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On the functorial prolongations of principal bundles

Ivan Kolář, Antonella Cabras

Abstract. We describe the fundamental properties of the infinitesimal actions related
with functorial prolongations of principal and associated bundles with respect to fiber
product preserving bundle functors. Our approach is essentially based on the Weil

algebra technique and an original concept of weak principal bundle.

Keywords: fiber product preserving bundle functor, weak principal bundle, Lie alge-
broid, functorial prolongation, Weil algebra

Classification: 58A20, 58A32, 58H05

It is well known that the r-th jet prolongation JrP of a principal bundle
P (M,G) is not a principal bundle. Ehresmann studied the groupoidal form of
this problem. He constructed the r-th prolongation Φr of a Lie groupoid Φ and
deduced that if Φ acts on a fibered manifold Y , then Φr acts canonically on the
r-th jet prolongation JrY , [4]. The principal bundle form of this construction can
be found e.g. in [10]. If P rM denotes the r-th order frame bundle of M , then
W rP = P rM×M JrP is a principal bundle and the r-th jet prolongation of every
fiber bundle P [S] associated to P is canonically associated to W rP .
We present a conceptual explanation of this fact by generalizing the problem:

we replace Jr by an arbitrary fiber product preserving bundle functor F on the
category FMm of fibered manifolds with m-dimensional bases and fiber preserv-
ing maps with local diffeomorphisms as base maps. In Section 3 we recall the
concept of weak principal bundle Q → M , which was introduced by the first
author in [6] when investigating certain problems concerning connections. The
weak principal bundle has a structure group bundle K →M . If K is the product
M × H , where H is a group, then Q is a classical principal bundle. Next we
describe a general situation, in which the fiber product P ×M Q is a principal
bundle whose structure group is a semidirect product of the groups G and H . In
Section 5 we clarify that this situation appears for every F : if r is the base order
of the functor F , we have to take P rM for P and FP for Q. In Section 6 we
describe the Lie algebroid of P ×M Q by using a general construction of a Lie
algebroid E ×M D from a Lie algebroid E acting by derivations on a Lie algebra
bundle D.

The first author was supported by the Ministry of Education of the Czech Republic under
the project MSM 0021622409 and the grant of GAČR No. 201/05/0523.
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In Section 4 we characterize the functor F in terms of Weil algebras. We find
very attractive even from the practical point of view that every product preserving
bundle functor on the categoryMf of all manifolds and all smooth maps is a Weil
functor TA, [10]. The multiplication in the Weil algebra A plays an important
role in many concrete considerations. In Section 1 we underline that every Weil
algebra A is a factor algebra of the Weil algebra Dr

k corresponding to the classical
functor T r

k of k-dimensional velocities of order r. Then we present a velocity-like

definition of the bundle TAM . In Section 2 we collect several formulae concerning
the TA-prolongations of infinitesimal actions that are very simple thanks to the
use of the multiplication in A. Finally, in Section 7 we clarify how our previous
procedures and results can be applied to the geometry of the principal bundle
WFP constructed from a principal bundle P by means of the functor F and to
certain associated bundles.
All manifolds and maps are assumed to be infinitely differentiable. Unless

otherwise specified, we use the terminology and notations from [10].

1. Velocity-like approach to Weil bundles

A Weil algebra A is a finite dimensional, commutative, associative and unitary
algebra, in which there exists an ideal N such that the factor space A/N is one-
dimensional and Nr+1 = 0 for some integer r.
The distinguished element 1 + N in A/N identities this factor space with R.

This defines a product decomposition A = R × N . Clearly, N is the ideal of all
nilpotent elements of A. We say r is the order of A and the dimension of the
vector space N/N2 is called the width of A, [10].

A typical example of a Weil algebra is Dr
k = Jr

0 (R
k,R) with the addition

and multiplication induced by the addition and multiplication of reals. A simple
algebraic consideration shows that every Weil algebra of order r and width k is a
factor algebra

(1) Dr
k

π
−−→ A.

If π̃ is another such epimorphism, then π = π̃ ◦ σ, where σ is an algebra isomor-
phism Dr

k → Dr
k.

Let M be a manifold.

Definition 1. Two maps γ, δ : Rk → M are said to determine the same A-
velocity jAγ = jAδ, if for every smooth function ϕ :M → R,

(2) π
(
jr0(ϕ ◦ γ)

)
= π

(
jr0(ϕ ◦ δ)

)
.

