 16.18
cycles/byte, 24.37 cycles/byte and 32.18 cycles/byte on x86 (Intel and AMD micro-
processors). In this paper we give their full description, as well as an initial security
analysis.

Keywords: hash function, Edon–R, quasigroup

Classification: 94A60, 20N05, 05B05, 68P30

1. Introduction

On the Second NIST Hash Workshop a family of hash functions Edon–R was
proposed [11]. The initial design was by general quasigroups of relatively small
order (up to 256), and the approach was without concrete realization of those hash
functions. No concrete measurements about the speed of those hash functions
were given, although the authors admitted that the computational speed of their
design is slow.
In this paper we describe three concrete realizations of Edon–R that produce

hash outputs of 256, 384 and 512 bits. We use bitwise operations on 32 bit
values (additions modulo 232, XORs and left rotations) to construct quasigroups
of huge order (2256, 2384 and 2512) and then we use those quasigroups as a basis
for implementing the compression function of Edon–R. We will show that the
designed quasigroups lack some of the laws that are satisfied in groups such as
commutativity and associativity. That is similar to the approach in the original
proposal for the Edon–R family of cryptographic hash functions. Thus, we are
relying our claims about the security of our concrete realization of Edon–R hash
functions on the difficulty of solving general quasigroup equations.
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The organization of the paper is as follows: In Section 2 we give some basic
mathematical definitions, a definition of a general compression function of Edon–
R with only three blocks, and a definition of three huge quasigroups of orders 2256,
2384 and 2512, in Section 3 we define three hash functions Edon–R(256, 384, 512),
in Section 4 we give a design rationale, in Section 5 we give some implementation
characteristics, in Section 6 we give an initial security analysis of the proposed
hash functions and we conclude the paper by Section 7.

2. Mathematical preliminaries and notation

In this section we need to repeat some parts of the definition of the class of
one-way candidate functions R1 recently defined in [11], [12]. For that purpose
we need also several brief definitions for quasigroups and quasigroup string trans-
formations.
A quasigroup (Q, ∗) is an algebraic structure consisting of a nonempty set Q

and a binary operation ∗ : Q2 → Q with the property that each of the equations

(1)
a ∗ x = b

y ∗ a = b

has unique solutions x and y in Q. Closely related combinatorial structures to fi-
nite quasigroups are Latin squares, since the main body of the multiplication table
of a quasigroup is just a Latin square. More detailed information about theory of
quasigroups, quasigroup string processing, Latin squares and hash functions can
be found in [1], [19], [20], [21].
For the description of the algorithm we use the following definitions:

Definition 1 ([12] Quasigroup reverse string transformation R1 : Q
r → Qr).

Let r be a positive integer, let (Q, ∗) be a quasigroup and aj , bj ∈ Q. For each
fixed m ∈ Q define first the transformation Qm : Q

r → Qr by

Qm(a0, a1, . . . , ar−1) = (b0, b1, . . . , br−1)⇐⇒ bi :=

{

m ∗ a0, i = 0

bi−1 ∗ ai, 1 ≤ i ≤ r − 1.

Then define R1 as composition of transformations of kind Qm, for suitable
choices of the indexes m, as follows:

R1(a0, a1, . . . , ar−1) := Qa0(Qa1 . . . (Qar−1(a0, a1, . . . , ar−1))).

Note that the word “reverse” in the definition of R1 comes from the fact that
the order of the indexes m is reverse to the original ordering of the letters in the
string that is transformed by R1. It was conjectured in [11], [12] that R1 is one-
way function (under some assumptions about the underlying quasigroup (Q, ∗))
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a0 a1 a2

a2 x
(1)
0 x

(1)
1 x

(1)
2

a1 x
(2)
0 x

(2)
1 x

(2)
2

a0 b0 b1 b2

x0 x1 x2

x2 x
(1)
0 x

(1)
1 x

(1)
2

x1 x
(2)
0 x

(2)
1 x

(2)
2

x0 b0 b1 b2

a. b.

Table 1. a. Schematic presentation of the function R1 for r = 3; b. The con-
jectured one-wayness of R1 comes from the difficulty to solve a system of three
equations where b0, b1 and b2 are given, and a0 = x0, a1 = x1 and a2 = x2 are

indeterminate variables.

and that the complexity of its inverting is exponential i.e. that inverting R1 has

a complexity O(|Q|
r
3 ), where |Q| is the size of the set Q.

In our construction of Edon–R(n), n = 256, 384, 512, we use the function R1
with r = 3. The transformation can be schematically presented by Table 1a.

The conjectured one-wayness of R1 can be explained by Table 1b. Namely, let
us take that only the values b0, b1 and b2 are given. In order to find pre-image
values a0 = x0, a1 = x1 and a2 = x2 we can use Definition 1 and obtain the
following equalities for the elements of Table 1b:

x
(1)
0 = x2 ∗ x0; x

(1)
1 = (x2 ∗ x0) ∗ x1; x

(1)
2 = ((x2 ∗ x0) ∗ x1) ∗ x2; x

(2)
0 =

x1 ∗ (x2 ∗ x0); x
(2)
1 = (x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1); x

(2)
2 =

(

(x1 ∗ (x2 ∗ x0)) ∗

((x2 ∗ x0) ∗ x1)
)

∗
(

((x2 ∗ x0) ∗ x1) ∗ x2
)

.

From them, we can obtain the following system of quasigroup equations with
indeterminates x0, x1, x2:















b0 = x0 ∗ (x1 ∗ (x2 ∗ x0))

b1 = b0 ∗
(

(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)
)

b2 = b1 ∗
(

(

(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)
)

∗
(

((x2 ∗ x0) ∗ x1) ∗ x2
)

)

.

One can show that for any given a0 = x0 ∈ Q either there are values of a1 = x1
and a2 = x2 as a solution or there is no solution. However, if the quasigroup
operation is non-commutative, non-associative, the quasigroup operations are not
linear in the underlying algebraic structure, and if the size of the quasigroup is
very big (for example 2256, 2384 or 2512) then solving this simple system of three
quasigroup equations is hard. Actually there is no known efficient method for
solving such systems of quasigroup equations.

