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Majorization of C0-semigroups in ordered Bana
h spa
esGerd Herzog, Peer Christian KunstmannAbstra
t. We give 
riteria for domination of strongly 
ontinuous semigroups in orderedBana
h spa
es that are not ne
essarily latti
es, and thus obtain generalizations of 
ertainresults known in the latti
e 
ase. We give appli
ations to semigroups generated bydi�erential operators in fun
tion spa
es whi
h are not latti
es.Keywords: domination of semigroups, ordered Bana
h spa
es, quasimonotoni
ityClassi�
ation: 47D06, 34C121. Introdu
tionLet E be a real Bana
h spa
e, ordered by a 
one K. A 
one K is a 
losed
onvex subset of E with λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}. As usual

x ≤ y : ⇐⇒ y − x ∈ K. Let A : D(A) → E and B : D(B) → E be generators of
C0-semigroups T (t) and S(t) (t ≥ 0), respe
tively.In this paper we will give 
onditions on A and B su
h that S is a majorantof T , that is

−S(t)y ≤ T (t)x ≤ S(t)y (t ≥ 0,−y ≤ x ≤ y).If E is a Bana
h latti
e then this is equivalent to the following domination propertyof the semigroups
|T (t)f | ≤ S(t)|f | (t ≥ 0, f ∈ E).Domination of semigroups in Bana
h latti
es has been studied and 
hara
terizedin [5, C-II 4.℄. For operators A and B given by forms in a Hilbert spa
e we referto 
hara
terizations in terms of forms in [6℄.The main point in this paper is that we do not assume E to be a Bana
h latti
e.The results thus apply in more general situations, on the other hand they 
annotinvolve any of the additional stru
tural features a Bana
h latti
e provides. Forlatti
es, the idea to obtain domination via a 
ertain 
one invarian
e property inthe produ
t spa
e (
f. Theorem 1) has been used in [6℄.2. Quasimonotone in
reasing operatorsFor a 
one K ⊆ E the subset
K∗ = {ϕ ∈ E∗ : ϕ(x) ≥ 0 (x ≥ 0)},
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e of all 
ontinuous linear fun
tionals E∗, is 
alled the dual wedge.Let D be a subspa
e of E. A linear operator C : D → E is quasimonotonein
reasing , in the sense of Volkmann [8℄, if
x ∈ K ∩D, ϕ ∈ K∗, ϕ(x) = 0 =⇒ ϕ(Cx) ≥ 0.Let A : D(A) → E, and B : D(B) → E be linear mappings (D(A), D(B) sub-spa
es of E), and let D := D(A) ∩ D(B). We say that B is a majorant of A,if 1. B −A : D → E is in
reasing;2. B +A : D → E is quasimonotone in
reasing.Consider E × E ordered by the 
one

K0 = {(x, y) ∈ E × E : −y ≤ x ≤ y},and let H : D(A)×D(B) → E × E be de�ned as
H(x, y) = (Ax,By).Then we haveTheorem 1. Let B be a majorant of A. Then H : D ×D → E × E is quasi-monotone in
reasing (with respe
t to K0).Proof: Let ψ ∈ K∗0 and set

ϕ1(u) = ψ(−u, u)2 , ϕ2(v) = ψ(v, v)2 (u, v ∈ E).Then, obviously ϕ1, ϕ2 ∈ K∗, and
ψ(x, y) = ϕ1(y − x) + ϕ2(y + x) ((x, y) ∈ E × E).Hen
e, from

x, y ∈ D, −y ≤ x ≤ y, ψ(x, y) = 0,we get
ϕ1(y − x) = 0, ϕ2(y + x) = 0.Sin
e B is a majorant of A we have(B −A)(y − x) ≥ 0, (B −A)(y + x) ≥ 0,

