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Extending the structural homomorphism of LCC loops

Piroska Csörgő

Abstract. A loop Q is said to be left conjugacy closed if the set A = {Lx/x ∈ Q}
is closed under conjugation. Let Q be an LCC loop, let L and R be the left and
right multiplication groups of Q respectively, and let I(Q) be its inner mapping group,
M(Q) its multiplication group. By Drápal’s theorem [3, Theorem 2.8] there exists a

homomorphism Λ : L → I(Q) determined by Lx → R−1
x Lx. In this short note we

examine different possible extensions of this Λ and the uniqueness of these extensions.
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1. Introduction

Q is a loop if it is a quasigroup with neutral element. The functions La(x) = ax
(left translation) and Ra(x) = xa (right translation) are permutations on the
elements of Q for every a ∈ Q. The permutation group generated by left and
right translations M(Q) = 〈La, Ra / a ∈ Q〉 is called the multiplication group of
the loop Q. Denote I(Q) the stabilizer of the neutral element in M(Q). I(Q) is a
subgroup of M(Q) and it is called the inner mapping group of Q. It is clear that
M(Q) is a transitive permutation group on the loop Q. Denote A = {La / a ∈ Q}
and B = {Ra / a ∈ Q}. It is well known that A and B are left (and right)
transversals to I(Q) in M(Q) which satisfy 〈A, B〉 =M(Q), and the commutator
subgroup [A, B] ≤ I(Q). Furthermore coreM(Q) I(Q) = 1 (coreM(Q) I(Q) means

the largest normal subgroup of M(Q) in I(Q)).
The subgroups L = 〈La / a ∈ Q〉 andR = 〈Ra / a ∈ Q〉 are called left and right

multiplication groups, respectively. Denote L1 = L ∩ I(Q), R1 = R ∩ I(Q) and
Tx = L−1

x Rx. A standard fact is that I(Q) is generated by L1∪R1∪{Tx / x ∈ Q}.
The right nucleus of a loop Q is

Nρ = {a ∈ Q / (xy)a = x(ya) for every x, y ∈ Q},

the left nucleus of a loop Q is

Nλ = {a ∈ Q / a(xy) = (ax)y for every x, y ∈ Q}.

This paper was partly supported by Hungarian National Foundation for Scientific Research
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We have (see [3, Lemma 1.9])

CM(Q)(R) = {La / a ∈ Nλ} and

CM(Q)(L) = {Ra / a ∈ Nρ}.

A subset A of a group G is said to be closed under conjugation if aa2
1 ∈ A for

all a1, a2 ∈ A. This is clearly true if and only if A is a normal subset in 〈A〉.
A loop Q is said to be conjugacy closed (CC) if the sets A = {Lx / x ∈ Q}

and B = {Rx / x ∈ Q} are closed under conjugation. The concept of conjugacy
closedness was introduced first by Soikis [7] and later independently by Goodaire
and Robinson [4].
A loop Q is called left conjugacy closed (LCC) if the set A = {Lx / x ∈ Q}

is closed under conjugation. Thus for all a, b ∈ Q there exists c ∈ Q such that
LaLbL

−1
a = Lc. Hence in every LCC loop Q we have LaLbL

−1
a = LTa(b) for all

a, b ∈ Q.
LCC loops were also introduced by Soikis [7]. We have to mention Basarab’s

paper [1], A. Drápal’s paper [3] and P. Nagy and K. Strambach’s paper [6]. This
latter paper is in connection with geometry of LCC loops. As a Bol loop Q is
LCC if and only if x2 ∈ Nλ for all x ∈ Q we have to emphasize the relevance of
the paper of G.P. Nagy with H. Kiechle [5].
A. Drápal studied in [2] the relationship within multiplication groups of conju-

gacy closed (CC) loops, and in his other paper [3] concerning LCC loops he could
transfer some basic facts from CC loops to LCC loops. The following basic result
— which has been used in proofs of many statements — can also be found in this
latter paper [3]. This result was first obtained for CC loops in Drápal’s earlier
paper [2].

Theorem 1.1. Let Q be a left conjugacy closed loop. Denote by L its left
multiplication group. Then there exists a unique homomorphism: Λ : L → I(Q)
that maps Lx to Tx for each x ∈ Q. This homomorphism is the identity on L1
and its kernel is equal to Z(L) = {Rx / x ∈ Q} ∩ L; furthermore if Rx ∈ Z(L),
then x ∈ Z(Nρ).

As the kernel of this homomorphism Λ does not contain the whole set {Ra / a ∈
Nρ} we cannot conclude — using this kernel — if the loop has non-trivial right
nucleus. The purpose of this paper is to extend this homomorphism in such a way
that the kernel consists of the set {Ra / a ∈ Nρ}. Since CM(Q)(L) = {Ra / a ∈

Nρ} it seems natural to examine the relationship between {g ∈ M(Q) / Lg
a ∈ A

for every La ∈ A} and Λ. It turned out that we can really extend this Λ in the
required way.