Of course, one inefficient method for solving that system would be to try every
possible value for a0 = x0 ∈ Q until obtaining other two indeterminates a1 = x1
and a2 = x2. That brute force method would require in average

1
2 |Q| attempts

to guess a0 = x0 ∈ Q before solving the system.
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2.1 Definition of quasigroups of huge order

In this section we describe the construction of quasigroups of huge orders (2256,
2384 and 2512). We use the following notation: Q is a set of cardinality 2n, and
elements x ∈ Q are represented in their bitwise form as n-bit words

x ≡ (x0, x1, . . . , xn−2, xn−1) ≡ x0 · 2
n−1 + x1 · 2

n−2 + . . .+ xn−2 · 2 + xn−1

where xi ∈ {0, 1}.
Actually, we shall be constructing quasigroups (Q, ∗) as isotopes of Z

n
2 . We

shall thus define πi ∈ Sym(Z
n
2 ), 1 ≤ i ≤ 3 so that

a ∗ b ≡ π1(π2(a)⊕n π3(b))

for all a, b ∈ Z
n
2 . Note that ⊕n, the operation of Z

n
2 , can be identified with the

Bitwise eXclusive OR (XOR) upon bit strings of length n.
Let us denote by Q256 = {0, 1}256, Q384 = {0, 1}384 and Q512 = {0, 1}512 the

corresponding sets of 256–bit, 384–bit and 512–bit words. Our intention is to
define Edon–R by the following bitwise operations on 32 bit values: 1. Rotation
of 32 bits to the left for r positions, 2. Bitwise XOR operations on 32–bit words,
3. Addition between 32–bit words modulo 232.
Further, we introduce the following convention: elements X ∈ Q256 are rep-

resented as X = (X0, X1, . . . , X7), elements X ∈ Q384 are represented as X =
(X0, X1, . . . , X11), and elements X ∈ Q512 are represented as X = (X0, X1, . . . ,

X15), where Xi are 32–bit words.
The left rotation of a 32–bit word Y by r positions will be denoted by

ROTLr(Y ). Note that this operation can be expressed as a linear matrix-
vector multiplication over the ring (Z2,+,×) i.e. ROTLr(Y ) = Er · Y where
Er ∈ Z

32
2 × Z

32
2 is a matrix obtained from the identity matrix by rotating its

columns by r positions in the direction top to bottom. Further on, if we have
a vector X ∈ Q256 represented as X = (X0, X1, . . . , X7) and we want to rotate
all Xi by ri (0 ≤ i ≤ 7) positions to the left, then we denote that operation
by ROTLr(X), where r = (r0, . . . , r7) ∈ {0, 1, . . . , 31}7 is called the rotation
vector. The operation ROTLr(X) can also be represented as a linear matrix-
vector multiplication over the ring (Z2,+,×) i.e. ROTLr(X) = Dr · X where
Dr ∈ Z

256
2 × Z

256
2 ,

Dr =























Er0 0 0 0 0 0 0 0

0 Er1 0 0 0 0 0 0

0 0 Er2 0 0 0 0 0

0 0 0 Er3 0 0 0 0

0 0 0 0 Er4 0 0 0

0 0 0 0 0 Er5 0 0

0 0 0 0 0 0 Er6 0

0 0 0 0 0 0 0 Er7























,
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submatrices Eri ∈ Z
32
2 × Z

32
2 , 0 ≤ i ≤ 7 are obtained from the identity matrix

by rotating its columns by ri positions in the direction top to bottom, and the
submatrices 0 ∈ Z

32
2 × Z

32
2 are the zero matrix.

Similar notation will be used for the operations in Q384 and Q512 but here the
range of indexes i will be 0 ≤ i ≤ 11 and 0 ≤ i ≤ 15.
Further, we use the following notation:

– A1,n,A3,n, n = 256, 384, 512 are nonsingular matrices of order n
32 ×

n
32 , over

the ring (Z232 ,+,×). The values of the elements in A1,n and A3,n will be
only 0 or 1, since we want to avoid the operations of multiplication (as more
costly microprocessor operations) in the ring (Z232 ,+,×), and stay only with
operations of addition.

– A2,n,A4,n are nonsingular matrices of order n × n over the ring (Z2,+,×).
Since we want to apply XOR operations on 32–bit registers, the matrices A2,n
and A4,n will be of the form













B1,1 B1,2 . . . B1, n
32

B2,1 B2,2 . . . B2, n
32

...
...

. . .
...

B n
32

,1 B n
32

,1 . . . B n
32

, n
32













,

where Bi,j ∈ Z
32
2 ×Z

32
2 , 1 ≤ i, j ≤ n

32 are either the identity matrix or the zero
matrix.

Now we give the formal definitions for the permutations: π1,n, π2,n, π3,n.

Definition 2. Transformations π1,n : Qn → Qn (n = 256, 384, 512) are defined
as:

π1,256(X0, X1, X2, X3, X4, X5, X6, X7) =

(X5, X6, X7, X0, X1, X2, X3, X4),

π1,384(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11) =

(X7, X8, X9, X10, X11, X0, X1, X2, X3, X4, X5, X6),

π1,512(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15) =

(X9, X10, X11, X12, X13, X14, X15, X0, X1, X2, X3, X4, X5, X6, X7, X8).

Lemma 1. Transformations π1,n are permutations. �

Definition 3. Transformations π2,n : Qn → Qn and π3,n : Qn → Qn are defined
as:

π2,n ≡ A1,n ◦ ROTLr1,n ◦A2,n ◦ ROTLr2,n ,

π3,n ≡ A3,n ◦ ROTLr3,n ◦A4,n ◦ ROTLr4,n ,
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n r1,n r2,n r3,n r4,n
256 (1, 3, 4, 5, 7, 8, (1, 4, 8, 9, 10, 12, (2, 5, 6, 7, 8, 10, (3, 4, 6, 8, 9, 11,

10, 13) 13, 14) 11, 14) 12, 13)

384 (1, 3, 4, 5, 7, 8, (1, 4, 8, 9, 10, 12, (2, 5, 6, 7, 8, 10, (3, 4, 6, 8, 9, 11,
10, 13, 0, 0, 0, 0) 13, 14, 0, 0, 0, 0) 11, 14, 0, 0, 0, 0) 12, 13, 0, 0, 0, 0)

512 (1, 3, 4, 5, 7, 8, (1, 4, 8, 9, 10, 12, (2, 5, 6, 7, 8, 10, (3, 4, 6, 8, 9, 11,
10, 13, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 11, 14, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0,
0, 0, 0, 0) 0, 0, 0, 0) 0, 0, 0, 0) 0, 0, 0, 0)

Table 2. Rotation vectors for definition of π2,n and π3,n

where the rotation vectors are given in Table 2 and the matrices Ai,n, i =
1, 2, 3, 4, n = 256, 384, 512, are given in Table 3. The matrices A1,n and A3,n
act in the ring (Z232 ,+,×) where the operation + is addition modulo 232 and

matrices A2,n and A4,n act in the ring (Z2,+,×), where 1,0 ∈ Z
32
2 ×Z

32
2 are the

identity matrix and the zero matrix, and where the operation + is bitwise XOR.

Lemma 2. Transformations π2,n and π3,n are permutations on Qn.

Proof: This follows immediately from the fact that all transformationsAi,n and
ROTLri,n , i = 1, 2, 3, n = 256, 384, 512 are expressed by nonsingular matrices
over the rings (Z232 ,+,×) or (Z2,+,×). �

Theorem 1. Operations ∗n : Q
2
n → Qn defined as:

a ∗n b = π1,n(π2,n(a)⊕n π3,n(b))

are non-commutative quasigroup operations that are not loops.

