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Preferred parameterisations on homogeneous curves

MICHAEL EASTWOOD, JAN SLOVAK

Abstract. We show how to specify preferred parameterisations on a homogeneous curve
in an arbitrary homogeneous space. We apply these results to limit the natural param-
eters on distinguished curves in parabolic geometries.
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1. Introduction

This article is motivated by the theory of distinguished curves in parabolic
geometries, as developed in [2]. A parabolic geometry is, by definition, mod-
elled on a homogeneous space of the form G/P where G is a real semisimple Lie
group and P is a parabolic subgroup. (There is also a complex theory which
corresponds to the choices of complex G’s and P’s with specific curvature re-
strictions for the holomorphic cases.) The notion of Cartan connection replaces
the Maurer-Cartan form on G, viewed as a principal fibre bundle over G/P with
structure group P, and much of the geometry of G/P automatically carries over
to parabolic geometries in general (see also [4]). In particular, the curves on G/P
obtained by exponentiating elements in the Lie algebra g of G have counterparts
in general obtained by development under the Cartan connection. These mat-
ters are thoroughly discussed in [2] and will not be repeated here. Suffice it to
say that results concerning distinguished curves on G/P have immediate conse-
quences for the corresponding general parabolic geometry. Here, we shall discuss
only the homogeneous setting G/P. We shall also not touch problems related to
higher dimensional analogues of curves since curvature obstructs the development
in general.

2. Generalities on G/P

Firstly, let us discuss a general homogeneous space, namely a smooth manifold
M equipped with the smooth transitive action of a real Lie group G. Each X € g
gives a 1-parameter Lie subgroup ¢t — exp(tX) of G and hence a parameterised
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curve t — exp(tX)m through m € M, which we shall suppose to be non-constant.
Conversely, without the parameterisation, such a curve is homogeneous, namely
it is the orbit of a Lie subgroup of the symmetry group G.

To investigate homogeneous curves on M we may as well choose a basepoint
mo € M and consider only curves passing through mo. All other homogeneous
curves are obtained by translation under the action of G. Let P denote the
stabiliser subgroup of mo so that M = G/P. We shall now suppose that G is
semisimple and P is parabolic. In this case, there is a splitting

g=pbdn

into subalgebras with n nilpotent (as in [2]). This splitting is not canonical. It is,
however, well-defined up to the Adjoint action of P and we obtain, therefore, a
preferred subset

(1) {Ad, X st. p€ Pand X € n} C g,

which we may use to generate homogeneous curves. Such curves are evidently non-
constant but not all non-constant homogeneous curves arise in this way. These
special curves are said to be distinguished. Equivalently, distinguished curves
through the basepoint mo, € M are those of the form ¢ — pexp(tX)m. for some
p€e Pand X €n.

As an example, consider G = SL(3,R) with P the upper triangular matrices.
We may take

0 0 0
(2) n= * 0 0
* % 0
Then
1 10 0 0 0 1+t 1 0
t— 0 1 O]exp|(t|l1 0 O mod P = t 1 0] modP
0 0 1 0 0 0 0 0 0
and
0 0 O 1 0 0
t—exp|t|l1 0 O mod P = t 1 0 ) modP
110 t+3t2 ¢t 1
are typical distinguished curves whereas
0 -1 0 cost —sint 0
t—exp|tl1 0 O mod P = | sint cost O | modP
0 0 0 0 0 1
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is homogeneous but (with this parameterisation) not distinguished.

Suppose ¢t — v(t) € M is a distinguished curve with 7(0) = m. and let C
denote its unparameterised image. In this article, we shall answer the question
‘what are the possible reparameterisations of C' as a distinguished curve?’ A direct
approach to this question is given in [2, §3]. Here, we shall reason indirectly by
firstly establishing the following on general grounds.

Theorem 1. Let C' be an unparameterised distinguished curve passing through
me € M = G/P. The freedom in reparameterising C' with origin at mo is of two
possible types: —

affine t— at fora #0
projective t—at/(ct+1) for a # 0 and c arbitrary.

