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Non-existence result for quasi-linear

elliptic equations with supercritical growth

Zuodong Yang, Junli Yuan

Abstract. We obtain a non-existence result for a class of quasi-linear eigenvalue prob-
lems when a parameter is small. By using Pohozaev identity and some comparison
arguments, non-existence theorems are established for quasi-linear eigenvalue problems
under supercritical growth condition.
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Classification: 35J65, 35B25

1. Introduction

In this paper we are concerned with the non-existence of positive solutions of
a class of quasi-linear eigenvalue problems

− div
(
|∇u|p−2∇u

)
= λf(u(x)) in Ω,(1.1)

u = 0 on ∂Ω,(1.2)

where f ∈ C1(0,∞)
⋂
C0([0,∞)), f(s) > 0 for s ≥ 0; λ > 0, Ω = B1 = {x ∈ R

N :
|x| < 1} is the unit ball, and 1 < p < N . By a positive solution u of (1.1)–(1.2)
we mean that u ∈ C10 (Ω), u > 0 in Ω, and satisfies

∫

Ω
|∇u|p−2∇u∇v = λ

∫

Ω
f(u)v

for any v ∈ C∞
0 (Ω). Thus, solutions are considered in a weak sense. By a small

solution uλ of (1.1)–(1.2) we mean that limλ→0+ ‖uλ‖∞ = 0. By a positive large
solution uλ(r) of (1.1)–(1.2) we mean that limλ→0+ ‖uλ‖∞ =∞.

Project supported by the National Natural Science Foundation of China (Grant No. 10571022).

Project supported by the Natural Science Foundation of the Jiangsu Higher Education In-
stitutions of China (Grant No. 04KJB110062) and the Science Foundation of Nanjing Normal
University (Grant No. 2003SXXXGQ2B37).



418 Z.Yang, J.Yuan

Equations of the above form are mathematical models occurring in studies
of the p-Laplace equation, generalized reaction-diffusion theory, non-Newtonian
fluid theory ([1], [2]), non-Newtonian filtration ([3]) and the turbulent flow of a
gas in a porous medium ([4]). In the non-Newtonian fluid theory, the quantity p
is a characteristic of the medium. Media with p > 2 are called dilatant fluids and
those with p < 2 are called pseudo-plastics. If p = 2, they are Newtonian fluids.
For p = 2, the problem (1.1)–(1.2) has been studied by many authors, such

as Ni and Serrin [5], Gelfand [6], Keller and Cohen [7], Amann [8], Crandall and
Rabinowitz [9], Lions [10], Brezis and Nirenberg [11], to name just a few. For
p > 1, the existence and uniqueness of the positive solutions of (1.1)–(1.2) have
been studied by many authors, for example [12]–[17], [20]–[21] and the references
therein. When f is strictly increasing on R

+, f(0) = 0, lims→0+ f(s)/s
p−1 =

0 and f(s) ≤ α1 + α2s
µ, 0 < µ < p − 1, α1, α2 > 0, it was shown in [12]

that there exist at least two positive solutions for equations (1.1)–(1.2) when λ
is sufficiently large. If lim inf

s→0+
f(s)/sp−1 > 0, f(0) = 0 and the monotonicity

hypothesis (f(s)/sp−1)′ < 0 holds for all s > 0, it was proved in [13] that the
problem (1.1)–(1.2) has a unique positive solution when λ is sufficiently large.
Moreover, it was also shown in [14] that problem (1.1)–(1.2) has a unique positive
large solution and at least one positive small solution when λ is large if f is
nondecreasing, and there exist α1, α2 > 0 such that f(s) ≤ α1 + α2s

β , 0 < β <

p− 1; lims→0+
f(s)
sp−1 = 0, and there exist T, Y > 0 with Y ≥ T such that

(f(s)/sp−1)′ > 0 for s ∈ (0, T )

and
(f(s)/sp−1)′ < 0 for s > Y.