Proof: We give a proof for n = 256 and the other two cases are similar.
To show that ∗256 is not a loop we have to show that there is no unit element

e ∈ Q256 such that for every a ∈ Q256, a ∗256 e = a = e ∗256 a. Let us suppose
that there is a neutral element e ∈ Q256. Let us first put

π2,256(e)⊕256 π3,256(e) = Conste

where Conste ∈ Q256 is a constant element.
From the definition of the quasigroup operation ∗256 for the neutral element e

we get:

π1,256(π2,256(e)⊕256 π3,256(a)) = π1,256(π2,256(a)⊕256 π3,256(e)).

Since π1,256 is a permutation we can remove it from the last equation and we get:

π2,256(e)⊕256 π3,256(a) = π2,256(a)⊕256 π3,256(e)
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n A1,n A2,n

256

0BB� 0 1 1 0 1 0 1 11 1 0 1 1 0 0 1
1 1 1 0 0 0 1 1
0 1 0 1 1 1 1 0
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 1
1 1 1 1 0 1 0 0
0 0 1 1 0 1 1 1

1CCA 0BB� 1 0 0 1 0 1 0 00 0 1 0 0 1 1 0
0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 1
1 1 0 0 1 0 0 0

1CCA
384

0BBBBB� 0 1 1 1 0 0 0 1 1 0 1 11 1 0 0 1 1 1 0 1 0 1 0
1 0 1 0 1 1 0 0 0 1 1 1
0 1 0 1 1 1 1 1 0 0 0 1
1 1 0 1 0 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 1 1 0
1 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 1 1 0 1 1 1 1 0
1 0 0 1 1 0 1 1 0 0 1 1
0 1 1 0 0 1 1 1 0 1 1 0
0 1 1 1 0 0 1 0 1 1 0 1

1CCCCCA 0BBBBB� 1 0 0 0 1 1 1 0 0 1 0 00 0 1 1 0 0 0 1 0 1 0 1
0 1 0 1 0 0 1 1 1 0 0 0
1 0 1 0 0 0 0 0 1 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0
0 1 0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 1 0 0 1
0 1 0 1 1 0 0 1 0 0 1 0
1 1 1 0 0 0 1 0 0 0 0 1
0 1 1 0 0 1 0 0 1 1 0 0
1 0 0 1 1 0 0 0 1 0 0 1
1 0 0 0 1 1 0 1 0 0 1 0

1CCCCCA
512

0BBBBBBBBB� 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 11 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0
0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1
1 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0
0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0
1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0
1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0
1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 1
1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1
0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1
0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1
0 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0
1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0
0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1

1CCCCCCCCCA 0BBBBBBBBB� 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 00 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1
1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0
0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1
1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1
0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0
0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0
1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1
0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0
1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1
1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0

1CCCCCCCCCA
n A3,n A4,n

256

0BB� 0 1 0 0 1 1 1 10 1 1 0 1 0 1 1
1 1 0 1 0 0 1 1
1 0 1 1 0 1 1 0
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 0
1 1 1 0 0 1 0 1

1CCA 0BB� 1 0 1 1 0 0 0 01 0 0 1 0 1 0 0
0 0 1 0 1 1 0 0
0 1 0 0 1 0 0 1
1 1 0 0 0 0 1 0
0 1 1 0 0 0 0 1
0 0 0 0 0 1 1 1
0 0 0 1 1 0 1 0

1CCA
384

0BBBBB� 0 0 0 0 1 1 1 1 0 1 1 10 1 1 1 0 0 0 1 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
0 1 0 1 1 0 1 1 0 1 0 1
1 1 1 0 0 1 1 0 0 1 1 0
1 1 0 0 1 0 1 0 1 0 1 1
1 0 1 1 1 0 0 0 1 1 0 1
1 1 0 0 0 1 1 1 1 0 0 1
1 0 0 1 0 1 1 0 1 1 1 0
0 0 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0 0 0 1 1

1CCCCCA 0BBBBB� 1 1 1 1 0 0 0 0 1 0 0 01 0 0 0 1 1 1 0 0 1 0 0
0 0 0 0 1 1 1 0 1 0 0 1
0 1 0 1 0 0 1 0 0 0 1 1
1 0 1 0 0 1 0 0 1 0 1 0
0 0 0 1 1 0 0 1 1 0 0 1
0 0 1 1 0 1 0 1 0 1 0 0
0 1 0 0 0 1 1 1 0 0 1 0
0 0 1 1 1 0 0 0 0 1 1 0
0 1 1 0 1 0 0 1 0 0 0 1
1 1 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 1 1 1 1 0 0

1CCCCCA
512

0BBBBBBBBB� 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 01 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1
1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1
1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1
1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 0
0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1
0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1
0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0
1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1
1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0
1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0
0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1
1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1

1CCCCCCCCCA 0BBBBBBBBB� 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 10 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0
0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0
0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1
1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0
1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1
1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0
1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0
0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1
0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0

1CCCCCCCCCA
Table 3. Matrices Ai,n, i = 1, 2, 3, 4, n = 256, 384, 512

and if we rearrange the last equation we get:

π2,256(a)⊕256 π3,256(a) = π2,256(e)⊕256 π3,256(e) = Conste

The last equation states that for every a ∈ Q256 the expression π2,256(a)⊕256
π3,256(a) is a constant. This is not true. For example π2,256(1)⊕256 π3,256(1) 6=
π2,256(2)⊕256 π3,256(2). Thus we conclude that ∗256 is not a loop. �

Note that the quasigroups cannot be associative since every associative quasi-
group is a group and every group possesses a unit element.
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Having defined three quasigroup operations ∗256, ∗384 and ∗512 we define three
one-way functions R1,256, R1,384 and R1,512 as follows:

Definition 4.

1. R1,256 : Q
3
256 → Q3256 ≡ R1 where R1 is defined as in Definition 1 over

Q256 with the quasigroup operation ∗256.
2. R1,384 : Q

3
384 → Q3384 ≡ R1 where R1 is defined as in Definition 1 over

Q384 with the quasigroup operation ∗384.
3. R1,512 : Q

3
512 → Q3512 ≡ R1 where R1 is defined as in Definition 1 over

Q512 with the quasigroup operation ∗512.

3. Edon–R(256, 384, 512) hash algorithm

Having one-way quasigroup functions R1,256, R1,384 andR1,512, we now define
three hash algorithms Edon–R(256), Edon–R(384) and Edon–R(512) that map
messages M of arbitrary length of l bits (l ≤ 2128) into hash values of 256, 384
or 512 bits.