2. Extension

In this section, for the proofs of our theorems we need the following
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Lemma 2.1. Let Q be a loop,M(Q) its multiplication group, A = {Lx / x ∈ Q},

B = {Rx / x ∈ Q}. Denote H0 = {h ∈ I(Q) / Ah = A}. Then the following
statements are true:

(i) H0 = I(Q) ∩Aut(Q);

(ii) Bh = B for some h ∈ I(Q) if and only if h ∈ H0.

Proof: (i) First we show that if h ∈ I(Q)∩AutQ, then h ∈ H0 i.e. hLah−1 ∈ A
for every La ∈ A.
Let a0 ∈ Q be arbitrary, and denote h(a) = a∗. Then (hLah−1)(a0) =

h(ah−1(a0)) = h(a)a0 = a∗a0 = La∗(a0). Consequently hLah−1 = La∗ .
Conversely, let h ∈ H0. It suffices to prove h(xy) = h(x)h(y) for arbitrary

x, y ∈ Q. Suppose hLxh−1 = Lx1 , hLyh−1 = Ly1 . Then

h(x) = h(x · 1) = (hLx)(1) = (hLxh−1)(1) = Lx1(1) = x1 and
h(y) = h(y · 1) = (hLy)(1) = (hLyh−1)(1) = Ly1(1) = y1,

further h(xy) = h(xy · 1) = (hLxLy)(1) = (hLxLyh−1)(1) = Lx1Ly1(1) = x1y1.

(ii) By (i) it is obvious. �

Lemma 2.2. Let Q be an LCC loop, M(Q) its multiplication group, I(Q) its
inner mapping group, A = {La / a ∈ Q}. Let Λ be the homomorphism from

Theorem 1.1. Suppose h ∈ I(Q) ∩ AutQ. Then (Λ(La))
h = Λ(Lh

a) for every
La ∈ A.

Proof: We have Lh
a = Lh−1(a), T h

a = Th−1(a). Using Λ(La) = Ta we get our
statement. �

We observe that for every element g of M(Q) obviously both (Rg(1))
−1g and

(Lg(1))
−1g belong to I(Q).

In Drápal’s theorem (Theorem 1.1) this homomorphism Λ maps Lx to Tx =
R−1

x Lx and it is the identity on L1 (= L ∩ I(Q)). Consequently, ImΛ =
〈Tx / x ∈ Q〉. As we have L = AL1 and A ∩ L1 = {e}, this Λ maps L into

I(Q) in such a way that Λ(ℓ) = R−1
ℓ(1)

ℓ for every ℓ ∈ L.

Extend this function Λ to the whole M(Q). Thus we consider the function Λ0
which maps g ∈ M(Q) to R−1

g(1)
g ∈ I(Q).

Since Λ0 is a homomorphism on L, the question arises: which is the largest
subgroup of M(Q) such that Λ0 is a homomorphism on this subgroup. The
following theorem gives the answer.

Theorem 2.3. Let Q be an LCC loop. Let Λ0 : M(Q) → I(Q) be such that

Λ0(g) = R−1
g(1)

g. Then the largest subgroup L∗ of M(Q) such that the restriction

of Λ0 on L∗ is a homomorphism, is the following:

L∗ = {g ∈ M(Q) / Lg
x ∈ A for every Lx ∈ A},

L∗ ∩ I(Q) = I(Q) ∩AutQ and L∗ = L(I(Q) ∩AutQ).
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Denote Λ∗ the restriction of Λ0 on L
∗. Then Λ∗ is the identity on L∗ ∩ I(Q) and

KerΛ∗ = {Rx / x ∈ Q} ∩ L∗ = {Ra / a ∈ Nρ}. Furthermore ImΛ
∗ is generated

by (L∗ ∩ I(Q)) ∪ {Tx / x ∈ Q}.

Proof: The left conjugacy closedness implies L∗ ≥ L. Denote U = {g ∈
M(Q) / L

g
x ∈ A for every Lx ∈ A}. Clearly U is a subgroup of M(Q).

First we show L∗ ≤ U . Since B ∩ I(Q) = {e} obviously Λ0 is the iden-
tity on I(Q). Let h ∈ L∗ ∩ I(Q), La ∈ A. Then hLa ∈ L∗ and Λ0(hLa) =
Λ0(h)Λ0(La) = hR−1

a La. On the other hand, Λ0(hLa) = R−1
c hLa where R−1

c hLa

∈ I(Q). Hence Rh−1

a = Rc for every a ∈ Q, h ∈ L∗ ∩ I(Q), consequently Bh = B.
Using Lemma 2.1 we obtain L∗ ∩ I(Q) ≤ U . The left conjugacy closedness implies
L ≤ U .