In contrast to these cases, it seems that very little is known about existence and
non-existence of positive solutions and non-small solutions for the problem (1.1)–
(1.2) when λ is sufficiently small. Hai [18] considered the case when Ω is an annular
domain, and obtained the existence of positive large solutions for the problem
(1.1)–(1.2) when λ is sufficiently small. Guo and Yang [22] considered the case
when Ω is a bounded smooth domain, and obtained the existence of positive large
solutions and small solutions for the problem (1.1)–(1.2) when λ is sufficiently

small. In this paper, we shall consider the case when Ω = B1 = {x ∈ R
N : |x| < 1}

is the unit ball, and establish the non-existence of positive solutions and non-small
solutions for the problem (1.1)–(1.2) when λ is sufficiently small.
Our approach depends heavily upon the special properties of the positive radial

solutions for the problem (1.1)–(1.2). We expect that such non-existence result
of (1.1)–(1.2) are still true for the general domain Ω.
We can find the related non-existence results for p = 2 in [19]. When p = 2, it

is well known that all the positive solutions in C2(BR) of the problem
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△u+ f(u) = 0 in BR,

u(x) = 0 on ∂BR

are radially symmetric solutions for very general f (see [25]). Unfortunately, this
result does not apply to the case p 6= 2. Kichenassary and Smoller showed that
there exist many positive nonradial solutions of the above problem for some f
(see [26]). The major stumbling block in the case of p 6= 2 is that certain nice
features inherent to the case p = 2 seem to be lost or at least difficult to verify.
The main differences between p = 2 and p 6= 2 can be found in [12], [13].

2. Non-existence result

In this section we study the non-existence of positive solutions of the problems
(1.1)–(1.2). The nonlinear function f ∈ C1(R) (or f is in general locally Lipschitz
continuous) satisfies the supercritical condition as u→ ∞; that is, f satisfies the
following conditions:

(H1) When p ≥ 2, there are q >
N(p−1)+p

N−p , A > 0 such that (q + 1)F (u) ≤

uf(u) for u ≥ A, where F (u) =
∫ u
0 f(v) dv and A is a positive constant with

F (A) > 0.

(H1)
′ When 1 < p < 2, there are q + 1 > 2(2−p)/(p−1)Np

N−p , A > 0 such that

(q + 1)F (u) ≤ uf(u) for u ≥ A, where F (u) =
∫ u
0 f(v) dv and A is a positive

constant with F (A) > 0.

To prove the main theorem, we consider the following initial value problems

(Φp(u
′))′ +

(N − 1)

r
Φp(u

′) + f(u(r)) = 0, r > 0,(2.1)

u(0, α) = α > 0, u′(0, α) = 0,(2.2)

where Φp(s) = |s|p−2s, p > 1.
We first recall a Pohozaev identity which was obtained by Ni and Serrin [5], or

Mitidieri and Pohozaev [23].

Lemma 2.1. Let u(r) be a solution of equation (2.1) in (r1, r2) ⊂ (0,∞) and a
be an arbitrary constant. Then, for each r ∈ (r1, r2) we have

(2.3)
d

dr

[
rN

{
(1− 1/p)|u′|p + F (u) +

a

r
uu′|u′|p−2

}]

= rN−1[NF (u)− auf(u) + (a+ 1−N/p)|u′|p
]
,

where F (u) =
∫ u
0 f(s) ds.
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Definition 2.2. For each α ∈ (0,∞) and B ≥ 0, let R(α,B) be the first r
such that u(r, α) = B. If there is no such r, we shall adopt the convention that
R(α,B) = ∞. We also stipulate that R(α) = R(α, 0) and R1(α) = R(α,A),
where A is given in (H1) or (H1)

′.

Definition 2.3. For p ≥ 2, let γ = 1
(q+1)(N−p)

[(N − p)(q + 1) − Np] > 0; for

1 < p < 2, let γ1 =
1

(q+1)(N−p)
[(N − p)(q+1)− 2(2−p)/(p−1)Np] > 0. Define two

positive functions R∗(B) and R
∗(B) on [A,∞] by

R∗(B)
p/(p−1) =M(B)−1/(p−1)B

and

R∗(B)p =
( p

p− 1

)p−1( NB

q + 1

)p
(F (B))−1,

where B = [N−1/(p−1) (p−1)
p +1]γ−1B for p ≥ 2; B = [2

2−p
p−1N

− 1
p−1 (p−1)

p +1]γ−11 B

for 1 < p < 2, and M(B) = max{f(u) : u ∈ [0, B]}.

We shall first prove that for a fixed B ≥ A, there exist an upper bound and a
lower bound for R(α,B).