This condition is independent of the choice of π. We also say that γ and δ
determine the same A-jet.
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Every smooth map f :M → N induces TAf : TAM → TAN by

(3) TAf(jAγ) = jA(f ◦ γ).

In this way A defines the Weil functor TA of A-velocities onMf .
If B is another Weil algebra, then the natural transformations TA → TB are

in bijection with the algebra homomorphisms h : A → B. If we assume B is of

order r and width l and consider it as a factor algebra Dr
l

̺
−−→ B, we construct

easily an algebra homomorphism χ : Dr
l → Dr

k satisfying χ ◦ ̺ = h ◦ π. Since χ
is determined by its values on the canonical basis x1, . . . , xl of D

r
l , we can view it

as an r-jet χ = jr0ψ ∈ Jr
0 (R

l,Rk)0. Then we have

(4) hM (j
Aγ) = jB(γ ◦ ψ) ,

where hM : T
AM → TBM is the value of the natural transformation determined

by h on M . Thus, under the velocity-like approach the natural transformations
TA → TB can be interpreted as a special kind of reparametrization.
Clearly, the functor TA preserves products. Conversely, if G is a product

preserving bundle functor onMf , then GR is an algebra with respect to the G-
prolongation of the addition and multiplication of reals. The main theorem reads
that GR = A is a Weil algebra and G coincides with the Weil functor TA, [10].

For every vector space V , TAV is also a vector space. Consider the map
⊗ : V ×A→ TAV ,

(5) ⊗
(
v, jAϕ(τ)

)
= jA

(
ϕ(τ)v

)
, v ∈ V, ϕ : Rk → R, τ ∈ Rk.

If (v1 . . . , vn) are some linear coordinates on V , then (5) is of the form

⊗
(
(v1, . . . , vn), a

)
= (v1a, . . . , vna), vi ∈ R, a ∈ A.

This implies TAV = V ⊗A. For an algebra homomorphism h : A→ B, we obtain
in the same way that hV : V ⊗A→ V ⊗B coincides with idV ⊗h, i.e.

(6) hV (v ⊗ a) = v ⊗ h(a) , v ∈ V, a ∈ A.

If W is another vector space and f : V →W is a linear map, then

(7) TAf(v ⊗ a) = TAf
(
jA(ϕ(τ)v)

)
= jA

(
ϕ(τ)f(v)

)
= f(v)⊗ a.

Hence TAf = f ⊗ idA : V ⊗A→W ⊗A.
If f : V1 × V2 →W is a bilinear map, we have

TAf
(
jA(ϕ1(τ)v1), j

A(ϕ2(τ)v2)
)
= jA

(
ϕ1(τ)ϕ2(τ)

)
f(v1, v2).

Hence TAf : V1 ⊗A× V2 ⊗A→W ⊗A is a bilinear map characterized by

(8) TAf(v1 ⊗ a1, v2 ⊗ a2) = f(v1, v2)⊗ a1a2,

the product a1a2 being in A.
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2. Prolongation of infinitesimal actions

The following results can be deduced directly from the corresponding diagrams,
[5], [10]. If G is a Lie group with the composition µ : G×G→ G, then

TAµ : TAG× TAG→ TAG

is also a Lie group. For every algebra homomorphism µ : A → B, the natural
transformation

(9) hG : T
AG→ TBG

is a group homomorphism. For every left action l : G×M →M ,

TAl : TAG× TAM → TAM

is also a left action. If g is the Lie algebra of G, then the Lie algebra of TAG
is TAg = g ⊗ A and the bracket in g ⊗ A is the TA-prolongation of the bracket
in g, [10]. So (8) implies

(10) [v1 ⊗ a1, v2 ⊗ a2]g⊗A = [v1, v2]g ⊗ a1a2.

The Weil algebra corresponding to the tangent functor T is D11 = D. The

exchange algebra isomorphism κA : A⊗D → D⊗A induces a natural equivalence

κA
M : T

ATM → TTAM

with the following property. For every vector field ξ : M → TM , its functorial
prolongation TAξ : TAM → TATM and the flow prolongation T Aξ : TAM →
TTAM satisfy

(11) κA
M ◦ TAξ = T Aξ.

The infinitesimal action λ : g ×M → TM of l is defined by

(12) λ = T l ◦ (iG × 0M ),

where iG : g → TG or 0M : M → TM is the canonical injection or the zero
section, respectively. We write λ(v) = λ(v,−) : M → TM for the fundamental

vector field on M determined by v ∈ g. The infinitesimal action of TAl, which
will we denoted by

(13) T Aλ : TAg × TAM → TTAM ,
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is of the form, [7],

(14) T Aλ = κA
M ◦ TAλ.