ϕ1((B +A)(y − x)) ≥ 0, ϕ2((B +A)(y + x)) ≥ 0.In parti
ular
ϕ1((B −A)(y + x) + (B +A)(y − x)) = 2ϕ1(By −Ax) ≥ 0,
ϕ2((B −A)(y − x) + (B +A)(y + x)) = 2ϕ2(By +Ax) ≥ 0.Therefore
ψ(H(x, y)) = ψ(Ax,By) = ϕ1(By −Ax) + ϕ2(By +Ax) ≥ 0,thus H : D ×D → E × E is quasimonotone in
reasing. �
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es 493. Comparison resultsLet A, B and D be as in Se
tion 2. In the sequel we assume that K hasnonempty interior IntK, and that D∩ (IntK) 6= ∅. We �x p ∈ D∩ (IntK). Notethat (0, p) ∈ (D ×D) ∩ (IntK0).Theorem 2. Let B be a majorant of A, and let x, y ∈ C1([0, T ), E) satisfy1. x(t), y(t) ∈ D (t ∈ [0, T ));2. x′(t) = A(x(t)), y′(t) = B(y(t)) (t ∈ [0, T ));3. −y(0) ≤ x(0) ≤ y(0).Then −y(t) ≤ x(t) ≤ y(t) (t ∈ [0, T )).Proof: A

ording to Theorem 1 H : D ×D → E is quasimonotone in
reasing.We have (D×D)∩ (IntK0) 6= ∅ and (x(0), y(0)) ∈ (D×D)∩K0. Appli
ation ofTheorem 1 in [3℄ proves (x(t), y(t)) ∈ K0 (t ∈ [0, T )). �Now, assume in addition that K is normal , i.e., that there exists γ > 0 su
hthat 0 ≤ x ≤ y ⇒ ‖x‖ ≤ γ‖y‖, and that A and B are generators of C0-semigroups
T (t) and S(t) (t ≥ 0), respe
tively.Let E be equivalently normed by the Minkowski fun
tional ‖ · ‖ of the orderinterval [−p, p℄. In parti
ular, K0 is normal sin
e K is normal, and E × E 
anbe equivalently normed by the Minkowski fun
tional ||| · ||| of the order interval[−(0, p), (0, p)℄.Under these assumptions we prove the following 
omparison results:Theorem 3. Let B be a majorant of A, and let D be invariant under bothsemigroups (T (·)) and (S(·)). For any x, y ∈ D with −y ≤ x ≤ y we have

−S(t)y ≤ T (t)x ≤ S(t)y (t ≥ 0).Theorem 4. Let B be a majorant of A, let D(A) ⊆ D(B), and let S(t)p ∈ D(A)(t ≥ 0). Then
−‖x‖S(t)p ≤ T (t)x ≤ ‖x‖S(t)p (t ≥ 0)for all x ∈ E.Proof of Theorem 3: Let n ∈ N. Sin
e x, y ∈ D we 
an 
hoose xn, zn ∈ Dsu
h that

‖xn − x‖ ≤
13n, ‖zn − y‖ ≤

13n,and we set yn = zn + (2/(3n))p ∈ D. A

ording to the properties of the 
hosennorm we have
−yn = −zn −

23np ≤ −y −
13np ≤ x−

13np ≤ xn

≤ x+ 13np ≤ y + 13np ≤ zn + 23np = yn,



50 G.Herzog, P.C.Kunstmannin parti
ular (xn, yn) ∈ (D ×D) ∩K0, and
‖yn − y‖ ≤ ‖zn − y‖+ 23n ≤

1
n
.We set wn(t) = (T (t)xn, S(t)yn) (t ≥ 0). Then wn(t) ∈ D ×D for t ≥ 0 (bythe invarian
e assumption) and wn ∈ C1([0,∞), E×E). A

ording to Theorem 2

wn(t) ∈ K0 (t ≥ 0). For n→ ∞ we obtain(T (t)x, S(t)y) ∈ K0 (t ≥ 0)by 
losedness of K0. �Proof of Theorem 4: Fix x ∈ E. Let n ∈ N, and 
hoose xn ∈ D(A) su
h that
‖x− xn‖ ≤ 1/n. Set wn(t) = (T (t)xn, ‖xn‖S(t)p) (t ≥ 0). Then,

