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Manifolds admitting stable forms

Hông-Vân Lê, Martin Panák, Jiř́ı Vanžura

Abstract. In this note we give a direct method to classify all stable forms on R
n as

well as to determine their automorphism groups. We show that in dimensions 6, 7, 8
stable forms coincide with non-degenerate forms. We present necessary conditions and
sufficient conditions for a manifold to admit a stable form. We also discuss rich properties
of the geometry of such manifolds.

Keywords: stable forms, automorphism groups

Classification: 53C15

1. Introduction

Special geometries defined by a class of differential forms on manifolds are in
the center of the interest of geometers again. These interests are motivated by the
fact that such a setting of special geometries unifies many known geometries as
symplectic geometry and geometries with special holonomy [12], as well as other
geometries arising in the M-theory [8], [20]. A series of papers by Hitchin [10], [11]
and his school [21], etc., opened a new way to these special geometries. Among
them they studied geometries associated with certain stable 3-forms in dimensions
6, 7 and 8 (see the definition of a stable form in Section 2 after Proposition 2.2.)
To classify the stable forms on Rn one could use the classification by Sato and

Kimura [13] of the stable forms on Cn (they are partial cases of prehomogeneous
spaces) and to find the corresponding real forms of the complex stable forms.
We note that the Sato and Kimura classification does not include the list of the
automorphism groups of the complex stable forms. We also have noticed a proof
by Witt in [21] attempting to define the automorphism group of the real stable
form of PSU(3)-type, but unfortunately this proof is incomplete (see Remark 4.8
below).
In Sections 2, 3 we study some properties of stable forms. In Section 4 we

classify stable forms on Rn and we determine their automorphism groups. Our
classification is based on the Djokovic work [6]. In Sections 5, 6, 7 we present
certain necessary conditions as well as some sufficient conditions for a manifold
to admit a stable form. We also discuss the rich structure of manifolds admitting
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stable forms in Sections 5, 6, 8. In particular we show that for n = 7 or 8 the
tangent bundle of any manifold Mn which admits a stable 3-form has a canonical
structure of a real simple Malcev algebra bundle.

2. Multi-symplectic forms and stable forms

We recall that a k-form γ on a vector space V n over a field F is called multi-
symplectic, if the following map

Iγ : V → Λk−1(V n)∗ : v 7→ v⌋γ

is injective.
Clearly, a 2-form is multi-symplectic if and only if it is symplectic.
A multi-symplectic form is generic in the following sense. For any k-form γ we

can define its rank , denoted by ρ(γ), as the minimal dimension of the subspace

W ⊂ V ∗ such that γ ∈ ΛkW .

2.1 Lemma. A k-form γ on V n is multi-symplectic if and only if its rank is n.

Proof: It is easy to see that if the rank of γ is less than n, then the linear map
Iγ has a non-trivial kernel. On the other hand, if Iγ has the non-trivial kernel,
then γ can be represented as a k-form in the dual space of the kernel. In fact we
have that the dimension of kernel of Iγ is equal to n − ρ(γ). �

From now on we shall assume that F = C or R. In these cases the space
Λk(V n)∗ has the natural topology induced from F .

2.2 Proposition. The set of multi-symplectic k-forms is open and dense in the

space of all k-forms.

Proof: The equation for γ ∈ Λk(V n)∗ defining that Iγ has non-trivial kernel
is an algebraic equation, thus the set of non-multi-symplectic k-forms is a closed
subset in Λk(V n)∗. It is also easy to check that for any k there exists a multi-
symplectic k-form on V n. Hence the statement follows. �

Clearly the multi-symplecticity is invariant under the action of the group
GL(Fn). We shall say that a k-form γ is stable if the orbit GL(Fn)(γ) is open in

the space Λk(V n)∗. By Proposition 2.2 the set of multi-symplectic k-forms has
non-trivial intersection with the orbit of any stable form. Hence it immediately
follows

2.3 Corollary. A stable form is multi-symplectic.

The converse statement is true for k = 2 or k = n − 2. If k = 3 and n = 7,
F = R, it is known that there are 8 types of GL(R7)-orbits of multi-symplectic
3-forms but only two of them are stable.
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We say that two forms are equivalent (or of the same type), if they are in the
same orbit of GL(V n)-action. Clearly, a real form is stable if and only if its com-
plexification is stable. We also know that each complex orbit has a finite number
of real forms [1, Proposition 2.3]. Thus the classification of real stable forms is
equivalent to the classification of complex stable forms plus the classification of
the real forms of the complex stable forms. The classifications of complex stable
forms is a part of the Sato-Kimura classification of prehomogeneous spaces [13].

3. Symmetric bilinear forms associated to a 3-form on R
8

In this section we associate to a 3-form ω3 on R8 several symmetric bilinear
forms which are invariants of ω3. We prove that the only non-degenerate 3-forms
(see definition below, after formula (3.4)) are the stable forms. With each stable
form we shall associate a Lie algebra structure on R8.