Consider the scalar multiplication

m : R × TM → TM

of the tangent bundle. Applying TA, using TAR = A and adding the exchange
map κA

M , we obtain an action

T Am : A× TTAM → TTAM

of A on the tangent bundle of TAM , [10]. To simplify the notation, we shall write

(15) T Am(a, Z) = aZ , a ∈ A, Z ∈ TTAM.

Every v ⊗ a ∈ g ⊗ A defines the fundamental vector field T Aλ(v ⊗ a) on TAM .
On the other hand, λ(v) is a vector field on M and we can construct its flow

prolongation T A
(
λ(v)

)
. In [7] it is deduced

(16) T Aλ(v ⊗ a) = aT A
(
λ(v)

)
.

Consider the case M = V is a vector space. Then TV = V × V and the first
component of λ : g × V → V × V is the product projection g × V → V . The
second component will be denoted by

λ̃ : g × V → V.

Since TAV = V ⊗ A is also a vector space, we have TATV = V ⊗ A × V ⊗ A
and TTAV = V ⊗ A× V ⊗ A. Under these identifications, κA

V is the identity of
V ⊗A× V ⊗A.
For the infinitesimal action T Aλ : TAg × TAV → TTAV , we have introduced

T̃ Aλ : TAg × TAV → TAV.

Then our previous results yield

Proposition 1. We have

T̃ Aλ = TAλ̃ : TAg × TAV → TAV.



724 I. Kolář, A.Cabras

In particular, let l be a linear action of G on vector space V , so that λ̃ is the

classical representation of Lie algebra g on V . Hence λ̃ is a bilinear map and (8)

implies that T̃ Aλ is of the form

(17) T̃ Aλ(v ⊗ a, z ⊗ b) = λ̃(v, z)⊗ ab,

where the product ab is in A.
Next we present a general construction of a semidirect group product and of

a related action, whose special cases will be used later. Let K be a Lie group
and D : K → Aut A be a group homomorphism, where Aut A is the group of all
algebra isomorphisms of A. For every group G, we have the semidirect product
WA

DG = K ⋊D TAG with the multiplication

(k1, U1)(k2, U2) =
(
k1k2, T

Aµ(D(k−12 )G(U1), U2)
)
,

k1, k2 ∈ K, U1, U2 ∈ TAG. For every action l : G ×M → M , we define WA
D l :

WA
DG× TAM → TAM by

(18) WA
D l

(
(k, U), Z

)
=

(
D(k)

)
M

(
TAl(U,Z)

)
,

k ∈ K, U ∈ TAG, Z ∈ TAM .

Proposition 2. (18) is a left action.

Proof: We have

WA
D l

(
(k1, U1),W

A
D l

(
(k2, U2), Z

))

= D(k1)M
(
TAl(U1, D(k2)M (T

Al(U2, Z)))
)

= D(k1)M
(
TAl(TAµ(U1, D(k2)G(U2), D(k2)M (Z)))

)

= D(k1k2)M
(
TAl(TAµ(D(k−12 )(U1), U2), Z

)
.

�

As a vector space, the Lie algebra of WA
DG is

Lie (WA
DG) = k × g ⊗A ,

where k is the Lie algebra of K. The infinitesimal action of WA
D l will be denoted

by

(19) Inf (WA
D l) : (k × g ⊗A)× TAM → TTAM.
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By linearity of (19) in Lie (WA
DG), we can consider separately the cases

(20) (a) X2 ∈ g ⊗A and (b) X1 ∈ k.

The case (a) corresponds to the action TAl, so that

Inf (WA
D l)

(
(0, X2), Z) = T Aλ(X2, Z).

Before discussing the case (b), we recall that every vector C of the Lie algebra
AutA of Aut A determines a vertical vector field

CM : T
AM → TTAM

as follows. We have C = d
dt

∣∣
0
γ(t), γ : R → Aut A and for Z ∈ TAM we define

(21) CM (Z) =
d

dt

∣∣∣
0

(
γ(t)M (Z)

)
,

where γ(t)M : T
AM → TAM is the natural transformation determined by γ(t) ∈

Aut A, [10].
Let d : k → AutA be the tangent map of D : K → Aut A. Then (18) with

X2 = 0,
dk(0)

dt
= X1 implies

Inf (WA
D l)

(
(X1, 0), Z

)
= h(X1)M (Z).