wn(t) ∈ D(A)×D(A) = D ×D,

wn ∈ C1([0,∞), E × E), w′
n(t) = H(wn(t)) (t ≥ 0), and wn(0) ∈ K0 sin
e
−‖xn‖p ≤ xn ≤ ‖xn‖p,a

ording to the properties of the 
hosen norm. Again Theorem 2 gives wn(t) ∈

K0 (t ≥ 0), and for n→ ∞ we obtain(T (t)x, ‖x‖S(t)p) ∈ K0 (t ≥ 0).
�4. One-sided estimatesLet m+ : E × E → R denote the following dire
tional derivative of ‖ · ‖,
ompare [4℄:

m+[x, y℄ = lim
h→0+ ‖x+ hy‖ − ‖x‖

h
.Theorem 5. Under the assumptions of Theorem 3 and D = E

m+[x,Ax℄ ≤ m+[p,Bp℄‖x‖ (x ∈ D(A)).Proof: For the norm ||| · ||| on E × E it is easy to 
he
k that
|||(x, y)||| = max{‖y − x‖, ‖y + x‖}.
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es 51Let M+ : E2 × E2 → R be the dire
tional derivative with respe
t to this norm.A

ording to Theorem 3, H is the generator of a positive C0-semigroup. Theo-rem 1 in [1℄ proves
M+[(x, y), (Ax,By)℄ ≤M+[(0, p), (0, Bp)℄ |||(x, y)||| ((x, y) ∈ D(A) ×D(B)).But

M+[(0, p), (0, Bp)℄ = lim
h→0+ |||(0, p) + h(0, Bp)||| − |||(0, p)|||

h= lim
h→0+ ‖p+ hBp‖ − ‖p‖

h
= m+[p,Bp℄,and

M+[(x, 0), (Ax, 0)℄ = lim
h→0+ |||(x, 0) + h(Ax, 0)||| − |||(x, 0)|||

h= lim
h→0+ ‖x+ hAx‖ − ‖x‖

h
= m+[x,Ax℄ (x ∈ D(A)).Hen
e

m+[x,Ax℄ ≤ m+[p,Bp℄|||(x, 0)||| = m+[p,Bp℄‖x‖ (x ∈ D(A)).
�As an immediate 
onsequen
e we have:Corollary 1. Under the assumptions of Theorem 5

‖T (t)x‖ ≤ exp(tm+[p,Bp℄)‖x‖ (t ∈ [0,∞), x ∈ E).5. ExamplesFirst we 
onsider S
hr�odinger type operators in a spa
e of ve
tor-valued fun
-tions.Example 1. Let R
3 be ordered by the i
e 
ream 
one

C := {(x, y, z) : √

x2 + y2 ≤ z}and let E := BUC(R,R3) be ordered by the 
one
K := {f ∈ E : f(s) ∈ C (s ∈ R)}.
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onstant fun
tion p : s 7→ (0, 0, 1) belongs to Int(K), and K is normal. Sin
e(R3, C) is not a latti
e, also (E,K) is not a latti
e.The se
ond derivative L := d2/ds2 with domain D(L) = BUC2(R,R3) isquasimonotone in
reasing in E: Clearly, d/ds with domain BUC1(R,R3) is thegenerator of the translation group on E, whi
h is positive. The Gaussian semi-group, whose generator is L, is obtained by 
onvolution with a positive kernel,hen
e also positive. Consequently, L is quasimonotone in
reasing.Now let V ∈ BUC(R,R3×3) be positive in the sense that V (s)C ⊆ C for all
s ∈ R. We denote the indu
ed operator E → E, f 7→ V f also by V . Observe that
V : E → E is bounded and in
reasing.Now take another fun
tion U ∈ BUC(R,R3×3). Then the operator U : E →
E, f 7→ Uf is bounded. Assume that V is a majorant for U , i.e., V −U : E → E isin
reasing and V +U : E → E is quasimonotone in
reasing. Let A := L+U and
B := L+V . Sin
e U and V are bounded on E, we have D(A) = D(B) = D(L) =
BUC2(R,R3), and A and B are generators of C0-semigroups on E. Moreover, Bis a majorant for A sin
e B −A = V − U is in
reasing and B +A = 2L+ V +Uis quasimonotone in
reasing. Sin
e D = D(A) = D(B) is invariant under bothsemigroups, we obtain by Theorem 3, for any f, g ∈ E with −g ≤ f ≤ g, that(∗) −et(L+V )g ≤ et(L+U)f ≤ et(L+V )g (t ≥ 0).We may also apply Theorems 4 and 5 and Corollary 1 to the fun
tion p : s 7→(0, 0, 1).We dis
uss a few spe
ial 
ases.(a) U = 0: Then V is a majorant of U and we obtain