We denote by I the natural isomorphism I : R8 ⊗ Λ8(R8)∗ → Λ7(R8)∗:

(3.1) I(v ⊗ θ) = v⌋θ,

where θ ∈ Λ8(R8) is a volume form.
Let ω be a 3-form on R8. We associate with ω a symmetric bilinear map

S : R8 × R8 → R8 ⊗ Λ8(R8)∗ as follows

(3.2) Sω(v, w) = I−1((v⌋ω) ∧ (w⌋ω) ∧ ω).

Equivalently

(3.2.a) Sω(v, w) = −
8

∑

i=1

ei ⊗ ((v⌋ω) ∧ (w⌋ω) ∧ ω ∧ e∗i )

for any basis (ei) in R8 and its dual basis (e∗i ).

For each v ∈ R8 we define a linear map Lω
v : R8 → R8 ⊗ Λ8(R8)∗ by letting

the first variable in Sω to be v

(3.3) Lω
v (w) = Sω(v, w).

Now we shall define a symmetric linear form Bω(v, w) : R8 × R8 → (Λ8(R8)∗)2
as follows

(3.4) Bω(v, w) = Tr(Lω
v ◦ Lω

w) ∈ (Λ8(R8)∗)2.

We say that ω is non-degenerate, if the reduced trace form 〈Bω , ρ2〉 is non-
degenerate, for some choice of ρ ∈ Λ8(R8) \ {0}.
Let Gω be the automorphism group of ω. Let us consider the component

G+ω := Gω ∩Gl+(R8).
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3.5 Proposition. The bilinear forms Sω and Bω are Gl(R8)-equivariant in the
following sense. For any g ∈ Gl(R8) we have

Sg∗(ω)(X, Y ) = g∗(Sω(g−1X, g−1Y )),(3.5.1)

Bg∗(ω)(X, Y ) = g∗(Bω(g−1X, g−1Y )).(3.5.2)

If ω is non-degenerate, then the group G+ω is a subgroup of SL(R
8). The group

Gω preserves the reduced trace form 〈Bω , ρ2〉 for any choice of ρ ∈ Λ8(R8).
Proof: The computation of (3.5.1) and (3.5.2) is straightforward, so we omit
them. The symmetric form Bω(v, w) can be considered as a linear map Bω :
(R8)→ (R8)∗ ⊗ (Λ8(R8)∗)2. Let us consider the associated linear map

(3.5.3) det(Bω) : Λ8(R8)→ Λ8((R8)∗ ⊗ (Λ8(R8)∗)2) = Λ8((R8)∗)17.

If Bω is non-degenerate, then the map det(Bω) is not trivial. From (3.5.2) we
deduce that the map detBω is G+ω -invariant map. So for any g ∈ G+ω we get from
(3.5.3)

det g = (det g−1)17.

Since det g > 0 we conclude that det g = 1. Now using (3.5.2) we get the last
statement immediately. �

3.6 Proposition. (i) The trace form Bω is compatible with the multiplication

Sω in the following sense

Bω(Sω(a.b), c) = Bω(a, Sω(b, c)).

(ii) The trace form Bω is non-degenerate, if and only if ω is stable.

Proof: The first statement follows immediately from the definition. The second
statement could be derived from the result of Sato and Kimura [13]. Here we give
a straightforward proof of this fact. We observe that if ω1 and ω2 are the real
forms of the same complex 3-form, then their trace forms are also the real forms
of the trace form for the complex 3-form (all these bilinear forms Sω and Bω can
be defined for any vector space V over an arbitrary field.) Thus to check how
many real 3-forms are non-degenerate we need to check only 22 representatives
of 3-forms in the Djokovic classification [6]. Furthermore we know that a non-
degenerate 3-form must be multi-symplectic. Thus it suffices to compute the
trace form of 13 multi-symplectic 3-forms in tables XI-XXIII in the Djokovic
classification. We wrote a program for computing the trace form Bω to run it
under Maple. We denote by e∗1∧· · ·∧e∗8 by θ, where e∗i are the coordinate 1-forms

on R8. We shall use θ to make a (reduced) multiplication V × V → V

(3.7) (vw⌋θ) = (v⌋ω) ∧ (w⌋ω) ∧ ω
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Clearly we have

(3.8) Sω(v, w) = vw ⊗ θ.

We define structure constants Ak
ij by

(3.9) eiej =
∑

k

Ak
ijek.

Then

(3.9.a) Sω(ei, ej) =
∑

k

Ak
ijek ⊗ θ.

Now let us compute

(3.10)

Bω(el, em) =
∑

n

(S(el, S(em, en)), e
∗
n)

3.2.a
=

∑

k,n

〈ek ⊗ (el⌋ω) ∧ (emen⌋ω) ∧ ω ∧ e∗k ⊗ θ, e∗n〉

=
∑

n,p

(el⌋ω) ∧ Ap
mn(ep⌋ω) ∧ ω ∧ e∗n ⊗ θ

=
∑

n,p

An
lp · Ap

m,n ⊗ (θ)2.