If we drop the requirement that the parameter be zero at mo, then translation is
also allowed so the freedom becomes

at+b

tat+b or t ,
—a YT d

respectively. The proof of Theorem 1 will be given in §4. Once this theorem is
established, it is a matter of elementary computation to decide, for a given C,
which type of freedom pertains. Examples will be given in §4. For the proof of
Theorem 1 we shall need some general considerations as in the following section.

3. Lie algebras of vector fields in one dimension

The following is a classical topic and Theorem 3 is due to Lie [3] (see also [5]).
We are grateful to Ian Anderson for pointing out to us the translation and com-
mentary on Lie’s article given by Ackerman and Hermann [1]. Nevertheless, we
believe that it is useful to give an independent, elementary, and self-contained
treatment.

Theorem 2. Suppose g is a finite-dimensional subalgebra of the Lie algebra of
smooth vector fields on R. Let x be the standard coérdinate on R and suppose
g D 0/0x. Then g is one of the following: —

g:span{%} g:span{%,e)‘x%} g:span{%,x%}
g:span{%,sin(/\x)%,cos(/\x)%} g:span{%,x%,ag%}

g = span { %, sinh()\:c)a—ax , cosh()\:c)(%} .
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Proor: If dimg = 1, then g = span{d/dz} and we are done. Next, if dimg = 2,
then g = span{d/0z, g(x)0/0x} for some smooth non-constant function g(x).

Now,

9@ E| =%

so closure under Lie bracket implies ¢/(z) = p + Ag(x). This is a differential
equation we may solve: —

g(z) =CeM + D if A£0
or g(z)=pzx+C if A=0.

These are the two-dimensional subalgebras stated in the theorem.
Now suppose dimg = k + 1 > 3 and choose a basis

o) 0 o)
%791(17)%5' o 7gk‘(x)3§

of g. From closure under Lie bracket of 9/0x with the other basis vectors, we
immediately encounter a system of ordinary differential equations with constant

coefficients
k

gg(:zr):ui—kz/\ijgj(x), for i=1,... k.
j=1

We may conclude that the functions g;(z) and, therefore, all vector fields in g are
real-analytic.
Since dim g > 3, there is a vector field g(z)0/0x € g with

N

glx) =2 + ... for some N > 2.

Because g is finite-dimensional, we may choose g(z) with N maximal. But then

05 || & 9@ ] 9@ F| = 9@ F 9@ ]

contradicting maximality of IV unless N = 2. Therefore, dimg = 3 and

(3) g = span { . 9(@) & o' (0) % | .

(4) glz) =2® +az®+--- .
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But then g contains the vector field
|9/ (@) 9(@)%] —20@) % = ((9'@)? = 9(@)g" () - 29(2)) &

— (2ax3+)3%7
again contradicting maximality of N unless a = 0. Now, in order for (3) to be
closed under Lie bracket we must have

9" (z) = [%,g/(x)a%} € SPan{%’g(x)%vg/(I)a%}
and to be, in addition, consistent with @ = 0 in (4), we conclude that

g"(x) =2 +vg(x), for some constant v.

This differential equation, with initial conditions imposed by (4), has solutions
g(z) = (2/2%)(cos(Az) — 1) if v<0
or g(x)=a? ifvr=0

or g(x)=(2/X%)(cosh(A\x) —1)  if v >0.
It remains to observe that (3) is, indeed, closed under Lie bracket in these cases.
O

Notice that this proof is local: the same conclusion holds for vector fields on
any open interval (a,b) C R. As subalgebras of Vect(R), the various possibilities
listed in the statement of Theorem 2 for different values of A are distinct. Locally,
however, the parameter A may be eliminated and more besides. Precisely, there
is a coordinate change near the origin: —