Combining (a) and (b), we deduce

Proposition 3. We have

Inf (WA
D l)

(
(X1, X2), Z

)
= T Aλ(X2, Z) + d(X1)M (Z),

X1 ∈ k, X2 ∈ g ⊗A, Z ∈ TAM .

Let M = V be a vector space, so that TAV = V ⊗A. Then (6) implies

(22) d(X)V (z ⊗ a) = z ⊗ d(X)(a) , z ∈ V, a ∈ A, X ∈ k.

3. Weak principal bundles

A fibered manifold p : K → M is called a group bundle, if each fiber Kx,
x ∈ M , is a Lie group and K is locally trivial in the following sense. There is a
Lie group H and a neighbourhood U of every x ∈M such that p−1(U) ≈ U ×H .
Hence the group compositions form a base preserving morphism ν : K×MK →

K. The product M ×H is called the product group bundle.
Let Aut H be the Lie group of all automorphisms of the group H . Consider

a principal bundle P (M,G) and a group homomorphism ϕ : G → Aut H . This
defines a left action (g, h) 7→ ϕ(g−1)(h) of G on H , so that we can construct the
associated bundle P [H ]. This is a group bundle, if we define

{u, h1}{u, h2} = {u, h1h2} , u ∈ P, h1, h2 ∈ H.

Indeed, this definition is correct, for {ug, ϕ(g−1)(h1)}{ug, ϕ(g
−1)(h2)} =

{ug, ϕ(g−1)(h1h2)} = {u, h1h2}.
The following concept, which was introduced in [6], is very important for our

prolongation theory.
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Definition 2. A fibered manifold Q→M is called a weak principal bundle with
structure group bundle K → M , if we are given a base-preserving morphism
̺ : Q×M K → Q such that each group Kx acts simply transitively on the right
on Qx.

In particular, every principal bundle P (M,G) is a weak principal bundle with
respect to the product group bundle M ×G.
Consider a weak principal bundle Q → M with structure group bundle P [H ].

We write simply

̺
(
v, {u, h}

)
= v{u, h} , v ∈ Qx, u ∈ Px, h ∈ H.

So we have (
v, {u, h1}

)
{u, h2} = v{u, h1h2}.

Consider the semidirect group product G⋊ϕ H , i.e. G×H with the composition

(g1, h1)(g2, h2) = (g1g2, ϕ
(
g−12 )(h1)h2

)
.

Proposition 4. If we define

(23) (u, v)(g, h) =
(
ug, v{ug, h}

)
,

(u, v) ∈ P ×M Q, g ∈ G, h ∈ H , then P ×M Q is a principal bundle with structure
group G⋊ϕ H .

Proof: We have

(
(u, v)(g1, h1)

)
(g2, h2) =

(
ug1, v{ug1, h1}

)
(g2, h2)

=
(
ug1g2, v{ug1, h1}{ug1g2, h2}

)

=
(
ug1g2, v{ug1g2, ϕ(g

−1
2 )(h1)h2}

)
.

�

4. The functor F = (A,H, t)

All fiber product preserving bundle functors on FMm are characterized in [9].
We write f for the base map of an FMm-morphism f . The order of a bundle
functor F on FMm is said to be (q, s, r), s ≥ q ≤ r, if for every two morphisms
f , g from p : Y →M into Y ,

jqyf = j
q
yg, j

s
y(f |Yx) = j

s
y(g|Yx), j

r
xf = j

r
xg, x = p(y), y ∈ Y,

implies Ff |FyY = Fg|FzY . We say that r is the base order of F .
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According to [9], every fiber product preserving bundle functor F on FMm

of base order r is identified with a triple (A,H, t) such that A is a Weil algebra,
H : Gr

m → Aut A is a group homomorphism and t : Dr
m → A is an equivariant

algebra homomorphism under the identificationGr
m ≈ Aut Dr

m, (g,X) 7→ X◦g−1,
g ∈ Gr

m, X ∈ Dr
m. For example, in the case F = J

r we have A = Dr
m, H = idGr

m

,
t = idDr

m

.

The functor F = (A,H, t) can be reconstructed from these data as follows. In
the product case of M ×N →M ,

(24) F (M ×N) = P rM [TAN,HN ]

is the fiber bundle associated to P rM with standard fiber TAN and the action
HN of G

r
m on T

AN determined by the natural transformations H(g)N : T
AN →

TAN , g ∈ Gr
m. In the general case of p : Y →M , FY is the subset of P rM [TAY ]

formed by the equivalence classes {u, Z} satisfying

(25) tM (u) = T
Ap(Z) ∈ TAM , u ∈ P rM, Z ∈ TAY,

where P rM ⊂ T r
mM and tM : T

r
mM → TAM .