Lemma 2.4. Let f satisfy (H1) for p ≥ 2 or (H1)
′ for 1 < p < 2. Then for any

B ≥ A and α ∈ (B,∞), we have

(2.4) R∗(B) ≤ R(α,B) ≤ R∗(B),

and

(2.5)

(
(q + 1)

N

F (B)

B

)1/(p−1)
R∗(B)

1/(p−1) ≤ −u′(R(α,B), α)

≤
pN

(p− 1)(q + 1)
BR∗(B)

−1.

Proof: Letting u(r) = u(r, α) and a = N/(q+1) in equation (2.3) and integrating
equation (2.3) from 0 to r, from (H1) or (H1)

′ we have

(2.6)
(p− 1)

p
|u′|p + F (u(r, α)) +

N

(q + 1)

u(r, α)u′(r, α)|u′(r, α)|p−2

r
< 0

if u(s, α) > A for all s ∈ [0, r]. It is clear that (H1) or (H1)
′ implies F (u) > 0 for

all u > A. Hence, for any α ∈ (A,∞), by (2.6) we have u′(r, α) < 0 in (0, R1(α)).
Furthermore, we have R1(α) < ∞ for all α ∈ (A,∞). Indeed, by (H1) or (H1)

′

there is a positive constant m such that

(2.7) f(u) ≥ m for all u ≥ A.
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From (2.1)–(2.2) and (2.7), for r ∈ (0, R1(α)) and α ≥ A, we have

(2.8) rN−1Φp(u
′(r, α)) = −

∫ r

0
sN−1f(u(s, α)) ds ≤ −

m

N
rN ,

which implies that

R1(α)
p/(p−1) ≤

(N
m

)1/(p−1)[ p

(p− 1)
(α −A)

]
.

Therefore, by (H1), (H1)
′ and (2.6) we obtain

(2.9)
(p− 1)

p
|u′(R(α,B), α)|p <

N

(q + 1)

B

R(α,B)
|u′(R(α,B), α)|p−1

and

(2.10) F (B) <
N

(q + 1)

B

R(α,B)
|u′(R(α,B), α)|p−1.

Now, (2.9) implies

(2.11) (−u′(R(α,B), α))R(α,B) <
pN

(p− 1)(q + 1)
B.

From (2.10) and (2.11), we obtain an upper bound for R(α,B), that is,

(2.12) R(α,B)p ≤
[
(

p

p− 1
)p−1(

NB

q + 1
)p

]
F (B)−1

for all α ∈ (B,∞). This proves the second inequality of (2.4). To prove the first
inequality of (2.4), there are two cases to be considered:

(a) R(α,B) ≥ R∗(B),
(b) R(α,B) < R∗(B).

In case (a), since R(α,B) > R(α,B) we have R(α,B) > R∗(B). In case (b),
we need a comparison argument.
Let vα(r) ≡ v(r, α,B) be the solution of the initial value problem

(Φp(v
′))′ +

N − 1

r
Φp(v

′) + C = 0 for r > R(α,B),(2.13)

v(R(α,B)) = B,(2.14)

v′(R(α,B)) = u′(R(α,B), α),(2.15)

where C =M(B).
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Then vα(r) can be solved explicitly as

(2.16) vα(r) = B −

∫ r

R

[(R
s

)N−1
|u′(R)|p−1 +

C

N

(
s−

R
N

sN−1

)]1/(p−1)
ds,

where R = R(α,B). We further consider two subcases here: (i) p ≥ 2 and (ii)
1 < p < 2.
In subcase (i), it is obvious that 1/(p − 1) ≤ 1. Using the inequalities (1 +

x)1/(p−1) ≤ 1 + x1/(p−1) for x ≥ 0 and (2.11), we have

vα(r) ≥ B −

∫ r

R

[(R
s

)N−1
|u′(R)|p−1 +

C

N
s
]1/(p−1)

ds

≥ B −

∫ r

R

(R
s

)(N−1)/(p−1)
|u′(R)|

[
1 +

((C/N)s)1/(p−1)

(R/s)(N−1)/(p−1)|u′(R)|

]
ds

= B −

∫ r

R

[
(
R

s
)(N−1)/(p−1)|u′(R)|+

(C
N

)1/(p−1)
s1/(p−1)

]
ds

≥ B −
(p− 1)

(N − p)
R|u′(R)| −

(C
N

)1/(p−1)
]

∫ r

R
s1/(p−1) ds

≥ B −
(p− 1)

(N − p)

Np

(p− 1)(q + 1)
B −

(C
N

)1/(p−1) (p− 1)
p

rp/(p−1)

= γB −
(C
N

)1/(p−1) (p− 1)
p

rp/(p−1)

≥ B

for all r ∈ [R(α,B), R∗(B)].