The result is that the only stable forms numerated by XXIIIa, XXIIIb, XXIIIc
by Djokovic have non-degenerate trace forms.

Below we shall compute explicitly the reduced multiplication forms as well as
the reduced trace forms 〈Bφi , (θ∗)2〉 for stable forms φi on R8 from the Djokovic
classification.

(Form XXIIIa): φ1 = e124 + e134 + e256 + e378 + e157 + e468.
(Form XXIIIb): φ2 = e135 + e245 + e146 − e236 + e127 + e348 + e678.
(Form XXIIIc): φ3 = e135 − e146 + e236 + e245 + e347 + e568 + e127 + e128.

The reduced multiplication table for the form XXIIIa is:





























0 −e1 e1 3 e2−3 e3 −3 e8 0 −3 e6 0

−e1 −2 e2 −2 e2+2 e3 −e4 −e5 −e6 2 e7 2 e8

e1 −2 e2+2 e3 2 e3 e4 −2 e5 −2 e6 e7 e8

3 e2−3 e3 −e4 e4 0 0 3 e7 0 3 e5

−3 e8 −e5 −2 e5 0 0 3 e3 −3 e4 0

0 −e6 −2 e6 3 e7 3 e3 0 0 3 e1

−3 e6 2 e7 e7 0 −3 e4 0 0 −3 e2

0 2 e8 e8 3 e5 0 3 e1 −3 e2 0





























.
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The reduced trace form for the form XXIIIa is:





























0 0 0 −30 0 0 0 0

0 20 10 0 0 0 0 0

0 10 20 0 0 0 0 0

−30 0 0 0 0 0 0 0

0 0 0 0 0 −30 0 0

0 0 0 0 −30 0 0 0

0 0 0 0 0 0 0 −30

0 0 0 0 0 0 −30 0





























.

The reduced multiplication table for the form XXIIIb is:





























6 e8 0 −3 e6 3 e5 −e1 3 e2 −3 e4 0

0 6 e8 −3 e5 −3 e6 −e2 −3 e1 3 e3 0

−3 e6 −3 e5 6 e7 0 −e3 −3 e4 0 3 e2

3 e5 −3 e6 0 6 e7 −e4 3 e3 0 −3 e1

−e1 −e2 −e3 −e4 −2 e5 2 e6 2 e7 2 e8

3 e2 −3 e1 −3 e4 3 e3 2 e6 −6 e5 0 0

−3 e4 3 e3 0 0 2 e7 0 0 3 e5

0 0 3 e2 −3 e1 2 e8 0 3 e5 0





























.

The reduced trace form for the form XXIIIb is:





























0 0 0 −60 0 0 0 0

0 0 60 0 0 0 0 0

0 60 0 0 0 0 0 0

−60 0 0 0 0 0 0 0

0 0 0 0 20 0 0 0

0 0 0 0 0 −60 0 0

0 0 0 0 0 0 0 30

0 0 0 0 0 0 30 0





























.

The reduced multiplication table for the form XXIIIc is:
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



























6 e7−6 e8 0 3 e6 3 e5 3 e4 3 e3 e1 −e1

0 6 e7−6 e8 −3 e5 3 e6 −3 e3 3 e4 e2 −e2

3 e6 −3 e5 6 e8 0 −3 e2 3 e1 e3 2 e3

3 e5 3 e6 0 6 e8 3 e1 3 e2 e4 2 e4

3 e4 −3 e3 −3 e2 3 e1 −6 e7 0 −2 e5 −e5

3 e3 3 e4 3 e1 3 e2 0 −6 e7 −2 e6 −e6

e1 e2 e3 e4 −2 e5 −2 e6 2 e7 2 e7−2 e8

−e1 −e2 2 e3 2 e4 −e5 −e6 2 e7−2 e8 −2 e8





























.

The reduced trace form for the form XXIIIc is:





























60 0 0 0 0 0 0 0

0 60 0 0 0 0 0 0

0 0 60 0 0 0 0 0

0 0 0 60 0 0 0 0

0 0 0 0 60 0 0 0

0 0 0 0 0 60 0 0

0 0 0 0 0 0 20 10

0 0 0 0 0 0 10 20





























.

�

3.11 Proposition. Each stable form φ defines a Lie algebra structure [·, ·]φ on
R
8 by the following formula

(3.11.1)
〈

[X, Y ]φ, Z
〉

φ
= φ(X, Y, Z),

where 〈·, ·〉φ denotes a reduced trace form of φ. Moreover the Lie algebra [·, ·]φi

is the non-compact real form of sl(3, C) for i = 1, 2 and the Lie algebra [·, ·]φ3 is
the compact real form of sl(3, C).

Proof: First we note that the anti-symmetric bracket [·, ·]φ satisfies the following
invariant property. For each g ∈ Gl(R8) we have

(3.12) [X, Y ]g∗φ = g([g−1(X), g−1(Y )])φ.

