
Commentationes Mathematicae Universitatis Carolinae

Raushan Z. Buzyakova
Observations on spaces with zeroset or regular Gδ-diagonals

Commentationes Mathematicae Universitatis Carolinae, Vol. 46 (2005), No. 3, 469--473

Persistent URL: http://dml.cz/dmlcz/119541

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119541
http://project.dml.cz


Comment.Math.Univ.Carolin. 46,3 (2005)469–473 469

Observations on spaces with zeroset

or regular Gδ-diagonals

Raushan Z. Buzyakova

Abstract. We show that if X2 has countable extent and X has a zeroset diagonal then X

is submetrizable. We also make a couple of observations regarding spaces with a regular
Gδ-diagonal.
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1. Introduction

In [MAR], H. Martin proved that a separable space with a zeroset diagonal
is submetrizable. In general, having a zeroset diagonal does not guarantee sub-
metrizability as announced in [FRW]. In [MAR], H. Martin asks for what classes
of spaces the presence of a zeroset diagonal implies submetrizability. And in this
paper we show that if X2 has countable extent and X has a zeroset diagonal then
X is submetrizable. Martin’s theorem and our main result motivate the following
questions.

Question 1.1. Let X have countable extent and a zeroset diagonal. Is X sub-
metrizable? What if X is additionally locally compact or Čech-complete?

Question 1.2 (A.V. Arhangelskii). Let X have countable Souslin number and a
zeroset diagonal. Is X submetrizable?

A property that lies between separability and countable Souslin number is ℵ1-
calibre. A space X has ℵ1-calibre if every uncountable collection U of open sets
in X contains an uncountable subcollection U ′ such that

⋂
U ′ 6= ∅.

Question 1.3. Let X have ℵ1-calibre and a zeroset diagonal. Is X submetriz-
able?

In notation and terminology we will follow [ENG]. For a space X , by ∆X

we denote the set {(x, x) : x ∈ X}. A space X has countable extent if every
uncountable subset of X has a limit point in X . A space X has a zeroset diagonal
if ∆X is a zeroset inX×X , that is, there exists a continuous function f : X×X →
[0, 1] such that ∆X = f−1(0). A space X has a regular Gδ-diagonal if there exists
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a collection {Wn}n of open sets in X × X such that ∆X =
⋂

n Wn =
⋂

n Wn.
A space X condenses into a space Y if there exists a continuous injection of X
into Y .

2. Results

Given f : X × X → [0, 1] and a ∈ X , by fa we denote the mapping defined
by fa(x) = f(x, a) (as H. Martin does in [MAR]). We use the following idea of
H. Martin [MAR]: if x ∈ A then for any y ∈ X \ {x} there exists a ∈ A such that
fa(x) 6= fa(y).
Although in our main results, we do not assume any separation axioms, we

will make use of a known folklore-type fact that any space with a Gδ-diagonal is
a T1-space.

Theorem 2.1. Let X ×X have countable extent and let X have a zeroset diag-
onal. Then X is submetrizable.

Proof: Fix a continuous f : X2 → [0, 1] such that f−1(0) = ∆X . Assume that
for each β < α, (xβ , yβ) and a family Uβ of open boxes in X2 are defined.
Definition of (xα, yα) and Uα: Let Oα =

⋃
{U × V : U × V ∈ Uβ , β < α}.

If (X2 \ ∆X ) ⊂ Oα then stop construction. Otherwise, take any (xα, yα) ∈
X2 \ (∆X ∪ Oα). Let Uα consist of all elements in the following form:

f−1
yα
((1/n, 1])× f−1

yα
([0, 1/n)),

where n ∈ ω \ {0}.
Let us show that for some α < ω1, the co-diagonal part is in Oα. Assume the

contrary. Since f−1(0) = ∆X , there exists n0 ∈ ω such that A = {(xα, yα) :
f(xα, yα) > 1/n0, α < ω1} is uncountable. Since X2 has countable extent, there
exists a limit point (a, b) for A. By continuity, there exists n1 such that f(a, b) >
1/n1, whence a 6= b. Let α ≤ ω1 be the smallest ordinal such that (a, b) is a limit
point for {(xβ , yβ) : β < α}. Clearly α is limit (follows from T1-axiom).
On one hand, (a, b) /∈ Oα =

⋃
β<α Oβ . Indeed, since each (xβ , yβ) is selected

outside ofOβ , no element ofOβ can be limit for {(xγ , yγ) : β ≤ γ < α}. Therefore,
if (a, b) were in Oβ for some β < α, then (a, b) would have been a limit point for
{(xγ , yγ) : γ < β} contradicting the choice of α.
On the other hand, there exist open Ua ∋ a and Vb ∋ b such that f(Vb × Vb) ⊂

[0, 1/n1) while f(Ua × Vb) ⊂ (1/n1, 1]. Since b is a limit point for {yβ : β < α}

there exists yβ ∈ Vb for some β < α. Then V = f−1
yβ
([0, 1/n1)) contains b

while U = f−1
yβ
((1/n1, 1]) contains a. Then U × V ∈ Uβ contains (a, b). Hence

(a, b) ∈ Oα, a contradiction. (This “on the other hand” part is based on ideas of
H. Martin mentioned above.)
Thus, X2 \ ∆X = Oα for some α < ω1. Clearly, ∆β≤αfyβ

is a continuous

injection of X to [0, 1]ω. �



Observations on spaces with zeroset or regular Gδ-diagonals 471

Karpov proved in [KAR] that if X is Čech-complete and ω1-Lindelöf then X2

is ω1-Lindelöf as well. Recall that X is ω1-Lindelöf if every ω1-sized open cover
of X contains a countable subcover. Since every ω1-Lindelöf space has countable
extent we arrive at the following.