In subcase (ii), we have 1/(p− 1) > 1. Let q + 1 > 2(2−p)/(p−1)(Np/(N − p)).

Using the inequalities (1 + x)1/(p−1) ≤ 2(2−p)/(p−1)(1 + x1/(p−1)) for x ≥ 0 and
(2.13), we have

vα(r) ≥ B −

∫ r

R

[(R
s

)N−1
|u′(R)|p−1 +

C

N
s
]1/(p−1)

ds

≥ B −

∫ r

R

(R
s

)(N−1)/(p−1)
|u′(R)|2(2−p)/(p−1)

[
1 +

((C/N)s)1/(p−1)

(R/s)(N−1)/(p−1)|u′(R)|

]
ds

= B −

∫ r

R
2(2−p)/(p−1)

[(R
s

)(N−1)/(p−1)
|u′(R)|+

(C
N

)1/(p−1)
s1/(p−1)

]
ds

≥ B − 2(2−p)/(p−1) (p− 1)

(N − p)
R|u′(R)| − 2(2−p)/(p−1)
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(C
N

)1/(p−1) ∫ r

R
s1/(p−1) ds

≥ B − 2(2−p)/(p−1) (p− 1)

(N − p)

Np

(p− 1)(q + 1)
B − 2(2−p)/(p−1)

(C
N

)1/(p−1) (p− 1)
p

rp/(p−1)

= γ1B − 2(2−p)/(p−1)
(C
N

)1/(p−1) (p− 1)
p

rp/(p−1)

≥ B

for all r ∈ [R(α,B), R∗(B)]. Therefore, (2.4) follows if we can prove that u(r, α) ≥
vα(r) on [R(α,B), R∗(B)].
In fact, we have

(2.17)
(
rN−1Φp(u

′)
)′
−

(
rN−1Φp(v

′
α)

)′
= rN−1{C − f(u(r, α))

}
≥ 0

as long as u(r, α) > 0. That is,

(2.18) (p− 1)
(
rN−1|ξ(r)|p−2(u− vα)

′)′ ≥ 0

as long as u(r, α) > 0. Here ξ(r) is between u′(r) and v′α(r). Integrating (2.18)
twice and using (2.14)–(2.15), we obtain u(r, α) ≥ vα(r) on [R(α,B), R∗(B)].
This proves the first inequality of (2.4).
Finally, (2.5) follows from (2.4), (2.10) and (2.11). The proof is complete. �

Remark 2.5. If the growth of f is critical, then R(α) may tend to 0 as α→ ∞.
Indeed, let us consider

f(u) =





N(N−p)p−1

p−1 εp(2−p)u(N(p−1)+p)/(N−p) if u ≥ 1, p ≥ 2

N(N−p)p−1

p−1 εp(2−p)u(N(p2
(2−p)/(p−1)−1)+p)/(N−p) if u ≥ 1, 1 < p < 2

N(N−p)p−1

p−1 if u ≤ 1.

Then it is well known for any ε ∈ (0, 1) that

Uε(r) =
( ε

ε2 + rp/(p−1)

)(N−p)/p

is a solution of (2.3)–(2.4) for Uε(r) > 1, p ≥ 2. Note that Uε(0) = ε
−(N−p)/p ≡ α

which tends to ∞ as ε→ 0+. Let A = 1 in (H1). Then it is easy to verify that

R1(α)
p/(p−1) = ε− ε2
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and

−u′(R1(α), α) =
N − p

p− 1
(ε− ε2)1/pε−1,

and so

lim
ε→0+

−u′(R1(α), α)R1(α) =
N − p

p− 1

which is the contrary of (2.11). Using (2.16), it is easy to see that R(α) behaves

like α
− 1
(p−1)N , which tends to 0 as α→ +∞.

Lemma 2.6 ([22]). Let f be nondecreasing for 0 < s < 1, and f satisfies

(i) f ∈ C1(0,∞) ∪ C0([0,∞));
(ii) f(s) > 0 for s ≥ 0 and |f ′(s)| is bounded in [0, 1];
(iii) there exists µ > p− 1 such that

s−µf(s)→ β as s→ ∞;

(iv) lim sup
s→0+

(f(s)/sp−1)′ < 0.