3.1 Padding

Padding of the messagesM of arbitrary length of l bits is done by the standard
Merkle-Damg̊ard strengthening [9], [22]. Let us shortly denote all three hash
functions as Edon–R(n) where the parameter n can take the values 256, 384
or 512.
The padding of a messageM that is l bits long is done by the following proce-

dure:

1. Append the bit 1 at the end of the message.
2. Append the smallest amount l1 of zero bits, such that l+1+l1+128 ≡ 0 (mod n).
3. Represent the original length l of the message M as an 128–bit number and
append it at the end of the message. The length of the appended message M ′

becomes a multiple of n bits. Let the appended message be represented as
M ′ =M1M2 . . . MN where Mi is an n–bit long block.

3.2 Initial predetermined values

The definition of Edon–R(n) hash function includes one initial string H0 of
length 2n bits. That initial string is given as follows (represented in hexadecimal
notation as concatenation of 32-bits chunks).

1. For n = 256, H0 = 0x01020304, 0x05060708, 0x090A0B0C, 0x0D0E0F10, 0x11121314,
0x15161718, 0x191A1B1C, 0x1D1E1F20, 0x21222324, 0x25262728, 0x292A2B2C,

0x2D2E2F30, 0x31323334, 0x35363738, x393A3B3C, 0x3D3E3F40.

2. For n = 384, H0 = 0x01020304, 0x05060708, 0x090A0B0C, 0x0D0E0F10, 0x11121314,
0x15161718, 0x191A1B1C, 0x1D1E1F20, 0x21222324, 0x25262728, 0x292A2B2C,

0x2D2E2F30, 0x31323334, 0x35363738, 0x393A3B3C, 0x3D3E3F40, 0x41424344,

0x45464748, 0x494A4B4C, 0x4D4E4F50, 0x51525354, 0x55565758, 0x595A5B5C,

0x5D5E5F60.
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3. For n = 512, H0 = 0x01020304, 0x05060708, 0x090A0B0C, 0x0D0E0F10, 0x11121314,
0x15161718, 0x191A1B1C, 0x1D1E1F20, 0x21222324, 0x25262728, 0x292A2B2C,

0x2D2E2F30, 0x31323334, 0x35363738, 0x393A3B3C, 0x3D3E3F40, 0x41424344,

0x45464748, 0x494A4B4C, 0x4D4E4F50, 0x51525354, 0x55565758, 0x595A5B5C,

0x5D5E5F60, 0x61626364, 0x65666768, 0x696A6B6C, 0x6D6E6F70, 0x71727374,

0x75767778, 0x797A7B7C, 0x7D7E7F80.

The initial values are obtained by concatenation of the 8–bit representation of
the numbers 1, 2, . . . , 128.

3.3 Edon–R(n) hash function

Input: n andM , where: n is 256, 384 or 512, andM is the message to be hashed.
Output: A hash of length n bits.

1. Pad the message M , so the length of the padded message M ′ is multiple
of n–bit words i.e. |M ′| = N × n.

2. Initialize H0.
3. Compute the hash with the following iterative procedure:

For i = 1 to N do
Hi = R1,n(Hi−1||Mi) mod 2

2n;

Output:

Edon-R(n)(M) = HN mod 2
n.

Since the one-way functions R1,n are considered as transformations {0, 1}
3n →

{0, 1}3n for obtaining the intermediate value Hi, we apply the operation mod 2
2n

that takes the last two n–bit words from the result of R1,n. Then, that value is
concatenated (the operation “||”) with the next message block, and so on. Finally,
since the requested output from the hash function is n bits, we take just the last
n–bit word from the HN , denoted as the operation mod 2

n.

4. Design rationale

4.1 Choosing basic 32–bit operations

We have decided to choose 32–bit operations of addition modulo 232, XOR-ing
and left rotations as an optimum choice that can be efficiently implemented both
on low-end 8–bit and 16–bit processors, as well as on modern 32–bit and 64–bit
CPUs. In the past, several other cryptographic primitives have been designed
following the same rationale as well, such as: Salsa20 [2], The Tiny Encryption
Algorithm [27], or IDEA [15] — to name a few.

4.2 Choosing permutations π1, π2 and π3
Our goal was to design a structure that is a non-commutative, non-associative,

highly nonlinear quasigroup of huge order (2256, 2384 and 2512) in order to apply
the principles of the hash family Edon–R. We have found a way how to construct
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such structures as isotopes of Zn
2 , by applying some basic permutations π1, π2 and

π3 on the sets {0, 1}
256, {0, 1}384 and {0, 1}512.

The permutations π1,256, π1,384 and π1,512 are simple rotations on 256, 384 or
512–bit words. They can be effectively realized just by appropriate referencing
of the 32–bit variables (after performing permutations π2 and π3). While the
permutations π2 and π3 do the work of diffusion and nonlinear mixing separately
on the first and the second argument of the quasigroup operations, after their
outputs are XORed, the permutations π1 introduce additional diffusion on the
whole n–bit word. That diffusion then have influence on the next application of
the quasigroup operation ∗n (since we apply three such operations in every row).
The nonlinear mixing is achieved because we perform operations in two different
rings: (Z232 ,+,×) and (Z2,+,×).
For the choice of the permutations π2 and π3 we had plenty of possibilities.

However, since our design is based on quasigroups, it was a natural choice to
use Latin squares in the construction of those permutations. Actually there is a
long history of using Latin squares in the randomized experimental design (see
for example [10]) as well as in cryptography [4], [5], [6], [24], [25].
Since for the permutations π2,256 and π3,256 we wanted to mix bijectively eight

32–bit variables, we have used the following 8× 8 Latin squares:

L1=

0BBBBBBBBB� 2 1 7 6 3 4 0 54 3 2 5 0 7 1 6
7 0 1 4 6 2 5 3
6 7 0 1 4 5 3 2
1 4 6 3 5 0 2 7
0 6 5 2 1 3 7 4
5 2 3 0 7 6 4 1
3 5 4 7 2 1 6 0

1CCCCCCCCCA=�L1,1
L1,2

�
L2=

0BBBBBBBBB� 5 7 0 3 4 6 1 26 2 1 0 7 3 4 5
7 1 3 6 5 4 2 0
4 6 7 5 2 0 3 1
1 4 6 2 3 5 0 7
2 5 4 1 0 7 6 3
3 0 5 4 1 2 7 6
0 3 2 7 6 1 5 4

1CCCCCCCCCA=�L2,1
L2,2

�
By splitting L1 and L2 on two (upper and lower) Latin rectangles L1,1, L1,2,

L2,1 and L2,2 and taking columns of those rectangles as sets, we actually con-
structed four symmetric non-balanced block designs (for an excellent brief intro-
duction on block designs see for example [10], [23]). The non-balanced symmetric
block designs corresponding to L1,1 and L2,1 are with parameters (v, k, λ) =
(8, 5, λ) where λ ∈ {2, 3, 4}, and those corresponding to L1,2 and L2,2 are with
parameters (v, k, λ) = (8, 3, λ) where λ ∈ {0, 1, 2}. We used the incidence matrix
obtained by L1,1 to transform bijectively the variables by addition modulo 2

32

(in the ring (Z232 ,+,×)) and the incidence matrix obtained by L1,2 to transform
bijectively the variables by XORing of 32–bit variables (in the ring (Z2,+,×)).
As we mentioned in Section 2.1, the matrix A1,256 is an 8 × 8 nonsingular

matrix in the ring (Z232 ,+,×) and the matrix A2,256 is a 256× 256 nonsingular
matrix in the ring (Z2,+,×). Similarly from Latin rectangles L2,1 and L2,2 we
got the nonsingular incidence matrices A3,256 and A4,256.
It is an interesting observation that we split the Latin rectangles in 5:3 ratio,

not in 4:4 ratio. It comes from the fact that the symmetry of the corresponding
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formulas for calculation determinant of the incidence matrices when the splitting
is 4:4, always gives the result 0 (singular value) in the ring (Z2,+,×).