“2
1= e 0 0

_ _ 0

whence
A ~ ~
span { g, N 4 | = span {y . &} = span { &0 |

whilst the codrdinate change y = tan((Az)/2) gives

A : A
é% = 5(1 +y2)8%, sm()\x)(% = )\ya%, cos()\x)(% = 5(1 — yz)a%

whence
span {3%, sin()\x)a% , cos()\x)a% } & gpan { 3%, xa%, 22 % }
and y = tanh((A\x)/2) gives

A : A
é% = 5(1 — y2)(%7 smh()\x)(% = )\ya%, cosh()\x)(% = 5(1 +y2)8%
whence

span{%,sinh()\x)%,cosh()\x)a—ax} = span{%,x(%, 12%} .

We have proved the following.
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Theorem 3. Suppose s is a finite-dimensional subalgebra of the Lie algebra of
vector fields in a neighbourhood of the origin in R. Suppose s contains a vector
field that does not vanish at the origin. Then there is a neighbourhood U of the
origin and a change of coérdinates such that one of the following three possibilities
holds.

5|U%span{%} 5|U%span{3%,x%}
(5)
s|ly & span{%,xa%,xz 4 }

5

4. Reparameterisations

Let C be an arbitrary smooth connected curve in a smooth manifold M homo-
geneous under the action p : G x M — M of a connected Lie group G. There is
a homomorphism of Lie algebras p : g — Vect(M) given by

HX)(m) = § (exp(—tX)m)]i=o
and the symmetry algebra of C is defined by
s={X €gs.t. p(X)(m) is tangent to C for all m € C}.

Clearly, s is a subalgebra of g and C' is homogeneous if and only if p(s)|c contains
non-trivial vector fields at each point of C'. In this case, we may invoke Theorem 3
to conclude that p(s)|c is at most three-dimensional and locally has one of the
three forms listed in (5).

Now suppose that C' is homogeneous and pick a basepoint m, € C. Suppose
that X € s C g is nilpotent in g and p(X)(mo) # 0. Then we shall say that

t— exp(tX)mo € C
is a preferred parameterisation of C.

Theorem 4. The freedom in reparameterising a homogeneous curve with a pre-
ferred parameter is one of two possible types: —

affine t— at fora #0

projective t—at/(ct+1) for a # 0 and c arbitrary.
PROOF: Since X is nilpotent in g, certainly p(X) is nilpotent in p(s)|c. By
inspection, we may find the nilpotent elements in each of the local forms (3): —

span{%} 3 a%

o

Span{%,x m} Ba%

2

2
span{%,x(%,x (%} 5 (p—qx) é%
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In the first two cases,
o _ 0 _
am = ot < Tr = a/t,

which gives affine freedom, whilst in the third case

29 _ 9 Pt
— = P =,
(p—qx) oz 7 x 1+ pgt

which gives projective freedom. O

PrRoOOF OF THEOREM 1: The parameterisations on a distinguished curve have the
form ¢t — exp(tY)mo where Y is P-conjugate to an element of n in accordance
with (1). Certainly, there is affine freedom in such a parameterisation because Y’
can be replaced by aY. But the allowed Y are, in particular, nilpotent. There-
fore, the parameterisations on C' as a distinguished curve are ipso facto preferred
parameterisations on C as a homogeneous curve. Theorem 4 now implies that,
if there is any additional freedom, it must be projective. But just one projective
transformation, together with affine freedom, generates all projective freedom and
the proof is complete. O

Theorem 1 is useful in practice. Consider the general distinguished curve t —
pexp(tX)mo for fixed p € P and X € n. The dichotomy offered by Theorem 1
implies that if there are reparameterisations other than affine, then the specific
projective freedom ¢ — t/(t + 1) occurs. In this case, we may find ¢ € P and
Y € n such that

t
tX)= —Y dP, Vit
pexp(tX) qexp(t+1 ) mod P,
or, equivalently,

(6) exp (— LY)r exp(tX) e P, Vit

t+1
where r = ¢~ 1p € P. The existence of suitable r € P and Y € n is a restriction
on X. Furthermore, if we adopt the Levi decomposition P = LU corresponding
to our choice of n, then the L-component of r may be absorbed into Y. Hence,
Theorem 1 has the following corollary.