Hence if the Jacobi identity holds at a form φ, it also holds at any point in the orbit
GL(R8)(φ), moreover these Lie brackets are equivalent. Secondly we notice that
the bracket [·, ·]φ can be extended linearly over C and this complexification is the
anti-symmetric bracket defined by the complexification of the form φ according



108 H.-V. Lê, M.Panák, J. Vanžura

to the same formula (3.11.1). Thus to verify the Jacobi identity for 3 stable forms
φi, i = 1, 3, it suffices to verify for one of them.
Next, we shall show that the forms φi are equivalent to the Cartan forms on the

real form of the Lie algebra sl(3, C) and the trace form of one of the Cartan forms
is a multiple of the Killing form. Hence we shall get that the skew-symmetric
multiplication defined in (3.11.1) coincides up to a non-zero constant with the Lie
bracket on the Lie algebra.
Taking into account Proposition 3.6.ii we observe that to show the equivalence

of the complex Cartan form on sl(3, C) to the stable forms φi ⊗ C it suffices to
show that one of the real Cartan forms is stable.
Now we compute the reduced trace formula for the Cartan form on the algebra

su(3)

ρ3(X, Y, Z) = 〈[X, Y ], Z〉,

where 〈·, ·〉 denotes the Killing form on su(3). We use the following explicit ex-
pression taken from [21] for a multiple of the form ρ3:

(−1/
√
3)3ρ3 = e123 + (1/2)(e147 − e156 + e246 + e257 + e345 − e367)

+ (
√
3/2)(e845 + e867)

where (ei) are an orthonormal basis in su(3) and eijk denotes the form ei∧ej ∧ek.
A direct computation (also using Maple) gives us the following multiplication table

for (4/3) · (−1/
√
3)3ρ3































2 e8 0 0
√
3e6

√
3e7

√
3e4

√
3e5 2 e1

0 2 e8 0 −
√
3e7

√
3e6

√
3e5 −

√
3e4 2 e2

0 0 2 e8
√
3e4

√
3e5 −

√
3e6 −

√
3e7 2 e3

√
3e6 −

√
3e7

√
3e4

√
3e3− e8 0

√
3e1 −

√
3e2 − e4

√
3e7

√
3e6

√
3e5 0

√
3e3− e8

√
3e2

√
3e1 − e5

√
3e4

√
3e5 −

√
3e6

√
3e1

√
3e2 −

√
3e3− e8 0 − e6

√
3e5 −

√
3e4 −

√
3e7 −

√
3e2

√
3e1 0 −

√
3e3− e8 − e7

2 e1 2 e2 2 e3 − e4 − e5 − e6 − e7 −2 e8































and we compute easily from here (also by using Maple) that the reduced trace for-

mula for (−1/
√
3)3ρ3 is equal to (45/4) (diag). So the trace formula is a multiple

of the Killing form.
Once we know that the reduced trace form is a multiple of the Killing form,

we get the equivalence of the complex Cartan form and the form φi ⊗ C. Since
the only reduced trace form of φ3 is of signature 0, we conclude that the φ3 is
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equivalent to ρ3. Now it follows immediately that the Lie bracket for φ3 defined
in (3.11.1) coincides with Lie bracket on su(3), since the reduced trace form is
a multiple of the Killing form. Thus the Lie bracket for φ3 satisfies the Jacobi
identity. Hence the Jacobi identity for all other φ1, φ2 also holds. This proves
the first statement of Proposition 3.11.

It remains to determine that φ1 is equivalent to the Cartan form on sl(3, R) and
φ2 is equivalent to the Cartan form on su(1, 2). We know that the reduced trace
form of the Cartan form on sl(3, R) is a bilinear symmetric non-degenerate form
which is invariant under the automorphism group Aut(sl(3, R)) of the Lie algebra
sl(3, R), since the Cartan form is invariant under the action of Aut(sl(3, R)).
Hence the reduced trace form of the Cartan form on sl(3, R) is a multiple of the
Killing form, in particular it has signature (3,5). Now we know that the signature
of the reduced trace form of φ1 is (3,5) and the signature of the reduced trace form
of φ2 is of signature (4,4). This proves the second statement of Proposition 3.11.

�

4. Classification of real stable forms

We observe that the stability of a k-form is preserved under the Poincaré iso-
morphism Λk(V n)∗ → Λn−k(V n). We shall use notation e12···k for the form

e1 ∧ e2 ∧ · · · ∧ ek. We also use notation Gγ for the isotropy group of γ under the
action of Gl(Rn) and by gγ the Lie algebra of Gγ .

4.1 Theorem. Suppose that 3 ≤ k ≤ n − k.

(i) Then a stable k-form γ on Rn exists, if and only if k = 3 and 6 ≤ n ≤ 8.
Furthermore

(ii) if n = 6, then γ is equivalent to one of the following forms:
γ1 = e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6 with Gγ1 = SL(R

3)× SL(R3)× Z2;

γ2 = Re (e
1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) with Gγ2 = SL(C

3),
(iii) if n = 7, then γ is equivalent to one of the following forms:

ω1 = e123 − e145 + e167 + e246 + e257 + e347 − e356 with Gω1 = G2;

ω2 = e123 + e145 − e167 + e246 + e257 + e347 − e356 with Gω2 = G̃2,
(iv) if n = 8, then γ is equivalent to one of the following forms:

φ1 = e124 + e134 + e256 + e378 + e157 + e468 with Gφ1 = SL(3, R)× Z2;

φ2 = e135+e245+e146−e236+e127+e348+e678 with Gφ2 = PSU(1, 2)×Z2;

φ3 = e135 − e146 + e236 + e245 + e347 + e568 + e127 + e128 with Gφ3 =
PSU(3)× Z2.