L3=

0BBBBBBBBBBBBBBBB�
11 0 9 6 3 4 10 8 5 7 1 2
3 10 2 11 8 7 1 6 4 0 5 9
1 5 0 7 9 8 4 11 10 3 2 6
2 4 10 1 7 5 0 9 8 11 6 3
10 1 11 5 0 6 3 2 9 4 7 8
7 8 5 4 1 2 9 0 3 6 10 11
8 6 4 3 11 0 2 5 7 10 9 1
0 9 6 10 5 3 7 1 2 8 11 4
6 2 3 8 10 1 5 4 11 9 0 7
4 11 7 2 6 9 8 10 0 1 3 5
5 7 1 9 4 10 11 3 6 2 8 0
9 3 8 0 2 11 6 7 1 5 4 10

1CCCCCCCCCCCCCCCCA L4=

0BBBBBBBBBBBBBBBB�
11 10 9 5 7 0 4 8 1 6 2 3
4 7 0 8 11 2 10 9 6 5 3 1
9 1 3 2 4 5 6 0 8 10 7 11
5 11 1 9 6 10 8 3 7 0 4 2
6 8 2 7 3 1 11 4 0 9 5 10
7 3 10 4 1 9 0 2 11 8 6 5
10 2 7 0 9 6 1 11 5 3 8 4
2 9 11 1 8 7 3 5 10 4 0 6
8 0 4 6 5 11 9 10 3 2 1 7
3 6 5 10 0 8 2 1 4 7 11 9
1 5 8 3 10 4 7 6 2 11 9 0
0 4 6 11 2 3 5 7 9 1 10 8

1CCCCCCCCCCCCCCCCA
L5=

0BBBBBBBBBBBBBBBBBBBBBBBB�
4 10 11 1 2 5 7 3 13 0 8 14 9 12 6 15
0 15 1 10 8 7 13 12 9 3 14 11 6 5 2 4
15 3 6 4 1 9 10 14 0 2 11 12 13 7 5 8
6 1 3 11 0 2 14 8 5 9 15 13 7 4 10 12
10 4 0 6 9 8 12 13 1 5 2 15 3 11 14 7
13 0 14 3 4 10 9 11 15 8 1 5 12 6 7 2
2 13 7 8 11 12 5 9 3 15 6 10 14 0 4 1
3 6 10 15 13 4 11 0 2 1 12 7 5 9 8 14
9 8 12 14 7 1 0 5 4 6 13 3 2 15 11 10
5 9 15 2 12 14 8 6 11 4 7 1 10 13 3 0
14 5 13 9 10 15 6 7 8 11 4 0 1 2 12 3
1 11 5 13 14 0 2 4 7 12 3 6 8 10 15 9
8 12 2 7 5 11 3 10 14 13 9 4 15 1 0 6
11 7 8 5 3 6 1 15 12 10 0 2 4 14 9 13
12 14 9 0 15 13 4 2 6 7 10 8 11 3 1 5
7 2 4 12 6 3 15 1 10 14 5 9 0 8 13 11

1CCCCCCCCCCCCCCCCCCCCCCCCA
L6=

0BBBBBBBBBBBBBBBBBBBBBBBB�
3 14 8 12 4 15 7 11 6 10 0 5 1 2 13 9
1 3 5 0 10 4 9 7 11 2 14 12 13 6 8 15
2 11 6 9 12 5 8 14 10 3 1 13 15 7 0 4
4 13 10 11 9 14 3 15 1 7 2 6 8 0 12 5
11 0 15 10 7 6 14 4 13 1 12 8 5 9 2 3
8 15 12 6 0 2 4 13 5 9 3 7 10 1 14 11
13 7 0 2 3 10 1 9 14 8 5 11 12 4 15 6
10 1 14 4 5 12 11 2 9 15 6 0 3 8 7 13
14 6 3 15 13 8 12 5 7 0 11 1 4 10 9 2
7 9 11 3 1 13 2 6 15 4 8 14 0 12 5 10
12 10 7 5 2 3 13 8 0 11 9 4 14 15 6 1
9 5 13 8 11 7 6 0 4 12 15 10 2 3 1 14
0 4 2 14 15 1 5 12 8 6 10 3 9 13 11 7
5 8 4 1 6 9 0 10 2 13 7 15 11 14 3 12
6 12 9 13 14 0 15 1 3 5 4 2 7 11 10 8
15 2 1 7 8 11 10 3 12 14 13 9 6 5 4 0

1CCCCCCCCCCCCCCCCCCCCCCCCA
Analogously, we have chosen two Latin squares L3 and L4 of order 12 × 12

for Edon–R(384) and two Latin squares L5 and L6 of order 16 × 16 for Edon–
R(512). The non-balanced symmetric block designs corresponding to L3,1 and
L4,1 are with parameters (v, k, λ) = (12, 7, λ) where λ ∈ {2, 3, 4, 5}, and those
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n MSVS 2005 Pro Intel C++ 9.1
256 17.56 16.18
384 28.64 24.37
512 37.91 32.18

Table 4. Speed (cycles/byte) of the Reference C code for Edon–R(n) on x86
platforms in 32–bit mode obtained from Microsoft Visual Studio 2005 Pro and
Intel C++ 9.1 for Windows.

corresponding to L3,2 and L4,2 are with parameters (v, k, λ) = (12, 5, λ) where
λ ∈ {0, 1, 2, 3}. The non-balanced symmetric block designs corresponding to L5,1
and L6,1 are with parameters (v, k, λ) = (16, 9, λ) where λ ∈ {3, 4, 5, 6, 7}, and
those corresponding to L5,2 and L6,2 are with parameters (v, k, λ) = (16, 7, λ)
where λ ∈ {1, 2, 3, 4, 5}.