Then problem (1.1)–(1.2) has only one positive small solution for λ sufficiently
small.

Lemma 2.7 (Weak comparison principle) [20], [21]. Let Ω be a bounded domain

in R
N (N ≥ 2) with smooth boundary ∂Ω and ϕ : (0,∞)→ (0,∞) is continuous

and non-decreasing. Let u1, u2 ∈W 1,p(Ω) satisfy

∫

Ω
|∇u1|

p−2∇u1∇ψ dx +

∫

Ω
ϕu1ψ dx ≤

∫

Ω
|∇u2|

p−2∇u2∇ψ dx+

∫

Ω
ϕu2ψ dx

for all non-negative ψ ∈W 1,p(Ω). Then the inequality

u1 ≤ u2 on ∂Ω

implies that

u1 ≤ u2 in Ω.

Lemma 2.8. Assume that f satisfies (H1) for p ≥ 2 or (H1)
′ for 1 < p < 2, and

(H2) f(u) > 0 for u > 0;

(H3) (i) f(0) > 0;
(ii) f(0) = 0 and lims→0+ f(s)/s

p−1 > 0.

Then R(α) <∞, for all α > 0.

Proof: The hypothesis of the Theorem implies there is an ǫ > 0 such that

(2.19) f(u) ≥ ǫup−1 for all u ≥ 0.
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It is easy to see that R(α) <∞ for all α > 0. In fact, consider the problem

div
(
|∇u|p−2∇u

)
+ f(u) = 0 in BR,

u = 0 on ∂BR.

Let R = R(α), consider the transformation r = Rs and denote v(s, α) = u(r, α).
Then v satisfies the problem

div
(
|∇v|p−2∇v

)
+Rpf(v) = 0 in B1,(2.20)

v = 0 on ∂B1.(2.21)

Suppose that there exists a sequence {(Rn, vn)} (where Rn = R(αn), vn(s) =
v(s, αn)) satisfying Rn → ∞ as n → ∞ and vn is a positive solution of (2.20)–
(2.21) for R = Rn. Then, ωn(s) = vn/‖vn‖∞ solves the problem

− div
(
|∇ωn|

p−2∇ωn
)
= Rp

n
f(vn)

‖vn‖
p−1
∞

in B1,

ωn(s) = 0 on ∂B1.

It follows from the above problem that

ωn(s) = R
p/(p−1)
n G1p

( f(vn)

‖vn‖
p−1
∞

)
,

where G1p is the inverse of A
1
p = − div(|∇ · |p−2∇·) under the Dirichlet boundary

condition. By Lemma 2.7 and (2.19) imply that

(2.22) ωn(s) ≥
(
ǫRp

n

)1/(p−1)
G1p

(
ωp−1

n

)
=

(
ǫRp

n

)1/(p−1)
ηn(s).

Here ηn satisfies

− div
(
|∇ηn|

p−2∇ηn
)
= ωp−1

n in B1,

ηn = 0 on ∂B1.

Since ωn > 0 and ‖ωn‖∞ = 1 for any n, the compactness of G
1
p from C0(B1)

to C1(B1) implies that there exists a subsequence of {ηn(s)} (still denoted by
{ηn(s)} later) such that ηn → η in C1(B1) as n → ∞ and η(s) > 0 in B1. Now
we easily obtain a contradiction from (2.22) since Rn → ∞ as n→ ∞. The proof
is complete. �



426 Z.Yang, J.Yuan

Theorem 2.9. Assume that f satisfies (H1) for p ≥ 2 or (H1)
′ for 1 < p < 2.

If f(s) > 0 for s ≥ 0, then there exists λ∗ > 0 such that there is no positive
non-small radially symmetric solution of equations (1.1)–(1.2) for any λ ∈ (0, λ∗).
If f(0) ≤ 0, then there exists λ∗ > 0 such that there is no positive radially
symmetric solution of the problem (1.1)–(1.2) for any λ ∈ (0, λ∗).