−et(L+V )g ≤ etLf ≤ et(L+V )g (t ≥ 0)for any f, g ∈ E with −g ≤ f ≤ g.(b) V = 0: Then V is a majorant of U if and only if −U is in
reasing and U isquasimonotone in
reasing. This holds if and only if, for ea
h s ∈ R, −U(s)C ⊆ Cand U(s) is quasimonotone in
reasing with respe
t to C. The latter holds if andonly if U is of the form U(s) = −u(s)I where I ∈ R
3×3 is the identity and

u ∈ BUC(R,R) satis�es u(s) ≥ 0 for s ∈ R. In this situation we obtain
−etLg ≤ et(L−u(·)I)f ≤ etLg (t ≥ 0)for any f, g ∈ E with −g ≤ f ≤ g.(
) −V ≤ U ≤ V : This 
ondition means that both V −U and V +U are in
reasingand thus implies that V is a majorant of U . Hen
e (∗) holds for all f, g ∈ E with

−g ≤ f ≤ g.
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h spa
es 53Remark. Example 1 
an also be done for the Lapla
ian � on R
n in pla
e of Lon R, taking as spa
e En := BUC(Rn,R3) and as 
one

Kn := {f ∈ En : f(s) ∈ C (s ∈ R
n)}.The results should be 
ompared to the 
orresponding ones for S
hr�odinger opera-tors on BUC(Rn,R). If v ∈ BUC(Rn,R) is positive, i.e. v(s) ≥ 0 for all s ∈ R

n,then we have, for all t ≥ 0,
|et�f | ≤ et(�+v)|f |, |et(�−v)f | ≤ et�|f |.While the �rst estimate holds on En for in
reasing V ∈ BUC(Rn,R3×3) withoutrestri
tion (
f. (a)), we need a restri
tion (
f. (b)) for the se
ond estimate.In 
ertain spa
es, in parti
ular in Hilbert spa
es, the Trotter produ
t formulamay be applied to obtain domination results for semigroups. In general, however,the Trotter produ
t formula is not appli
able (
f. [2℄).In the next example we give an appli
ation to a 
oupled system.Example 2. Let E and L be as in Example 1 and let D := d/ds with domain

BUC1(R,R3). Then A0 := (

L 00 D

) with produ
t domain is quasimonotone in-
reasing in E×E with respe
t to K×K. For j = 1, 2 let Uj , Vj ∈ BUC(R,R3×3),su
h that −Vj(s) ≤ Uj(s) ≤ Vj(s) for all s ∈ R. Then B := (

L V1
V2 D

) is a majo-rant of A := (

L U1
U2 D

) and D(A) = D(B) = D(A0). Theorem 3 applies and yieldsdomination of etA by etB .Remark. In the Bana
h latti
e situation Example 2 
orresponds to the fa
t thatthe semigroup etA is dominated by the semigroup whose generator is (

L |U1|
|U2| D

)(
f. [7℄ where this operator is related to the modulus semigroup of etA).Referen
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