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Complete hypersurfaces with

constant scalar curvature in a sphere

Ximin Liu, Hongxia Li

Abstract. In this paper, by using Cheng-Yau’s self-adjoint operator �, we study the
complete hypersurfaces in a sphere with constant scalar curvature.
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1. Introduction

Let Sn+1 be an (n + 1)-dimensional unit sphere with constant sectional cur-
vature 1, let Mn be an n-dimensional hypersurface in Sn+1, and e1, . . . , en a
local orthonormal frame field on Mn, ω1, . . . , ωn its dual coframe field. Then the
second fundamental form of Mn is

(1) h =
∑

i,j

hijωi ⊗ ωj .

Further, near any given point p ∈ Mn, we can choose a local frame field e1, . . . , en

so that at p,
∑

i,j hijωi ⊗ ωj =
∑

i kiωi ⊗ ωj . Then the Gauss equation says

Rijij = 1 + kikj , i 6= j.(2)

n(n − 1)(R − 1) = n2H2 − |h|2,(3)

where R is the normalized scalar curvature, H = 1n
∑

i ki the mean curvature and

|h|2 =
∑

i k2i the norm square of the second fundamental form of M
n.

As it is well known, there are many rigidity results for minimal hypersurfaces
or hypersurfaces with constant mean curvature H in Sn+1 by use of J. Simons’
method, for example, see [1], [3], [4], [6], [9], etc.
On the other hand, Cheng-Yau [2] introduced a new self-adjoint differential

operator � to study the hypersurfaces with constant scalar curvature. Later,
Li [5] obtained interesting rigidity results for hypersurfaces with constant scalar
curvature in space-forms using the Cheng-Yau’s self-adjoint operator �.
In the present paper, we use Cheng-Yau’s self-adjoint operator � to study the

complete hypersurfaces in a sphere with constant scalar curvature, and prove the
following theorem:
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Theorem. Let Mn be an n-dimensional (n ≥ 3) complete hypersurface with
constant normalized scalar curvature R in Sn+1. If

(1) R̄ = R − 1 ≥ 0,
(2) the mean curvature H of Mn satisfies

R̄ ≤ sup H2 ≤ 1

n2

[

(n − 1)2nR̄+ 2

n − 2 − 2(n − 1) + n − 2
nR̄+ 2

]

,

then either

sup H2 = R̄

and Mn is a totally umbilical hypersurface; or

sup H2 =
1

n2

[

(n − 1)2nR̄+ 2

n − 2 − 2(n − 1) + n − 2
nR̄+ 2

]

,

and Mn = S1(
√
1− r2)× Sn−1(r), r =

√

n−2
n(R̄+1)

.

2. Preliminaries

Let Mn be an n-dimensional complete hypersurface in Sn+1. We choose a
local orthonormal frame e1, . . . , en+1 in Sn+1 such that at each point of Mn,
e1, . . . , en span the tangent space of M

n and form an orthonormal frame there.
Let ω1, . . . , ωn+1 be its dual coframe. In this paper, we use the following conven-
tion on the range of indices:

1 ≤ A, B, C, . . . ≤ n+ 1; 1 ≤ i, j, k, . . . ≤ n.

Then the structure equations of Sn+1 are given by

dωA =
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0,(4)

dωAB =
∑

C

ωAC ∧ ωCB − 1
2

∑

C,D

KABCDωC ∧ ωD,(5)

KABCD = (δACδBD − δADδBC).(6)

Restricting these forms to Mn, we have

(7) ωn+1 = 0.

From Cartan’s lemma we can write

(8) ωn+1i =
∑

j

hijωj , hij = hji.
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From these formulas, we obtain the structure equations of Mn:

dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,(9)

dωij =
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijklωk ∧ ωl,(10)

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk),(11)

where Rijkl are the components of the curvature tensor of M
n and

(12) h =
∑

i,j

hijωi ⊗ ωj

is the second fundamental form of Mn. We also have

Rij = (n − 1)δij + nHhij −
∑

k

hikhkj ,(13)

n(n − 1)(R − 1) = n2H2 − |h|2,(14)

where R is the normalized scalar curvature, and H the mean curvature.
Define the first and the second covariant derivatives of hij , say hijk and hijkl

by

∑

k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj,(15)

∑

l

hijklωl = dhijk +
∑

m

hmjkωmi +
∑

m

himkωmj +
∑

m

hijmωmk.(16)

Then we have the Codazzi equation

(17) hijk = hikj,

and the Ricci’s identity

(18) hijkl − hijlk =
∑

m

hmjRmikl +
∑

m

himRmjkl.

For a C2-function f defined on Mn, we define its gradient and Hessian (fij)
by the following formulas

(19) df =
∑

i

fiωi,
∑

j

fijωj = dfi +
∑

j

fjωji.
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The Laplacian of f is defined by ∆f =
∑

i fii.
Let φ =

∑

ij φijωi ⊗ ωj be a symmetric tensor defined on Mn, where

(20) φij = nHδij − hij .