Proof: We first show that if 4 ≤ k ≤ n − k then there is no stable form. It
suffices to show that in this case we have

(4.2) dimΛk(Rn) ≥ n2 + 1 = dim(Gl(V n)) + 1.
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Clearly we have under the assumption that 4 ≤ k ≤ n − k

dimΛk(Rn) ≥ dimΛ4(Rn).

Therefore (2.2) is a consequence of the following equality

(4.3) f(n) := n3 − 6n2 − 13n− 6 ≥ 1, for n ≥ 8.

Since f ′(n) > 0 for all n ≥ 8 it suffices to check (4.3) for n = 8 which is an easy
exercise. To complete the proof of Theorem 4.1(i) we need to show that stable
3-forms exist for n = 6, 7, 8 and not for n ≥ 9. But this is an well-known fact for
n = 6, 7 and it follows from the classification of 3-forms on R8 by Djokovic [6]. To
show that there is no stable 3-form in Rn if n ≥ 9, we can repeat the argument
above to show that in this case dimΛ3(Rn) > dimGl(Rn).

(ii) This classification is already well-known, see [10] for a wonderful treatment.

(iii) This classification follows from the list of Bureš and Vanžura of multi-
symplectic 3-forms in dimension 7 [2] together with their automorphism groups.
The groups Gωi

have been first determined by Bryant [3].

(iv) We shall complete this classification from the last table in [6]. In that table
Djokovic supplied us only the Lie algebras gφi

, for i = 1, 2, 3. We shall recover
Gφi
from gφi

by using the following Lemmas 4.4 and 4.5.

4.4 Lemma. Group Gl+(R8) acts transitively on the orbit Gl(R8)(φi), for φi

being one of the forms in Theorem 4.1(iv).

Proof: It suffices to show that the intersection Gφi
∩ Gl−(R8) is not empty,

where Gl−(R8) denotes the orientation reversing component of Gl(Rn).

– For φ1 this intersection contains the following element σ23 · σ57 · σ68 · I1 · I4.
Here σij denotes the orientation reversing linear transformation which permutes
the basic vectors vi and vj and leaves all other basic vectors fixed, and Ij denotes
the orientation reversing linear transformation which acts as− Id on the line vj⊗R

and leaves all other basic vectors fixed.

– For φ2 this intersection contains the following element σ12 · σ34 · I6 · I7 · I8.
– For φ3 this intersection contains σ34 · σ56 · I1 · I7 · I8. �

4.5 Lemma. The group Gl+
φ
:= Gl+(R8) ∩Gφ is connected for φi being one of

the forms from Theorem 4.1(iv).

Proof: We use the observation obtained in Section 3 that all three forms φi are
the Cartan forms

ρ(X, Y, Z) = 〈X, [Y, Z]〉
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on the Lie algebra sl(3, R), su(1, 2) and su(3), where 〈·, ·〉 denotes the Killing form.
Hence, it follows that

(4.6) Aut(gφi
) ⊂ Gφi

.

In Proposition 3.11 we have also defined a way to recover the structure of
the corresponding Lie algebra from φi. Since all the reduced bilinear forms are
invariant with respect to Gφi

we get

(4.7) Gφi
⊂ Aut(gφi

).

Finally the structure of Aut(gφi
) is well-known, see e.g. [16] and the references

therein. Thus we get Lemma 4.5 from (4.6) and (4.7). �

Actually the proof of Lemma 4.5 implies Lemma 4.4. Nevertheless the proof of
Lemma 4.4 gives us explicitly an element in Gl−(R8) ∩ Gφi

. This completes the
proof of Theorem 4.1. �

4.8 Remark. In his thesis [21] Witt gave a proof that the component G+
φ3
is

PSU(3). His proof is incomplete, since he used implicitly without a proof the fact

that the component G+
φ3
preserves the Killing metric on su(3). (His method is to

associate the Cartan form to a bilinear form with values in R8 by using a fixed
basis of R8. A detailed analysis shows that such a use is equivalent to giving
a linear map from (R8)∗ to R8 and in the given case of Witt, that map is an
isomorphism defined by the Killing metric.)

We say that a differentiable form γ on a manifold Mn is stable, if at each
x ∈ M the form γ(x) is stable.

4.9 Proposition. If a connected manifold Mn admits a differentiable stable

form γ3, then for all x ∈ Mn the form γ(x) has the same type. In particular
Mn admits a Gγ(x) structure. Conversely, if Mn admits a Gγ structure, then it

admits a differentiable form of γ type.