We show Λ0 is a homomorphism on U . Let ℓ1, ℓ2 ∈ U , clearly ℓ1 = La1h1, ℓ2 =
La2h2 with h1, h2 ∈ U ∩ I(Q). We prove Λ0(La1h1La2h2) =Λ0(La1h1)Λ0(La2h2).
Clearly Λ0(La1h1) =R−1

a1 La1h1=Λ(La1)h1, Λ0(La2h2) =R−1
a2 La2h2=Λ(La2)h2.

On the other hand, Λ0(La1h1La2h2) = Λ0(La1L
h−1
1

a2 h1h2) = R−1
d La1L

h−1
1

a2 h1h2

for some d ∈ Q. By the definition of U , Lh1
−1

a2 ∈ A, whence La1L
h−1
1

a2 ∈ L,

consequently Λ(La1L
h−1
1

a2 ) = R−1
d La1L

h−1
1

a2 , and using that Λ is a homomorphism

on L we get Λ0(La1h1La2h2) = Λ(La1)Λ(L
h−1
1

a2 )h1h2. Thus it suffices to show

Λ(L
h−1
1

a2 ) = (Λ(La2))
h−1
1 , but this follows immediately from Lemma 2.2.

Lemma 2.1 implies L∗ ∩ I(Q) = I(Q) ∩ AutQ. Since L ≤ L∗, we have L∗ =
L(I(Q) ∩AutQ).

As ImL = 〈Tx / x ∈ Q〉 and Λ∗ is the identity on L∗ ∩ I(Q) it follows
ImΛ∗ is generated by L∗ ∩ I(Q) and {Tx / x ∈ Q}. We have KerΛ∗ = {f ∈

L∗ / Λ∗(f) = R−1
f(1)

f = e}. Hence f = Rf(1) ∈ B ∩ L∗. From [A, B] ≤ I(Q)

we get L−1
x L

Rf(1)
x ∈ I(Q) for every Lx ∈ A, but Rf(1) ∈ L∗ implies L

Rf(1)
x ∈ A,

consequently Rf(1) ∈ CM(Q)(A), whence Rf(1) ∈ CM(Q)(L). Since CM(Q)(L) =

{Ra / a ∈ Nρ}, we concluce KerΛ
∗ = B ∩ L∗ = {Ra / a ∈ Nρ}. �

Our next question is, whether every homomorphism of L∗ into I(Q) which
coincides with Λ on the elements of L is equal to Λ∗.

We give the answer:

Theorem 2.4. Let Q be an LCC loop, M(Q) its multiplication group, I(Q) its
inner mapping group, A = {La / a ∈ Q}, L∗ = {g ∈ M(Q) / L

g
x ∈ A for every

Lx ∈ A}.

Let T = 〈Tx / x ∈ Q〉, c ∈ CI(Q)(T ). Define a function Λ1 on L
∗: if ℓ = Lah ∈

L∗ with h ∈ L∗ ∩ I(Q), then Λ1(ℓ) = Λ(La)h
c. Then Λ1 is a homomorphism on

L∗ and Λ1 coincides with Λ on the elements of L.
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Proof: We have ImΛ = 〈Tx / x ∈ Q〉 and L1 ≤ ImΛ, whence c ∈ CG(L1),
consequently Λ1 coincides with Λ on the elements of L.
We show Λ1 is a homomorphism on L∗. Let ℓ1, ℓ2 ∈ L∗, ℓ1 = La1h1, ℓ2 =

La2h2 with h1, h2 ∈ L∗ ∩ I(Q). By the definition of Λ1, Λ1(ℓ1) = Λ(La1)h
c
1,

Λ1(ℓ2) = Λ(La2)h
c
2. Clearly ℓ1ℓ2 = La1L

h−1
1

a2 h1h2, since (La2)
h−1
1 ∈ A we have

La1(La2)
h−1
1 ∈ L, whence La1(La2)

h−1
1 = La3h3 with h3 ∈ L1. Consequently

Λ1(ℓ1ℓ2) = Λ(La3)(h3h1h2)
c. As h3 ∈ T it follows Λ1(ℓ1ℓ2) = Λ(La3)h3(h1h2)

c =

Λ(La3h3)(h1h2)
c = Λ(La1)Λ(La2)

h−1
1 (h1h2)

c.

Thus it suffices to prove (Λ(La2))
(h−1
1 )

c
= Λ(L

h−1
1

a2 ). Using ImΛ = T and

c ∈ CI(Q)(T ) it is equivalent to (Λ(La2))
h−1
1 = Λ(L

h−1
1

a2 ). The latter equality

follows immediately from Lemma 2.2. �

Corollary 2.5. Let Q be an LCC loop. Denote T = 〈Tx / x ∈ Q〉 and suppose
that CI(Q)(T ) 6≤ CI(Q)(L

∗ ∩ I(Q)). Then there exists a homomorphism Λ1 on

L∗ which coincides with Λ on L, but Λ1 6= Λ
∗, where Λ∗ is the homomorphism

described in Theorem 2.3.

References

[1] Basarab A.S., A class of LK-loops (in Russian), Mat. Issled. 120 (1991), 3–7.
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