5. Implementation characteristics of Edon–R(256, 384, 512)

We have initial implementation of all three functions Edon–R(256, 384, 512)
in C. We have run tests compiling both on Microsoft Visual Studio 2005 Pro and
Intel C++ 9.1 for Windows. The code was tested only for x86 processors in 32–bit
mode. Intel compiler was producing 8.5% – 17.8% faster code. However, in both
cases we did not use 64 or 128 bit SSE and SSE2 registers as well as their SIMD
capabilities. The initial processing speeds (in cycles/byte) are given in Table 2.
We project that significant improvements (at least twofold increasing) in the

speed can be achieved by using SIMD instructions and capabilities of modern
CPUs.
On the other hand, measuring the performances of Edon–R(256, 384, 512) on

8–bit platforms still has to be done, but we expect that the speeds will be relatively
fast due to the fact that we are using only basic 32–bit operations such as addition
modulo 232, eXlusive OR and rotations.
By careful analysis of the order of operations performed inEdon–R(256,384,512)

one can notice that there are two types of parallelism of operations:

1. Operations inside the permutations π2 and π3 can be executed in parallel.
2. Pipelining of quasigroup operations: after the first quasigroup operation in
the firs row, two quasigroup operations can be performed in parallel (one on
the first row and one on the second row), and then similarly three quasigroup
operations (in all three rows) can be performed in parallel.

This property can lead to hardware implementation of Edon–R(256, 384, 512) that
can achieve even higher speeds.

6. Security analysis of the algorithm

The design of Edon–R(n) is “a wide-piped iterated compression function”.
Although it is similar to the classical Merkle-Damg̊ard iterated design [8], [9], [22],
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in the light of latest attacks with multi-collisions, it is also essentially different
from it. We have chosen in the design of Edon–R to incorporate the suggestions of
Lucks [18] and Coron et al. [7]. Namely, by setting the size of the internal memory
of the iterated compression function to be twice as large as the output length, the
weaknesses against generic attacks of Joux [13], and Kelsy and Schneier [14] are
eliminated.
Doubling of the internal memory in our design is done by the fact that in every

iterative step of its compression function, the strings of length 3n bits are mapped
to strings of length 3n bits and then only the least significant 2n bits are kept for
the next iterative step.

6.1 Natural resistance of Edon–R(n) against generic length extension
attacks

Generic length extension attacks on iterated hash function based upon Merkle-
Damg̊ard iterating principles [9], [22] works as follows:
Let M = M1||M2|| . . . ||MN be a message consisting of exactly N blocks that

will be iteratively digested by some compression function C(A, B) according to
the Merkle-Damg̊ard iterating principles, and where A and B are messages (in-
put parameters for the compression function) that have same length as the final
message digest. Let PM be the padding block of M obtained according to the
Merkle-Damg̊ard strengthening. Then, the digest H of the message M , is com-
puted as

H(M) = C(. . . C(C(IV, M1), M2) . . . , PM ),

where IV is the initial fixed value for the hash function.
Now suppose that the attacker does not know the message M but knows (or

can easily guess) the length of the messageM . So the attacker actually knows the
padding block PM . Now, the attacker can construct a new messageM

′ = PM ||M ′
1

such that he knows the hash digest of the message M ||M ′. Namely,

H(M ||M ′) = C(C(H(M), M ′
1), PM ′),

where PM ′ is the padding (Merkle-Damg̊ard strengthening) of the messageM ||M ′.
Edon–R(n) has natural resistance against this generic attack due to the fact

that it is iterated with the chaining variables that has length that is two times
wider that the final digest value (see also the work of Lucks [18]).

6.2 Testing avalanche properties of Edon–R(n)
First we show the avalanche propagation of the initial one bit differences of

the compression function of Edon–R(n) during their evolution in all 9 quasigroup
operations ∗n, (n = 256, 384, 512).
We have used two experimental settings:

1. Examining the propagation of the initial 1–bit difference in a message consisting
of all zeroes.
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2. Examining the propagation of the initial 1–bit difference in a randomly gener-
ated messages of n–bits.

The results for n = 256 are shown in Table 5. Notice that the level of Hamming
distance equal to 12n = 128, which would be the expected outcome in theoretical
models of ideal random functions, is achieved after applying quasigroup operations
that lie on the down-right half of the tables (in bold).

Min=15
Avr=15
Max=15

Min=86
Avr=108.44
Max=133

Min=107
Avr=127.43
Max=153

Min=80
Avr=110.84
Max=142

Min=103
Avr=128.17
Max=160

Min=100
Avr=127.43
Max=151

Min=103
Avr=127.54
Max=148

Min=102
Avr=127.25
Max=146

Min=105
Avr=127.86
Max=148

Min=15
Avr=26.59
Max=74

Min=76
Avr=113.68
Max=149

Min=102
Avr=128.11
Max=154

Min=73
Avr=115.93
Max=155

Min=103
Avr=128.09
Max=158

Min=95
Avr=127.75
Max=155

Min=101
Avr=128.07
Max=153

Min=100
Avr=128.01
Max=154

Min=95
Avr=127.67
Max=155

a. b.

Table 5. a. Avalanche propagation of the Hamming distance between two 256–bit
wordsM1 andM2 that initially differs in one bit and whereM1 = 0 (minimum, av-
erage and maximum) b. Avalanche propagation of the Hamming distance between
two 256–bit words M1 and M2 that initially differs in one bit (minimum, average
and maximum)

Similar results are obtained for n = 384 and n = 512.
The results for n = 384 are shown in Table 6. Notice again that the level of

Hamming distance equal to 12n = 192, which would be the expected outcome in
theoretical models of ideal random functions, is achieved after applying quasigroup
operations that lie on the down-right half of the tables (in bold), but some close
values are obtained also after the second quasigroup operation (in italic).

Min=23
Avr=30.33
Max=35

Min=162
Avr=190.28
Max=255

Min=166
Avr=190.89
Max=219

Min=162
Avr=190.87
Max=218

Min=166
Avr=192.17
Max=218

Min=160
Avr=192.40
Max=222

Min=162
Avr=191.40
Max=225

Min=168
Avr=192.11
Max=223

Min=160
Avr=192.15
Max=221

Min=23
Avr=52.54
Max=103

Min=157
Avr=191.69
Max=227

Min=163
Avr=192.31
Max=222

Min=166
Avr=192.17
Max=225

Min=164
Avr=191.41
Max=222

Min=166
Avr=191.88
Max=222

Min=166
Avr=192.68
Max=217

Min=160
Avr=191.90
Max=216

Min=167
Avr=191.99
Max=218

a. b.

Table 6. a. Avalanche propagation of the Hamming distance between two 384–bit
wordsM1 andM2 that initially differs in one bit and whereM1 = 0 (minimum, av-
erage and maximum) b. Avalanche propagation of the Hamming distance between
two 384–bit words M1 and M2 that initially differs in one bit (minimum, average
and maximum)

The results for n = 512 are shown in Table 7. Also, the level of Hamming
distance equal to 12n = 256, which would be the expected outcome in theoretical
models of ideal random functions, is achieved after applying quasigroup operations
that lie on the down-right half of the tables (in bold), but some close values are
obtained also after the second quasigroup operation (in italic).
One possible explanation about the reasons why Edon–R(384) and Edon–

R(512) come slightly faster to the level of ideal random function than Edon–
R(256) may lie in the fact that permutations π2 and π3 for n = 384, 512 are
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defined by bigger Latin squares of order 12× 12 and 16× 16 (see the Section 4).
Thus they are more complex then corresponding permutations π2 and π3 for
n = 256.