Following Cheng-Yau [2], we introduce the operator � associated to φ acting
on any C2-function f by

(21) �f =
∑

i,j

φijfij =
∑

i,j

(nHδij − hij)fij .

Since φij is divergence-free, it follows [2] that the operator� is self-adjoint relative

to the L2 inner product of Mn, i.e.

(22)

∫

Mn

f�g =

∫

Mn

g�f.

We can choose a local frame field e1, . . . en at any point p ∈ Mn, such that
hij = kiδij at p, and by use of (21) and (14), we have

(23)

�(nH) = nH∆(nH)−
∑

i

ki(nH)ii

=
1

2
∆(nH)2 −

∑

i

(nH)2i −
∑

i

ki(nH)ii

=
1

2
n(n − 1)∆R+

1

2
∆|h|2 − n2|∇H |2 −

∑

i

ki(nH)ii.

On the other hand, through a standard calculation by use of (17) and (18), we
get

(24)
1

2
∆|h|2 =

∑

i,j,k

h2ijk +
∑

i

ki(nH)ii +
1

2

∑

i,j

Rijij(ki − kj)
2.

Putting (24) into (23), we have

(25) �(nH) =
1

2
n(n − 1)∆R+ |∇h|2 − n2|∇H |2 + 1

2

∑

i,j

Rijij(ki − kj)
2.

From (11), we have Rijij = 1 + kikj , i 6= j, and by putting this into (25), we
obtain

(26) �(nH) =
1

2
n(n−1)∆R+|∇h|2−n2|∇H |2+n|h|2−n2H2−|h|4+nH

∑

i

k3i .
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Let µi = ki − H and |Z|2 =∑

i µ2i . We have

∑

i

µi = 0, |Z|2 = |h|2 − nH2,(27)

∑

i

k3i =
∑

i

µ3i + 3H |Z|2 + nH3.(28)

From (26)–(28), we get

(29) �(nH) =
1

2
n(n − 1)∆R+ |∇h|2 − n2|∇H |2

+ |Z|2(n+ nH2 − |Z|2) + nH
∑

i

µ3i .

We need the following algebraic lemma due to M. Okumura [7] (see also [1]).

Lemma 2.1. Let µi, i = 1, . . . , n, be real numbers such that
∑

i µi = 0 and
∑

i µ2i = β2, where β = constant ≥ 0. Then

(30) − n − 2
√

n(n − 1)
β3 ≤

∑

i

µ3i ≤ n − 2
√

n(n − 1)
β3,

and the equality holds in (30) if and only if at least (n − 1) of the µi are equal.

By use of Lemma 2.1, we have

(31)

�(nH) ≥ 1
2
n(n − 1)∆R+ |∇h|2 − n2|∇H |2

+ (|h|2 − nH2)(n+ 2nH2 − |h|2 − n(n − 2)
√

n(n − 1)
H

√

|h|2 − nH2).

3. Proof of Theorem

The following lemma is essentially due to Cheng-Yau [2] (see also [5]).

Lemma 3.1. LetM be an n-dimensional hypersurface in Sn+1. Suppose that the

normalized scalar curvature R = constant and R ≥ 1. Then |∇h|2 ≥ n2|∇H |2.

From the assumption of Theorem that R is constant and R̄ = R − 1 ≥ 0 and
Lemma 3.1 we have

(32) �(nH) ≥ (|h|2 − nH2)(n+ 2nH2 − |h|2 − n(n − 2)
√

n(n − 1)
H

√

|h|2 − nH2).
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By Gauss equation (14) we know that

(33) |Z|2 = |h|2 − nH2 =
n − 1

n
(|h|2 − nR̄).

From (32) and (33) we have

(34) �(nH) ≥ n − 1
n
(|h|2 − nR̄)φH (|h|),

where

φH(|h|) = n+ 2nH2 − |h|2 − n(n − 2)
√

n(n − 1)
H

√

|h|2 − nH2.

By (33) we can write φH(|h|) as

(35) φR̄(|h|) = n+2(n−1)R̄−n− 2
n

|h|2−n− 2
n

√

(n(n − 1)R̄+ |h|2)(|h|2 − nR̄).

Therefore (34) becomes

(36) �(nH) ≥ n − 1
n
(|h|2 − nR̄)φR̄(|h|).

It is a direct check that our assumption

sup H2 ≤ 1

n2

[

(n − 1)2nR̄+ 2

n − 2 − 2(n − 1) + n − 2
nR̄+ 2

]

is equivalent to

(37) sup |h|2 ≤ n

(n − 2)(nR̄ − 2)
[

n(n − 1)R̄2 + 4(n − 1)R̄+ n
]

,

i.e.