Proof: It is easy to see that (u(·), λ) is a positive radial solution of equations
(1.1)–(1.2) if and only if u(·, α) is a positive solution of equations (2.1)–(2.2) with

u(r) = u(λ1/pr, α) and λ = Rp(α), where R(α) is the first zero of u(·, α). By
Lemma 2.8, we have R(α) < ∞ for all α > 0. Therefore the solution set of
(2.1)–(2.2) can be written as {(u(·, α), λ(α)) : α ∈ (0,∞)} with λ(α) = Rp(α).
Therefore, it is sufficient to study R(α) for α ∈ (0,∞).
It is clear that R(α) > 0 for ∀α ∈ (0,∞). It is also easy to see that αk →

α0 ∈ (0,∞) and then R(α0) > 0. Hence, by Lemma 2.4, the only possibility for
the case where R(α) tends to 0 as α → 0+. We shall rule out this possibility
by considering the following cases: (i) f(0) = 0, lims→0+ f(s)/s

p−1 > 0; (ii)

f(0) = 0, lims→0+ f(s)/s
p−1 = 0; (iii) f(0) = 0 and lims→0+ f(s)/s

p−1 < 0 and
(iv) f(0) < 0. For the case where f(0) > 0 and f is nondecreasing for 0 < s < 1,
we know from Lemma 2.6 that there exists a unique positive small solution u(r, λ)
which will tend to zero uniformly in Ω as λ → 0+. This implies that u(·, α) is a
positive small solution if R(α) is sufficiently small.

Case (i). In this case, we shall prove that problem (1.1)–(1.2) has no positive
radially symmetric solution uλ with ‖uλ‖∞ → 0 when λ is sufficiently small.
If lims→0+ f(s)/s

p−1 = α > 0, suppose that there exists a sequence {(λn, un)}
satisfying λn → 0 as n → ∞ and un is a radially symmetric positive solution
of equations (1.1)–(1.2) for λ = λn such that ‖un‖∞ → 0 as n → ∞. Then,
ωn(x) = un/‖un‖∞ satisfies

− div
(
|∇ωn|

p−2∇ωn
)
= λn

f(‖un‖∞ωn)

‖un‖∞
p−1 ωp−1

n in B1,(2.23)

ωn(x) = 0 on ∂B1.(2.24)

Since ωn > 0, ‖ωn‖∞ = 1 for any n and
f(‖un‖∞ωn)
(‖un‖∞ωn)p−1

→ α as n → ∞, the

compactness of G1p from C0(B1) to C
1
0 (B1) (see [12]) implies that there exists

a subsequence of {ωn} (still denoted by {ωn} later) and ω ∈ C10 (B1) such that

ωn → ω in C1(B1). Thus, ω is a bounded solution of

− div
(
|∇ω|p−2∇ω

)
= 0 in B1,

ω = 0 on ∂B1.

This implies that ω ≡ 0 in B1. This contradicts the facts that ωn → ω in C1(B1)
and ‖ωn‖∞ = 1.
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If lims→0+ f(s)/s
p−1 = +∞, suppose that there exists a sequence {(λn, un)}

satisfying λn → 0 as n→ ∞ and un is a radial positive solution of equations (1.1)–
(1.2) for λ = λn such that ‖un‖∞ → 0 as n → ∞. Then ωn(x) = un/‖un‖∞
satisfies

(2.25)
−(rN−1Φp(ω

′
n))

′ = λnr
N−1‖un‖

(p−1)
∞ f(‖un‖∞ωn) in (0, 1),

ω′n(0) = 0, ωn(1) = 0

and ωn(0) = 1. First, we shall prove that τn = λn‖un‖
(p−1)
∞ is uniformly bounded.

Suppose that τn → ∞ as n → ∞. Let yn = τ
1/p
n r, ω̃n(yn) = ωn(r). Then ω̃n

satisfies

− div
(
|∇ω̃n|

p−2∇ω̃n
)
= f(‖un‖∞ω̃n) in Bn,

ω̃n = 0 on ∂Bn.

Here Bn is B1 under the change of variables. Since ‖un‖∞ → 0 as n → ∞ and
f(0) = 0, we have that ω̃n → ω̃ in C1loc(0,∞) as n → ∞ and ω̃(r) is a bounded
solution of

− div
(
|∇ω̃|p−2∇ω̃

)
= 0 in R

N

with ‖ω̃‖∞ = 1. This implies that ω̃ ≡ 0 in R
N . This contradicts the fact

that ‖ω̃‖∞ = 1. Thus, {τn} is uniformly bounded. Then, equation (2.25) and
‖ωn‖∞ = 1 imply that there exists a subsequence of {ωn} and ω ∈ C10 (B1) such

that ωn → ω in C1(B1). Then ω is a bounded solution of the problem

− div
(
|∇ω|p−2∇ω

)
= 0 in B1,

ω = 0 on ∂B1

with ‖ω‖∞ = 1. This implies that ω ≡ 0. This contradicts the fact that ‖ω‖∞ =
1.