Min=27
Avr=39.50
Max=51

Min=199
Avr=252.46
Max=289

Min=222
Avr=256.031
Max=296

Min=220
Avr=254.93
Max=293

Min=222
Avr=255.25
Max=283

Min=227
Avr=257.01
Max=288

Min=224
Avr=256.36
Max=287

Min=222
Avr=255.54
Max=290

Min=227
Avr=255.89
Max=295

Min=27
Avr=73.00
Max=142

Min=209
Avr=254.54
Max=288

Min=222
Avr=255.34
Max=288

Min=214
Avr=255.49
Max=287

Min=226
Avr=255.85
Max=290

Min=226
Avr=256.50
Max=287

Min=217
Avr=255.35
Max=286

Min=225
Avr=256.38
Max=288

Min=221
Avr=256.402
Max=297

a. b.

Table 7. a. Avalanche propagation of the Hamming distance between two 512–bit
wordsM1 andM2 that initially differs in one bit and whereM1 = 0 (minimum, av-
erage and maximum) b. Avalanche propagation of the Hamming distance between
two 512–bit words M1 and M2 that initially differs in one bit (minimum, average
and maximum)

6.3 Description of all possible collision paths in the compression

function R1 and infeasibility of finding local collisions
The design of the compression function R1 in Edon–R(n) is clearly different

from the design of compression functions of known hash functions that are de-
signed from scratch. While other compression functions have 64, 80 or even more
iterating steps, R1 has 9 steps. So far, all successful attacks against the MDx and
SHA families of hash functions exploited local collisions in the processing of the
data block. Local collisions are collisions that can be found within few steps of
the compression function.

∗n B1 = {b1} B2 = {b1, b2}

A1 = {a1}
C1={c1}

where a1∗nb1=c1

C2={c1,c2}
where a1∗nb1=c1
and a1∗nb2=c2

A2 = {a1, a2}
C2={c1,c2}

where a1∗nb1=c1
and a2∗nb1=c2

C2={c1,c2}
where a1∗nb1=c1
and a2∗nb2=c2

or
C1={c1}

where a1∗nb1=c1
and a2∗nb2=c1

Table 8. Definition of quasigroup operation between one or two-element sets

The small number of steps in the compression function R1 as well as the
algebraic properties of quasigroup operations allow us to describe all possible
collision paths within the compression function which, we emphasize again, is a
unique property among all known hash functions that are designed from scratch.
In order to track the collision paths for the compression function R1 we in-

troduce a definition for quasigroup operation between sets of cardinality one and
two.

Definition 5. Let A1 = {a1}, A2 = {a1, a2}, B1 = {b1}, B2 = {b1, b2}, C1 =
{c1}, C2 = {c1, c2} be sets of cardinality one or two, where ai, bi and ci ∈ Qn

(n = 256, 384, 512). The operation of quasigroup multiplication ∗n between these
sets is defined by Table 8.
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Following directly by the properties of unique solutions of equations of type (1)
it is easy to prove the following two propositions:

Proposition 1. If b1 6= b2 then {a1} ∗n {b1, b2} = {c1, c2} such that c1 6= c2.

�

Proposition 2. If a1 6= a2 then {a1, a2} ∗n {b1} = {c1, c2} such that c1 6= c2.

�

However if both a1 6= a2 and b1 6= b2 then {a1, a2} ∗n {b1, b2} can be either
{c1, c2} or {c1} and that is formulated in the following proposition:

Proposition 3. If a1 6= a2 and b1 6= b2 then {a1, a2} ∗n {b1, b2} can be either
{c1, c2} (where c1 6= c2) or {c1}. �

We formalize the notion of collisions for the compression function R1 by the
following definition:

Definition 6. Let (a0, a1, x1), (a0, a1, x2) ∈ Qn × Qn × Qn where a0 and a1
are initial constants defined in Subsection 3.2. If R1(a0, a1, x1) = (c0, c1, y) and
R1(a0, a1, x2) = (d0, d1, y) then we say that the pair {x1, x2} is a collision for R1.

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9, c10}

{a1} {c5, c6} {c11, c12} {c13, c14}

{a0} {c7, c8} {c15, c16} {c17}

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9, c10}

{a1} {c5, c6} {c11, c12} {c13}

{a0} {c7, c8} {c14} {c15}

a. b.

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9, c10}

{a1} {c5, c6} {c11} {c12, c13}

{a0} {c7, c8} {c14, c15} {c16}

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9}

{a1} {c5, c6} {c10, c11} {c12, c13}

{a0} {c7, c8} {c14, c15} {c16}

c. d.

Table 9. Description of all possible differential paths in the compression function
R1 that can give collisions.

Using the Definition 5 and Definition 6 we can trace all possible paths that
can produce collisions in the compression function R1. That is formulated in the
following theorem:
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Theorem 2. If x1 6= x2 are two values in Qn, then all possible differential

paths starting with the set {x1, x2} that can produce collisions in the compression
function R1 are described in Table 9. �8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

c17 = c15∗nc13
c17 = c16∗nc14
c15 = c7∗nc11
c13 = c11∗nc9
c16 = c8∗nc12
c14 = c12∗nc10
c7 = a0∗nc5
c11 = c5∗nc3
c9 = c3∗nx1
c8 = a0∗nc6
c12 = c6∗nc4
c10 = c4∗nx2
c5 = a1∗nc1
c3 = c1∗na1
c6 = a1∗nc2
c4 = c2∗na1
c1 = x1∗na0
c2 = x2∗na0

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
c15 = c14∗nc13
c14 = c7∗nc11
c14 = c8∗nc12
c13 = c11∗nc9
c13 = c12∗nc10
c7 = a0∗nc5
c11 = c5∗nc3
c8 = a0∗nc6
c12 = c6∗nc4
c9 = c3∗nx1
c10 = c4∗nx2
c5 = a1∗nc1
c3 = c2∗na1
c6 = a1∗nc2
c4 = c2∗na1
c1 = x1∗na0
c2 = x2∗na0

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
c16 = c14∗nc12
c16 = c15∗nc13
c14 = c7∗nc11
c12 = c11∗nc9
c15 = c8∗nc11
c13 = c11∗nc10
c7 = a0∗nc5
c11 = c5∗nc3
c11 = c6∗nc4
c9 = c3∗nx1
c8 = a0∗nc6
c10 = c4∗nx2
c5 = a1∗nc1
c3 = c1∗na1
c6 = a1∗nc2
c4 = c2∗na1
c1 = x1∗na0
c2 = x2∗na0

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
c16 = c14∗nc12
c16 = c15∗nc13
c14 = c7∗nc10
c12 = c10∗nc9
c15 = c8∗nc11
c13 = c11∗nc9
c7 = a0∗nc5
c10 = c5∗nc3
c9 = c3∗nx1
c9 = c4∗nx2
c8 = a0∗nc6
c11 = c6∗nc4
c5 = a1∗nc1
c3 = c1∗na1
c4 = c2∗na1
c6 = a1∗nc2
c1 = x1∗na0
c2 = x2∗na0

a. b. c. d.