(38) (n+ 2(n − 1)R̄ − n − 2
n
sup |h|2)2

≥ (n − 2)2
n2

(n(n − 1)R̄+ sup |h|2)(sup |h|2 − nR̄).

But it is clear from (37) that (38) is equivalent to

(39) n+ 2(n − 1)R̄ − n − 2
n
sup |h|2

≥ n − 2
n

√

(n(n − 1)R̄+ sup |h|2)(sup |h|2 − nR̄).
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So under the hyperthesis that

sup H2 ≤ 1

n2

[

(n − 1)2nR̄+ 2

n − 2 − 2(n − 1) + n − 2
nR̄+ 2

]

,

we have

(40) φR̄(
√

sup |h|2) ≥ 0.

On the other hand,

(41)

�(nH) =
∑

i,j

(nHδij − nhij)(nH)ij =
∑

i

(nH − nhii)(nH)ii

= n
∑

i

H(nH)ii − n
∑

i

ki(nH)ii ≤ (|H |max − C)∆(nH),

where |H |max is the maximum of the mean curvature H and C = min ki is the
minimum of the principal curvatures of Mn.
Now we need the following maximum principle at infinity for complete mani-

folds due to Omori [8] and Yau [10]:

Lemma 3.2. LetMn be an n-dimensional complete Riemannian manifold whose
sectional curvature is bounded from below and f : Mn → R a smooth function
bounded from below. Then for each ε > 0 there exists a point pε ∈ Mn such that

(i) |∇f |(pε) < ε,
(ii) ∆f(pε) > −ε,
(iii) inf f ≤ f(pε) ≤ inf f + ε.

Since the scalar curvature of M is a constant, from the hypothesis that R̄ ≤
sup H2 ≤ 1

n2
[(n−1)2 nR̄+2

n−2 −2(n−1)+ n−2
nR̄+2

], and Gauss equation (14), we know

the squared norm |h|2 of the second fundamental form is bounded from above,
from (11) we know that the sectional curvature is bounded from below. So we
may apply Lemma 3.2 to the smooth function f on Mn defined by

f =
1

√

1 + (nH)2
.

It is immediate to check that

(42) |∇f |2 = 1
4

|∇(nH)2|2
(1 + (nH)2)3

and that

(43) ∆f = −1
2

∆(nH)2

(1 + (nH)2)3/2
+
3

4

|∇(nH)2|2
(1 + (nH)2)5/2

.
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By Lemma 3.2 we can find a sequence of points pk, k ∈ N in Mn, such that

(44) lim
k→∞

f(pk) = inf f, ∆f(pk) > −1
k
, |∇f |2(pk) <

1

k2
.

Using (44) in equations (42) and (43) and the fact that

(45) lim
k→∞

(nH)(pk) = sup
p∈Mn

(nH)(p),

we get

(46) −1
k
≤ −1
2

∆(nH)2

(1 + (nH)2)3/2
(pk) +

3

k2
(1 + (nH)2(pk))

1/2.

Hence we obtain

(47)
∆(nH)2

(1 + (nH)2)2
(pk) <

2

k
(

1
√

1 + (nH)2(pk)
+
3

k
).

On the other hand, by (36) and (41), we have

(48)
n − 1

n
(|h|2 − nR̄)φR̄(|h|) ≤ �(nH) ≤ n(|H |max − C)∆(nH).

At points pk of the sequence given in (44), this becomes

(49)

n − 1
n
(|h|2(pk)− nR̄)φR̄(|h|(pk)) ≤ �(nH(pk))

≤ n(|H |max − C)∆(nH)(pk).

Letting k → ∞ and using (47) we have that the right hand side of (49) goes to zero,
so we have either n−1

n (sup |h|2−nR̄) = 0, i.e. sup H2 = R̄, or φR̄(
√

sup |h|2) = 0.
If sup |h|2 = nR̄, by (33) |Z|2 = n−1

n (|h|2 − nR̄) we have

sup |Z|2 = n−1
n (sup |h|2 − nR̄) = 0, hence |Z|2 = 0 and Mn is totally umbilical.

If φR̄(
√

sup |h|2) = 0, it is easy to prove that
sup H2 = 1

n2
[(n − 1)2 nR̄+2

n−2 − 2(n − 1) + n−2
nR̄+2

], hence equalities hold in (30)

and Lemma 3.1, and it follows that ki = constant for all i and (n − 1) of the ki’s
are equal. After renumberation if necessary, we can assume that

k1 = k2 = · · · = kn−1, k1 6= kn.

Therefore,Mn is a isoparametric hypersurface in Sn+1 with two distinct principal
curvatures, hence Mn = S1(

√
1− r2) × Sn−1(r), k1 = · · · = kn−1 =

√
1− r2/r,

kn = −r/
√
1− r2. From (14), it is easy to see that n(n − 1)R̄ = (n − 1)(n − 2−

nr2)/r2, thus r =
√

n−2
n(R̄+1)

. This completes the proof of Theorem.
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