For an FMm-morphism f : Y → Y over f :M →M , we have

Ff = {P rf, TAf},

where P rf : P rM → P rM and TAf : TAY → TAY form a morphism of associ-
ated bundles. In particular, if M = Rm, then P rRm = Rm ×Gr

m, so that

(26) F (Rm ×N) ≈ Rm × TAN.

Moreover, if Y = Rm ×N and f = idRm ×ϕ, ϕ : N → N , then

(27) Ff = idRm ×TAϕ : Rm × TAN → R
m × TAN.

5. F -prolongation of some kinds of bundles

If K →M is a group bundle with composition ν : K ×M K → K, then

Fν : FK ×M FK → FK

is also a group bundle. This can be deduced by discussing the diagrams in
question. But we can also use Section 4. We have locally K = Rm × H and
FK = Rm × TAH , where TAH is a group. However, if K =M ×H is a product
group bundle, then (24) yields

(28) F (M ×H) = P rM [TAH ],

which is not the product group bundle in general.
Consider a weak principal bundle ̺ : Q×MK → Q with structure group bundle

K →M .
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Proposition 5. F̺ : FQ×M FK → FQ is a weak principal bundle with struc-
ture group bundle FK →M .

Proof: This can be deduced by discussing the diagrams in question. But even
here we can use local trivializations. Locally, Q = Rm × H and we have the
previous situation. �

Clearly, if Q is a principal bundle, then FQ need not be principal. The simplest
example is the first jet prolongation J1P of a principal bundle P .

If D →M is a vector bundle, we have already deduced that FD →M is a bun-
dle of Abelian groups. Further, the multiplication by scalars can be interpreted
as a base preserving morphism m : (M × R)×M D → D. Applying F , we obtain

(29) Fm : P rM [A,H ]× FD → FD.

But R ⊂ A in an H-invariant subspace, so that we can restrict (29) to a map
R × FD → FD, which is the multiplication by scalars of the vector bundle
FD →M .

We recall that a Lie algebra bundle p : D → M is a bundle of Lie algebras
locally trivial in that sense that there exists a Lie algebra C and a neighbourhood
U of every point x ∈ M such that p−1(U) ≈ U × C. Clearly, if D → M is a Lie
algebra bundle with the bracket b : D ×M D → D, then FD → M is also a Lie
algebra bundle with the bracket Fb.

Every group bundle K →M induces fiberwise the Lie algebra bundle Lie (K).
We have

(30) F
(
Lie (K)

)
= Lie (FK).

Indeed, locally K ≈ Rm ×G and F
(
Lie (K)

)
= Rm × TAg = Lie (FK).

6. The Lie algebroid version of P ×M Q

We start with a general result. Consider a Lie algebroid (E, q)→ M with the
anchor map q : E → TM and the bracket [[ , ]] : C∞E×C∞E → C∞E, [11]. The
action ϕ of E on a vector bundleD →M is an R-bilinear map ϕ : C∞E×C∞D →
C∞D satisfying, for every ̺ ∈ C∞E, σ ∈ C∞D and f :M → R,

(i) ϕ(f̺, σ) = fϕ(̺, σ),
(ii) ϕ(̺, fσ) = fϕ(̺, σ) + (q̺)(f)σ,
(iii) ϕ

(
[[̺1, ̺2]], σ

)
= ϕ

(
̺1, ϕ(̺2, σ)

)
− ϕ

(
̺2, ϕ(̺1, σ)

)
.

Assume D is a Lie algebra bundle, whose bracket will be denoted by [ , ] :
C∞D × C∞D → C∞D.
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Definition 3. We say that ϕ is an action by derivations, if the following condition
holds

(iv) ϕ
(
̺, [σ1, σ2]

)
=

[
ϕ(̺, σ1), σ2

]
+

[
σ1, ϕ(̺, σ2)

]
.

On E ×M D we define the anchor map q(x, y) = q(x) and the bracket { , } :
C∞(E ×M D)× C∞(E ×M D)→ C∞(E ×M D) by

(31) {(̺1, σ1), (̺2, σ2)} =
(
[[̺1, ̺2]], ϕ(̺1, σ2)− ϕ(̺2, σ1) + [σ1, σ2]

)
.

Proposition 6. (E ×M D, q)→M with the bracket { , } is a Lie algebroid.