Corollary 2.2. Let X be a Čech-complete ω1-Lindelöf space. If X has a zeroset
diagonal, then X is submetrizable.

In [ARH], A.V. Arhangelskii proved that a submetrizable Čech-complete Lin-
delöf space is metrizable. This motivates the following question.

Question 2.3. Let X be a submetrizable Čech-complete ω1-Lindelöf space. Is
X metrizable?

This is related to a question of A.V. Arhangelskii whether ω1-Lindelöf Ty-
chonoff (regular) spaces with Gδ-diagonal are submetrizable.
In Theorem 2.1, we do not really know if “zeroset diagonal” can be replaced

by “regular Gδ-diagonal”. The author does not even know if this can be done in
Martin’s theorem. However, we believe that it is not possible. And therefore, it
is interesting to know if any trace of submetrizability is left if we replace “zeroset
diagonal” with “regular Gδ-diagonal” in Martin’s theorem and in Theorem 2.1.
In the next two results a family U of open sets in X is called Hausdorff separating
if for any distinct x, y ∈ X there exist disjoint Ux, Uy ∈ U containing x and y,
respectively. Clearly, the presence of a countable Hausdorff separating family in
X guarantees that X condenses onto a second-countable Hausdorff space. The
following theorem is an analogue of Martin’s theorem.

Theorem 2.4. Let X be separable with a regular Gδ-diagonal. Then X con-
denses onto a second-countable Hausdorff space.

Proof: Let D be a countable dense subspace of X . Let {Wn}n be a collection
of open sets in X2 such that

⋂
n Wn =

⋂
n Wn = ∆X . Let B be the collection of

all open sets in X that are of one of the following types:

1. {x : (x, d) ∈ Wn} for some d ∈ D and n ∈ ω;
2. {x : (x, d) ∈ X \ Wn} for some d ∈ D and n ∈ ω.

The family B is clearly countable. We only need to show that B is Hausdorff
separating. First, observe that every element of B is open in X .
Fix any distinct a, b ∈ X . There exists n ∈ ω such that (a, b) /∈ Wn. Let

Ua ∋ a and Vb ∋ b be open neighborhoods such that Vb ×Vb ⊂ Wn and Ua ×Vb ⊂
X2 \Wn. Due to the density property, there exists d ∈ D such that d ∈ Vb. Then
Bb = {x : (x, d) ∈ Wn} contains b while Ba = {x : (x, d) ∈ X \ Wn} contains a.
Clearly, Ba and Bb are disjoint elements of B. �

The proof of the next theorem is almost identical to the proof of Theorem 2.1,
however we have decided to handle it separately for better readability.
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Theorem 2.5. Let X × X have countable extent and let X have a regular Gδ-

diagonal. Then X condenses onto a second-countable Hausdorff space.

Proof: Fix {Wn}n a family of open sets in X2 such that
⋂

n Wn =
⋂

n Wn =

∆X . Assume that for each β < α, (xβ , yβ) and a family Uβ of open boxes in X2

are defined.
Definition of (xα, yα) and Uα: Let Oα =

⋃
{U × V : U × V ∈ Uβ , β < α}.

If (X2 \ ∆X ) ⊂ Oα then stop construction. Otherwise, take any (xα, yα) ∈
X2 \ (∆X ∪ Oα). Let Uα consist of all elements in the following form:

{x : (x, yα) ∈ X \ Wn} × {x : (x, yα) ∈ Wn},

where n ∈ ω.
Let us show that for some α < ω1, the co-diagonal part is in Oα. Assume

the contrary. Since
⋂

n Wn = ∆X , there exists n0 ∈ ω such that Wn0 misses

uncountably many (xα, yα)’s. That is, A = [X
2 \ Wn0 ] ∩ {(xα, yα) : α < ω1} is

uncountable. Since X2 has countable extent, there exists (a, b) a limit point for
A. Since A is outside ofWn0 , while ∆X ⊂ Wn0 , we have a 6= b. Hence there exists
n1 ∈ ω such that (a, b) ∈ X2 \Wn1 . Let α ≤ ω1 be the smallest ordinal such that
(a, b) is a limit point for {(xβ , yβ) : β < α}. On one hand, (a, b) /∈ Oα (see the
proof of Theorem 2.1). On the other hand, there exist open Ua ∋ a and Vb ∋ b
such that Vb × Vb ⊂ Wn1 while Ua × Vb ⊂ X2 \ Wn1 . Since b is a limit point for
{yβ : β < α} there exists yβ ∈ Vb for some β < α. Then V = {(x, yβ) : x ∈ Wn1}

contains b while U = {(x, yβ) : x ∈ X \ Wn1} contains a. Then U × V ∈ Uβ

contains (a, b). Therefore (a, b) ∈ Oα, a contradiction.
Thus, X2\∆X = Oα for some α < ω1. Clearly, B = {U, V : U×V ∈ Uβ , β ≤ α}

is a countable Hausdorff separating family. �

The last two theorems suggest the following question.

Question 2.6. Let a Tychonoff (regular) X have a Gδ-diagonal. Suppose that

X is separable or X2 has countable extent. Is it true that X condenses onto a
second-countable T1-space?

The assumption of regularity in the above question is important. Indeed, let
kN be the Katětov extension of the natural numbers. The space kN is Hausdorff
and is a countable union of closed discrete subspaces. Hence, kN has a Gδ-
diagonal. However, kN does not condense onto any second countable T1-space
since |kN | = 22

ω
, while any second-countable T1-space has cardinality at most 2

ω.
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