Proof: For each x ∈ Mn denote by U(x) the set of all points y ∈ Mn such
that γ3(y) has the same type as γ3(x). Clearly U(x) is an open subset in Mn.
Suppose that U(x) 6= Mn. Then the closure Ū(x) contains an point y which is
not in U(x). Clearly γ(y) also has the same type as γ(x) since U(y) has a non-
empty intersection with U(x). Thus y ∈ U(x) which is a contradiction. The last
statement follows from the fact that the transition functions on G(x)-manifold
preserve the form γ(x). �

5. Stable 3-forms on 6-manifolds

5.1. Obstruction for the existence of a Gγ1 -structure.
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If a non-orientable manifold M6 admits a Gγ1 -structure, then its orientable
double covering shall admit Gγ1 -structure. Now we shall consider only orientable

manifolds M6 and so only the identity component of Gγ1 . ClearlyM6 admits an
SL(3)×SL(3)-structure, if and only if it admits a distribution of oriented 3-planes
on M6.
We denote by ρ2 : H

2(M, Z)→ H2(M, Z2) the modulo 2 reduction.

5.1.1 Proposition. Suppose that a closed manifold M6 admits an SL(3) ×
SL(3)-structure. Then its Euler class vanishes. Assume that H4(M6, Z) has no
2-torsion, the Euler class e(M6) vanishes andM6 satisfies moreover the following

condition (P). There are classes c1, c2 ∈ H2(M, Z) such that

(P) p1(M
6) = c21 + c22, ρ2(c1 + c2) = w2(M

6).

Then M6 admits an SL(3)× SL(3)-structure.
Proof: The first statement is well-known, since the Euler class of an oriented
3-dimensional vector bundle is a 2-torsion, and H6(M, Z) has no 2-torsion. Let us
assume that an orientable manifoldM6 with vanishing Euler class has no 2-torsion
in H4(M, Z) and, moreover, that M6 satisfies condition (P). Let V be a non-
vanishing vector field onM6. SinceM6 satisfies condition (P), there is an almost
complex structure J on M6 such that c1(J) = c1 + c2, where c1 and c2 satisfies
condition (P). Let W 4 be a J-invariant sub-bundle of TM6 which is complement
to V and JV . Clearly p1(W

4) = p1(M
6). Let L1 and L2 be the complex line

bundles over M6 with the first Chern classes c1 and c2 satisfying condition (P).
Then p1(W

4) = p1(M
6) = p1(L1 ⊕ L2) and w2(W

4) = w2(M
6) = w2(L1 ⊕ L2).

Hence according to [19, Lemma 1], W 4 and L1 ⊕L2 are stably isomorphic. Next
we compute that

e(W 4) = c2(W
4) = c2(TM6, J) =

1

2
(c21(TM6, J)− p1(TM6))

= c1 · c2 = e(L1 ⊕ L2).

Hence, taking into account [19, Lemma 2], W 4 and L1 ⊕ L2 are isomorphic as
real vector bundles. Thus TM6 is the sum of two 3-dimensional vector bundles.

�

5.1.2 Remark. (i) In 5.3 we discuss regular maximally non-integrable Gγ1 -
structures. If a Gγ1 -structure is degenerate, but still regular, then it is easy to

see that M6 satisfies the condition (P).
(ii) If M6 admits 3 linearly independent vector fields, then it admits also an

SL(3)×SL(3)-structure. In [18] Thomas gave a necessary and sufficient condition
for an orientable 6-manifold to admit 3 linearly independent vector fields, namely
M6 has vanishing Euler class and vanishing Stiefel-Whitney class w4.
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5.2. Obstruction for the existence of a Gγ2 -structure.

5.2.1 Proposition. A manifold M6 admits an SL(3, C)-structure, if and only
if it is orientable and spinnable.

Proof: Clearly a 6-manifoldM6 admits an SL(3, C)-structure, if and only ifM6

admits an almost complex structure of vanishing first Chern class. In particular
M6 must be orientable and spinnable. On the other hand, if M6 is orientable
and spinnable, then M6 admits an SL(3, C)-structure, since it admits an almost
complex structure, whose first Chern class is an integral lift of w2. Thus the
necessary and sufficient condition for M6 to admit an SL(3, C)-structure is the
vanishing of the Stiefel-Whitney classes w1(M

6) and w2(M
6). �

5.3. Maximally non-integrable 3-forms of γ1-type.

Every 3-form γ1 onM6 defines a pair of two oriented transversal 3-distributions
D1 and D2 together with volume forms on eachDi as follows. Recall that at every
point x ∈ M we can write γ1 = e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6. The union D1 ∪ D2
is defined uniquely as the set of all vectors v ∈ TxM such that rank (v⌋γ1) = 2,
or equivalently, (v⌋γ1)2 = 0. The orientation (the volume form) of D1 and D2 is
defined by the restriction of γ1 to each distribution Di. Conversely, a pair of two
transversal oriented 3-distributions D1 and D2 onM6 together with their volume
form defines a 3-form of γ1-type as follows. Let their volume forms be α1 and
α2 respectively. Now we define γ1 = p∗1(α1) + p∗2(α2), where p1 : TM → D1 and
p2 : TM → D2 are the projections defined by Di.
We call the structure (M6, γ1) regular , if the dimensions of the distributions

[Di, Di] defined by γ1 are constant overM
6. We shall call a regular Gγ1 -structure

maximal non-integrable, if at least one of the distributions Di is maximal non-
integrable in the sense that Di + [Di, Di] = TM .
At this place we note that the labeling D1 and D2 is well-defined only locally.