Proof: First we deduce the Jacobi identity. We have
{
{(̺1, σ1), (̺2, σ2)}, (̺3, σ3)

}
=

(
[[ [[̺1, ̺2]], ̺3]], ϕ

(
[[̺1, ̺2]], σ3

)

−ϕ
(
̺3, ϕ(̺1, σ2)

)
− ϕ(̺2, σ1) + [σ1, σ2]

)
+

[
ϕ(̺1, σ2)− ϕ(̺2, σ1)

+[σ1, σ2], σ3
])
.

The sum of the cyclic permutations in 1, 2, 3 should vanish. The terms corre-
sponding to [[ [[̺1, ̺2]], ̺3]] and [ [σ1, σ2], σ3] vanish by the Jacobi identities for E
and D. The rest is

ϕ
(
̺1, ϕ(̺2, ̺3)

)
− ϕ

(
̺2, ϕ(̺1, σ3)

)
− ϕ

(
̺3, ϕ(̺1, σ2)

)
+ ϕ

(
̺3, ϕ(̺2, σ1)

)

−
[
ϕ(̺3, σ1), σ2

]
−

[
σ1, ϕ(̺3, σ2)

]
+

[
ϕ(̺1, σ2), σ3

]
−

[
ϕ(̺2, σ1), σ3

]

and the sum of the cyclic permutations vanishes algebraically. Further we have
{
(̺1, σ1), (f̺2, fσ2)

}
=

(
f [[̺1, ̺2]] + (q̺1)(f)̺2, fϕ(̺1, σ2)

+ (q̺1)(f)σ2 − fϕ(̺2, σ1) + [σ1, fσ2]
)

= f
{
(̺1, σ1), (̺2, σ2)

}
+ (q̺1)(f)(̺2, σ2).

�

The Lie algebroid LP of a principal bundle P is defined by the right-invariant
vector fields on P . Every vector bundle associated to P is endowed with a canon-
ical action of LP , [8].
Consider the group homomorphism ϕ : G → Aut H from Section 3 and the

tangent action Φ : G → Aut h. Hence D = P [h,Φ] is a Lie algebra bundle.
Using the local description of the canonical action, [8], and the standard theory
of semidirect products of Lie groups and Lie algebras, [1], we obtain

Lemma 1. The canonical action of LP on D is by derivations. �

Consider the principal bundle P and a weak principal bundle Q with associated
group bundle P [H ]. Then P ×M Q is a principal bundle and LP ×M D is a Lie
algebroid. Using local trivializations, we deduce directly

Proposition 7. The Lie algebroid of P ×M Q is LP ×M D. �
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7. The principal bundle WFP and the associated bundles

We know that FP is a weak principal bundle with structure group bundle
F (M ×G) = P rM [TAG,HG]. By Sections 2 and 3,

WFP := P rM ×M FP

is a principal bundle with structure group WA
HG = G

r
m ⋊ TAG. This bundle was

constructed in a direct way in [3]. In particular, Proposition 6 determines the Lie

algebroid of WFP , which was described in another way in [8].

The most important property of WFP is that for every associated bundle
Y = P [S, l], FY is an associated bundle

FY =WFP [TAS,WA
H l],

where WA
H l is a special case of (18), i.e.

(32) WA
H l

(
(g, U), Z

)
= H(g)S

(
TAl(U,Z)

)
,

g ∈ Gr
m, U ∈ TAG, Z ∈ TAS. According to Section 2, its infinitesimal action

Inf (WA
H l) : (g

r
m × g ⊗A)× TAS → TTAS

is of the form

(33) Inf (WA
H l)

(
(X,U), Z

)
= T Aλ(U,Z) + h(X)S(Z),

X ∈ gr
m, U ∈ g ⊗A, Z ∈ TAS.

If S is a vector space and l is a linear action, then (17) and (33) imply

Inf (WA
H l)(X, v ⊗ a, z ⊗ b) = λ̃(v, z)⊗ ab+ z ⊗ h(X)(b).

This formula plays an interesting role in the theory of F -prolongations of Lie
algebroids, [8].
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[3] Doupovec M., Kolář I., Iteration of fiber product preserving bundle functors, Monatsh.
Math. 134 (2001), 39–50.

[4] Ehresmann C., Les prolongements d’un espace fibré différentiable, CRAS Paris 240 (1955),
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[10] Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer,
Berlin, 1993.

[11] Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge
University Press, Cambridge, 1987.

[12] Weil A., Theorie des points proches sur les variétes différentielles, Colloques Internat.
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