Table 10. Concrete systems of quasigroup equations that can give collisions in
the compression function R1

From Table 9 it is clear that for the collision in Table 9a., there are no local
collisions. For the other three cases there are local collisions {c13} and {c14} in
Table 9b., {c11} in Table 9c. and {c9} in Table 9d. In Table 10 we give four
systems of quasigroup equations that are following directly from collision paths
described in Table 9. From the complexity of the given quasigroup equations we
can say that in this moment we see that it is infeasible even to find local collisions.
As a support for that claim we can point out that the position of all local collisions
lie in the areas that are reaching the level of randomness that is characteristic for
a random Boolean functions (see bolded parts in Table 5, 6 and 7 and a position
of local collisions in Table 9b., 9c. and 9d.).

6.4 Fixed points for the compression function R1
From the definition of the permutations π1, π2 and π3 over Q256, Q384 and

Q512 it is clear that 0 is the fixed point of the compression function R1, i.e.
R1(0) = 0 where 0 ∈ Q256 or 0 ∈ Q384 or 0 ∈ Q512.
We had (and still have) a dilemma: should we put some constants in π2 and

π3 that will have an effect that R1(0) 6= 0.
At this moment we do not see any argument how the fact that R1(0) = 0

jeopardize the security of the whole hash function Edon–R(n), i.e., how can it be
used to find collisions, preimages and second preimages.
Of course there is always concern that the property of the compression function

R1(0) = 0 is not a “typical” random behavior, and hash functions are often used
as random functions. A counter argument for this can be that there is clear
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distinction between the whole hash function (in this case Edon–R(n) which seems
to act as a random function) and its compression function.

6.5 Getting all the additions to behave as XORs

Having a compression functionR1 defined only by additions modulo 2
32, XORs

and left rotations, it is a natural idea to try to find values for which additions in
R1 behave as XORs [26].
In such a case, one would have a completely linear system in the ring (Zn

2 ,+,×)
for which collisions, preimages and second preimages can easily be found. How-
ever, getting all the additions to behave as XORs is a challenge.
Here we can point out several significant works that are related with analy-

sis of differential probabilities of operations that combine additions modulo 2n,
XORs and left rotations. In 1993, Berson made a differential cryptanalysis of
addition modulo 232 and applied it on MD5 [3], in 2001 Lipmaa and Moriai, have
constructed efficient algorithms for computing differential properties of addition
modulo 2n [16], and Lipmaa, Wallén and Dumas in 2004 have constructed linear-
time algorithm for computing the additive differential probability of exclusive-
or [17].
All these works are determining the additive differential probability of exclu-

sive-or:
Pr[((x+ α)⊕ (y + β))− (x ⊕ y) = γ]

and exclusive-or differential probability of addition:

Pr[((x ⊕ α) + (y ⊕ β))⊕ (x+ y) = γ]

where probability is computed for all pairs (x, y) ∈ Z2n ×Z2n and for any prede-
termined triplet (α, β, γ) ∈ Z2n × Z2n × Z2n .
In the case of Edon–R(n), instead of simple combination of two 32-bit variables

once by additions modulo 2n then by xoring, we have a linear transformation of
8, 12 or 16 32-bit variables described by transformations defined in Definition 3.
Additionally, having in mind that R1 : {0, 1}

3n → {0, 1}3n, in this moment we
do not see how these results will help in finding concrete values of arguments for
the function R1 for which additions behave as XORs.

6.6 Infeasibility of going backward and infeasibility of finding free start

collisions

According to the conjectured one-wayness of the function R1, iterating back-
ward Edon–R(n) is infeasible. The conjecture is again based on the infeasibility of
solving nonlinear quasigroup equations in non-commutative and non-associative
quasigroups. From this it follows that the workload for finding preimages and
second-preimages for any hash function of the family Edon–R(n) is 2n hash com-
putations.
Moreover, inverting the one-way function R1 would imply that finding free

start collisions is feasible for the whole function Edon–R(n). Consequently, we
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base our conjecture that it is infeasible to find free start collisions for Edon–R(n)
on the infeasibility of inverting the one-way function R1.
We elaborate our claims by the following discussion.

Definition 7. Let (a0, a1, x1), (b0, b1, x2) ∈ Qn × Qn × Qn. If R1(a0, a1, x1) =
(c0, c1, y) and R1(b0, b1, x2) = (d0, d1, y) then we say that the pair
((a0, a1, x1), (b0, b1, x2)) is a free start collision for Edon–R(n).

The free start collision situation is described in the Table 11.

a0 a1 x1

x1 x
(1)
0 x

(1)
1 x

(1)
2

a1 x
(2)
0 x

(2)
1 x

(2)
2

a0 c0 c1 y

b0 b1 x2

x2 y
(1)
0 y

(1)
1 y

(1)
2

b1 y
(2)
0 y

(2)
1 y

(2)
2

b0 d0 d1 y

a. b.

Table 11. a. Schematic presentation of the function R1(a0, a1, x1) = (c0, c1, y),
b. Schematic presentation of the function R1(b0, b1, x2) = (d0, d1, y)

Here we see two ways how to find free start collisions for Edon–R(n):

1. Generate a random y ∈ Qn. Construct vectors (c0, c1, y) and (d0, d1, y) where

c0, c1, d0, d1 ∈ Qn are randomly chosen. Try to find R−1
1 (c0, c1, y) and

R−1
1 (d0, d1, y).

2. Generate a random (a0, a1, x1) and compute R1(a0, a1, x1) = (c0, c1, y). Con-
struct vector (d0, d1, y) where d0, d1 ∈ Qn are randomly chosen. Try to find

R−1
1 (d0, d1, y).

Both ways need inversion of R1 and as we already said we see that as an
infeasible task.

7. Conclusions

We have designed a concrete realization of the family of hash functions Edon–
R with message digests of 256, 384 and 512 bits by defining huge quasigroups of
orders 2256, 2384 and 2512 that are non-commutative, and that are not loops (and
consequently they are non-associative). The definition of quasigroups involve 32–
bit operations of addition modulo 232, bitwise XORing and left rotations. Those
operations are very fast on most modern microprocessors but they can be also
efficiently realized on low-end 8–bit and 16–bit processors. By our reference C
code implementation on x86 platforms we have achieved processing speeds of 16.18
cycles/byte, 24.37 cycles/byte and 32.18 cycles/byte.
In the forthcoming period we will do additional security analysis and we will

try to develop some optimized implementations for different platforms.
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