Globally we may be not able to distinguish, which of the two planes is the D1.
This ambiguity can be removed, if M6 is simply connected, since in this case the
two line bundles detD1 and detD2 can be distinguished.

We can describe the maximal non-integrability of Di in terms of γ1 as follows.
Write ω1 = p∗1(α1), ω2 = p∗2(α2). Locally we can write ω1 = p∗1(e

1 ∧ e2 ∧ e3),

ω2 = p∗2(e
4 ∧ e5 ∧ e6).

5.3.1 Proposition. There is a volume form D3ω2 ∈ Λ3(Λ2(D1))∗ defined in
local coordinates as follows:

D3(ω2) = i∗1(d p∗2(e
4) ∧ d p∗2(e

5) ∧ d p∗2(e
6)),

where i1 : Di → TM is the embedding, and d p∗2(e
i) are considered as elements

of (Λ2TM)∗. This expression does not depend on the choice of local 1-forms ei
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considered as 1-forms on D2. This volume form is not zero, if and only if D1 is
maximal non-integrable.

Proof: We first show that, if f4, f5, f6 is another co-frame in D2, so that
(f4, f5, f6) = g(e4, e,5 , e6) for g ∈ Gl(D2) then

(5.3.2) i∗1(d p∗2(f
4) ∧ d p∗2(f

5) ∧ d p∗2(f
6))

= (det g) · i∗1(d p∗2(e
4) ∧ d p∗2(e

5) ∧ d p∗2(e
6)).

Proposition 5.3.1 is a local statement, so it suffices to prove it on a small disk B6 ⊂
M6. We denote by A the open dense subset in the gauge transformation group
Γ(B6×Gl(D2)) which is defined by the condition that (f4, e5, e6) and (f4, f5, e6)
are also a co-frames onD2. Then we have g = g3◦g2◦g1, where g1 sends (e

4, e5, e6)

to (f4, e5, e6), g2 sends (f
4, e5, e6) to (f4, f5, e6) and g3 = g ◦ g−11 ◦ g−12 . Now it

is straightforward to check (5.3.2) for each g1, g2, g3. Hence (5.3.2) holds on the
open dense set A. Since the LHS and RHS of (5.3.2) are continuous mappings,
the equality (5.3.2) holds on the whole Gl(D2). This proves the first statement.
The second statement now follows by direct calculations in local coordinates. �

Our study of maximally non-integrable Gγ1 -structures is motivated by its rela-
tion with the parabolic geometry. This structure is a generalization of the famous
Cartan 2-distribution in a 5-manifold and it has a canonical conformal struc-
ture [4]. The Lie algebra of the automorphism group Aut(M6, γ1) as well as local
invariants of (M6, γ1) can be calculated using the theory of filtered manifolds (see
e.g. [22]).

6. Stable 3-forms on 7-manifolds

6.1. Topological conditions for the existence of a stable 3-form on a 7-manifold.

The sufficient and necessary condition for the existence of a G2-structure on
a 7-manifold M7 has been established by Gray [9]. A manifold admits a G2-
structure, if and only if it is both orientable and spinnable, i.e. the first two
Stiefel-Whitney classes vanish.

It has been observed in [15] that a closed 7-manifoldM7 admits a G̃2-structure,
if and only if it is orientable and spinnable. The closedness condition originates
from the Dupont work [7] using the K-theory, which implies the reduction of the
SO(7)-structure on M7 to an SO(3)× SO(4)-structure.
The geometry of G2-manifolds has been intensively studied, but the geometry

of G̃2-manifolds is barely explored. In [14] we have constructed the first example
of a stably non-homogeneous closed 7-manifold which admits a closed 3-form of
G̃2-type.
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6.2. Malcev algebra structure on 7-manifolds admitting stable 3-forms.

Any stable 3-form φ in dimension 7 defines a reduced symmetric bilinear form
by the formula [3]

〈V, W 〉φ = 〈(V ⌋φ) ∧ (W ⌋φ) ∧ φ, ρ〉

where ρ is some non-zero element in Λ8(R7). Let us define a multiplication x ◦φ y

on R7 by the following formula:
〈

x ◦φ y, z
〉

φ
= φ(x, y, z).