Case (ii). In this case, we shall prove that limα→0+ R(α) = ∞. We observe
that u(·, α) satisfies the following equation:

(2.26) u(r, α) = α−

∫ r

0

( ∫ s

0
(
z

s
)N−1f(u(z)) dz

)1/(p−1)
ds.

Since f(0) = 0, lims→0+ f(s)/s
p−1 = 0, for any ǫ > 0 there exists δ > 0 such

that f(u) ≤ ǫup−1 for u ∈ (0, δ). Therefore, if u(r, α) ∈ (0, 2α) ⊂ (0, δ) then
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|f(u(r, α))| ≤ 2p−1ǫαp−1. Now, it is easy to verify that

(2.27)

∣∣∣
∫ r

0

(∫ s

0
(
z

s
)N−1f(u(z, α)) dz

)1/(p−1)
ds

∣∣∣

≤

∫ r

0

( ∫ s

0
(
z

s
)N−1|f(u(z, α))| dz

)1/(p−1)
ds

≤ 2αǫ1/(p−1)
( ∫ r

0
s(1−N)/(p−1)

(∫ s

0
zN−1 dz

)1/(p−1)
ds

)

= 2αǫ1/(p−1)
( 1
N

)1/(p−1)( ∫ r

0
s1/(p−1) ds

)

=
( 1
N

)1/(p−1)
2αǫ1/(p−1)

(p− 1)

p
rp/(p−1)

as far as u(s, α) ∈ (0, 2α) for all s ∈ (0, r). Hence, by (2.26)–(2.27), and for

α ∈ (0, δ/2) and r ∈ (0, ( p
2(p−1)

)(p−1)/p(N/ǫ)1/p), we have

|u(r, α)| ≤ α+
∣∣∣
∫ r

0

( ∫ s

0
(
z

s
)N−1f(u(z)) dz

)1/(p−1)
ds

∣∣∣ ≤ 2α,

so u(r, α) ∈ (0, 2α). This implies limα→0+ R(α) =∞.

Case (iii). In this case, there are positive constants m and δ such that
−mup−1 ≤ f(u) ≤ 0 on [0, δ]. Therefore, if u(s, α) ∈ [0, δ] for all s ∈ (0, r),
then by (2.26) we have

(2.28)

u(r, α) ≤ α+m1/(p−1)
∫ r

0

(∫ s

0
(
z

s
)N−1up−1(z, α) dz

)1/(p−1)
ds

≤ α+m1/(p−1)u(r, α)
(p− 1)

p

( 1
N

)1/(p−1)
rp/(p−1).

Hence, if u(R(α, δ), α) = δ, then (2.26) implies that

Rp/(p−1)(α, δ) ≥
p(δ−α)N1/(p−1)

δ(p−1)m1/(p−1)
and so R(α) has a positive lower bound for α ∈

(0, δ/2).

Case (iv). In this case, there are ǫ > 0 and δ > 0 such that f(u) ≤ −ǫ on
[0, δ]. Let C = −ǫ in (2.13), R(α,B) = 0, B = α in (2.14), and u′(0, α) = 0 in

(2.15). Then (2.18) becomes vα(r) = α+(
ǫ
N )
1/(p−1)(p−1p )r

p/(p−1) which implies

that

(2.29) u(r, α) ≥ vα(r) = α+
( ǫ

N

)1/(p−1)(p− 1
p

)
rp/(p−1)

as long as u(r, α) ∈ [0, δ]. In particular, R(0) > 0. The continuous dependence of
u(·, α) in α and (2.29) imply that there is a positive lower bound for R(α) for all
α ∈ [0, δ]. The proof of Theorem 2.9 is complete. �
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Remark 2.10. It is worth remarking that the validity of Theorem 2.9 relies on
the topology of the domain Ω. Indeed when Ω is an annular domain, i.e., Ω =

{x ∈ R
N : a < |x| < b}, N ≥ 2, and f(u) is continuous and limu→∞

f(u)
|u|p−2u

=∞

(f is superlinear) uniformly for t ∈ [a, b], there is at least one positive non-small
solution for each λ ∈ (0, λ∗), see [18], [24] and the reference therein.
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