Corollary 5. Suppose P = LU is a Levi decomposition of a parabolic subgroup
P of a semisimple Lie group G. Let g = p @ n be the associated decomposition of
the Lie algebra of G. Then the distinguished curve t — pexp(tX)mod P admits
a projective reparameterisation if and only if there arer € U and Y € n such that
(6) holds.

We close this article with a complete analysis of the distinguished curves in the
real flag manifold SL(3,R)/P where P is the subgroup of upper triangular matri-
ces. As already remarked in §2, we may take n to be the strictly lower triangular
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matrices (2). We shall use Corollary 5 with U taken to be the upper triangular
matrices with 1’s along the diagonal. Consider, for example, the distinguished
curve

1 1 0 0 0 O
(7) t— [0 1 0]exp|t{1 0 O mod P.
0 01 0 0 O

According to Corollary 5, it admits a projective reparameterisation if and only if
we can find a, b, ¢, u, v, w such that

" 0O 0 O 1 a b 1 0 0 * % %

P — u 0 0 01 ¢ t 1 0]=10 % =

T\ w o 001/ \o o0 1 0 0 =
Multiplying through by (¢ + 1)? yields

(t+1)2 0 0 1 a b 1 00

—t(t+ 1)u (t+1)2 0 01 c t 10

—t(t+ 1)+ 2t2uw —tt+ 1w (E+1)2) \0 0 1/ \0 0 1

for the left hand side. Expanding and equating coefficients of ¢ to zero in the sub-
diagonal entries gives algebraic equations for a, b, ¢, u, v, w whose general solutions

are
0 0 O 0 0O 1 a b 1 1 b
u 0 0]l=1]1 00 01 ¢c|=101 ¢
v w 0 0 0 0 0 0 1 0 0 1

The existence of solutions shows that the distinguished curve (7) admits projective
reparameterisations. On the other hand, this same exercise for the curve

t—exp |t mod P

== o
= o O
o O O

gives an inconsistent set of equations for a, b, ¢, u, v, w. According to Theorem 1
and Corollary 5, it admits only affine reparameterisations.

Notice that the criterion (6) of Corollary 5 depends only on the L-conjugacy
class of X € n. Therefore, to say which distinguished curves admit projective
reparameterisations it suffices to say whether (6) is satisfied for X € n normalised
under the Adjoint action of L. We obtain the following table of normal forms.
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Normal form | Reparameterisation

0 0 O

1 0 0 projective
0 0O

0 0 O

0 0 O projective
01 0

0 0 O

1 0 0 projective
01 0

0 0 0

1 0 0 projective
1 00

0 0 O

0 0 O projective
110

0 0O

0 0 0 projective
1 00

0 0 0

1 0 0 affine if z # 0
z 1 0

We have to be careful, however, with the decision which of the above normal forms
give rise to different distinguished curves. In our case, the lines four through six
in the table are in the same orbit of the Adjoint action of the entire P and so
the distinguished curves indicated by these lines coincide. Indeed, a simple check
reveals

00 0 00 0 00 0
(expZ)™10 0 0]expZ=|1 0 0], Z=[0 0 -1
100 100 00 0

while the other case is symmetric. We should also like to remark, that the latter
observation yields a sufficient condition for coincidences of classes of distinguished
curves. There are also examples of such a coincidence where the corresponding
L-orbits are not in the same orbit of P. In our case, however, the first three lines
and the last two lines in the table obviously produce different curves.

This completes our analysis of distinguished curves in this real flag manifold.
It is more efficient than the direct approach of [2] because Theorem 1 tells us, in
advance, what sort of reparameterisation we may expect on a distinguished curve.
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