With Peter Nagy we have discovered that the skew-symmetric multiplication x◦φy

defines the structure of the simple Malcev algebra A∗ on R7 whose corresponding
Moufang loop is S7 for φ = ω1 in Theorem 4.1 (resp. the pseudo sphere S(4,4)(1)

of the unit vector in the vector space R8 with the metric with the signature (4, 4)
for φ = ω2). Malcev algebras are generalization of Lie algebras, see [17] for more
information, in particular the structure of the simple Malcev algebras A∗ on R

7.
Thus the tangent bundle TM7 has the canonical structure of the simple Malcev

algebra bundle.

7. Stable 3-forms on 8-manifolds

As before we assume that M8 is orientable, since we can go to the orientable
double covering, if necessary.
The maximal compact subgroup of G+

φ1
is SO(3) which is included in SO(8)

via the adjoint representation. The maximal compact subgroup of PSU(1, 2) =
SU(1, 2)/Z3 is S(U(1)×U(2))/Z3. The subgroups SO(3) and S(U(1)×U(2))/Z3

are subgroups of PSU(3) = SU(3)/Z3. Thus any orientable 8-manifold M8 ad-
mitting a 3-form of φ1-type or of φ2-type admits also a 3-form of φ3-type. In
particularM8 must be orientable and spinnable. Now for any spinnable manifold
M8 we define the characteristic class q1(M) as follows.
Denote by q1 the spin characteristic class in H4(B Spin(∞), Z) corresponding

to −c2 ∈ H4(BSU(∞), Z). For any spin-bundle ξ over M we denote by q1(ξ) the
pull-back of q1. We set q1(M) := q1(TM).
As before ρ2 : H

2(M8, Z)→ H2(M8, Z2) denotes the modulo 2 reduction. The
following proposition is essentially a reformulation of Corollary 6.4 in [5].

7.1 Proposition. A closed orientable 8-manifold M8 admits a stable 3-form, if
and only if it satisfies the following conditions

w2(M
8) = 0 = e(M8),(a)

w6(M
8) ∈ ρ(H6(M8, Z)),(b)

p2(M
8) = −q1(M

8)2 and
(q1(M

8))2

9
[M8] = 0 mod 6.(c)
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In fact Corollary 6.4 in [5] is formulated as a necessary and sufficient condition
for a manifold to admit a PSU(3)-structure. But we have seen that the necessary
condition for a manifold M8 to admit a PSU(3)-structure is also a necessary
condition for a manifold to admit a SL(3, R)-structure or a PSU(1, 2)-structure.

8. Further remarks

8.1. It is easy to see that our construction of natural bilinear forms works also for
3-forms on space R3n+2. In the same way (this is already noticed first by Bryant
for R7, in [2] this form has been computed for all except one multi-symplectic
3-form) we can associate to any 3-form ω on R3n+1 a bilinear form with values in
Λ3n+1(R3n+1)∗, and it descends to a bilinear form if the 3-form is non-degenerate;
we can also associate to any 3-form ω on R3n a linear map from R3n to R3n ⊗
Λ3n(R3n)∗, and this linear map descends to a linear map R3n → R3n, if the 3-
form ω is non-degenerate (this is noticed by Hitchin for R6). We have not yet
tested, if non-degenerate 3-forms exist in higher dimensions. In low dimensions
6, 7, 8 they coincide with stable forms.

8.2. Let ω3 be a stable 3-form on M , dimM ≥ 7. Then there is the canonical
inclusion Gω to O(k, l). So if a manifold M admits a stable form ω3 6= γi,
i = 1, 2, it also admits a canonical (pseudo)-Riemannian metric. The curvature
of this (pseudo)-Riemannian metric is a differential invariant of manifold (M, ω3).
Using these metrics and existing stable forms we can construct new differential
forms which appear in other special geometries. Now we shall call a manifold
(M, ω3) stable, if ω3 is stable. Stable 8-manifolds (M8, ω3) seem to us especially
interesting, since the bundle TM8 has the canonical commutative multiplication
as well as the structure of Lie algebra bundle defined in Proposition 3.11. We
conjecture that the algebra R

8 with the commutative multiplication defined by φi

is a simple algebra. We have a partial proof for that conjecture in the case of φ2.
The stable form φi also defines the volume form on M8 and therefore according
to Djokovic it defines the graded E8-structure on the bundle ⊕3i=1(Λi(TM) ⊕
Λi(T ∗M))⊕ End(TM).

8.3. Suppose that M is a compact manifold and ω3 is a stable 3-form on M . As
we have seen from 8.2 if dimM ≥ 7, then the automorphism group Aut(M, ω3) is
a finite dimensional Lie group. If γ1 is maximal non-integrable, then the automor-
phism group (M6, γ1) is also a finite dimensional Lie group. If γ1 is degenerate,
then the automorphism group Aut(M6, γ1) can be infinite dimensional. An ex-
ample is M6 = S1(θ1)× S1(θ2)× Σ1 × Σ2 and ω3 = dθ1 ∧ σ1 + dθ2 ∧ σ2, where
σi is the volume element on the surface Σi. Finally the automorphism group
Aut(M6, γ2) is also finite dimensional, since SL(3, C) is elliptic.
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