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Minimal KC–spaces are countably compact

T. Vidalis

Abstract. In this paper we show that a minimal space in which compact subsets are
closed is countably compact. This answers a question posed in [1].
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1. Introduction

A topological space (X, τ) is said to be a KC-space if every compact set is
closed. Since every KC-space is T1 and every T2 space is KC, the KC-property
can be thought of as a separation axiom between T1 and T2.
In 1943 E. Hewitt [3] proved that a compact T2 space is minimal T2 and

maximal compact, see also [5], [6], [7]. R. Larson [4] asked whether a space is
maximal compact iff it is minimal KC. A related question is whether every
KC-topology contains a minimal KC-topology. W. Fleissner proved that this is
not always true. In [2] he constructed a KC-topology which does not contain a
minimal KC-topology.
In a recent paper, [1], the authors proved that every minimal KC-topology on

a countable set is compact and posed the question whether minimal KC-spaces
are countably compact.
In this paper we answer affirmatively this question by proving that every KC-

space which is not countably compact has a strictly weaker KC-topology.

2. Preliminaries and notations

A filter over a set X is a collection F of subsets of X such that:

(i) ∅ /∈ F ;
(ii) if F1 ∈ F and F2 ∈ F then F1 ∩ F2 ∈ F ;
(iii) if A, B ⊂ X, A ∈ F and B ⊃ A then B ∈ F .

A filter F over a set X is an ultrafilter if

∀A ⊂ X either A ∈ F or X − A ∈ F .

With |A| we denote the cardinality of a set A, and with Ac the complement of a
set A.
For κ an infinite cardinal number, an ultrafilter F over κ is uniform if |F | = κ

for all F ∈ F .
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3. Minimal KC-spaces are countably compact

Let (X, τ) be a KC-space which is not countably compact. Then there exists
a set {xn : n ∈ ω} ⊂ X which has no accumulation points. We define a new
topology τ ′ on X as follows:

For every x ∈ X with x 6= x0 the open neighborhoods of x in τ ′

coincide with the open neighborhoods of x in τ .
(NT) An open neighborhood of x0 in τ ′ is every τ -open set containing x0

and a member of F , where F is a uniform ultrafilter defined over
the set {xn : 0 < n < ω}.

Remark 3.1. It is clear that τ ′ is a T1-topology and that x0 is the unique point
which can be τ ′-accumulation point for a setK ⊂ X while it is not τ -accumulation
point of it.

Our aim is to show that if (X, τ) is a KC-space, which is not countably com-
pact, then the topology τ ′ defined by (NT) is also a KC-topology.
Let K ⊂ X be τ ′-compact. If x0 /∈ K then K is τ -compact, thus τ -closed, and

since {xn : n ∈ ω} has no accumulation points we have that {xn : n ∈ ω} ∩ K
is finite. Hence x0 is not a τ ′-accumulation point of K and it follows that K is
τ ′-closed.
So it remains to prove that if K ⊂ X is τ ′-compact and x0 ∈ K, then K is

τ ′-closed, or equivalently it is τ -closed. Therefore we assume for the rest of the
paper that x0 ∈ K.

To prove that a τ ′-compact set K is τ ′-closed we consider the following cases
for a member of the ultrafilter F in relation with K:

(1) F ⊂ K;

(2) F ∩ K
τ
= ∅;

(3) F ⊂ (K
τ
− K).

Lemma 3.2 below refers to case (1), Lemma 3.3 to case (2), while Lemmas 3.4
and 3.5 to case (3).

Lemma 3.2. Let (X, τ) be a KC-space which is not countably compact, {xn :
n ∈ ω} a set without accumulation points, F a uniform ultrafilter defined over
{xn : 0 < n < ω}, τ ′ the topology defined by (NT) and K a τ ′-compact set. Then
there is an F ∈ F , such that F ∩ K = ∅.

Proof: Since F is an ultrafilter, either there exists an F ∈ F such that F ⊂ K,
or there is an F ∈ F with F ∩ K = ∅.
In the first case let F = F1 ∪ F2 with F1 ∩ F2 = ∅ and |F1| = |F2| = ω.
Then if F1 ∈ F , there exists an open set U(F1) containing F1 with

U(F1) ∩ F2 = ∅.



Minimal KC–spaces are countably compact 545

Thus there is a τ ′-open neighborhood of x0, U
′(x0), with

F2 ∩ U ′(x0) = ∅,

and F2 will be an infinite subset of K without τ ′-accumulation points, which is
impossible. So there must be an F ∈ F such that: F ∩ K = ∅. �

Lemma 3.3. With the assumptions of Lemma 3.2 if there exists an F0 ∈ F such
that F0 ∩ K

τ
= ∅, then K is τ ′-closed.

Proof: Since x0 ∈ K it suffices to show that K is τ -closed.
Let {Ui : i ∈ I}, be a τ -open cover of K and let V0 be an open set containing

F0 such that V0 ∩ K = ∅.
Then the collection {Ui ∪ V0 : i ∈ I}, is a τ ′-open cover of K and thus it has a

finite subcover, say, Ui1 ∪ Ui2 ∪ . . . ∪ Uin ∪ V0.
The set

⋃
{Uik : k = 1, 2, . . . , n} covers K, so K is τ -compact and therefore

τ -closed. �

It remains to consider the case where there is an F ∈ F such that F ⊂ (K
τ
−

K). We will show first that in this case K is countably compact.

Lemma 3.4. Let (X, τ) be a KC-space which is not countably compact, τ ′

the topology defined by (NT), K a τ ′-compact set, x0 ∈ K and F0 ∈ F with
F0 ⊂ (K

τ
− K). Then K is τ -countably compact.

Proof: Let F0 ∈ F be such that F0 ⊂ (K
τ
− K), with F0 = {xnk

: k ∈ ω} and
suppose for a contradiction that K is not τ -countably compact.
Then there exists a set {yn : n ∈ ω} ⊂ K without τ -accumulation points in K

and since x0 ∈ K, there is a τ -open neighborhood U(x0) of x0 with

U(x0) ∩ {yn : n ∈ ω} = ∅.

We claim that for every infinite subset {ynk
: k ∈ ω} of {yn : n ∈ ω} and for every

z ∈ F0 there is a τ -open neighborhood of z, U(z), such that

|U(z)c ∩ {ynk
: k ∈ ω}| = ω.

Actually, for otherwise {ynk
: k ∈ ω} → z and since τ is a KC-topology, z will

be the unique τ -accumulation point of {ynk
: k ∈ ω}.

But, there is an F ∈ F with z /∈ F , thus there is an open set W (F ) containing
F with z /∈ W (F ). So z /∈ U(x0) ∪ W (F ), and consequently x0 is not a τ ′-
accumulation point of {ynk

: k ∈ ω}.
It follows that {ynk

: k ∈ ω} is an infinite subset of K with no τ ′-accumulation
points in K which is impossible, since K is τ ′-compact.
So, let U(xn1) be an open neighborhood of xn1 such that

|U(xn1)
c ∩ {yn : n ∈ ω}| = ω,
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and let
z1 ∈ U(xn1)

c ∩ {yn : n ∈ ω}.

Let U(xn2) be an open neighborhood of xn2 with

|U(xn2)
c ∩ U(xn1)

c ∩ {yn : n ∈ ω}| = ω,

and let
z2 ∈ U(xn2)

c ∩ U(xn1)
c ∩ {yn : n ∈ ω},

with z2 6= z1 and inductively, let U(xnk
) be an open neighborhood of xnk

with

|U(xn1)
c ∩ U(xn2)

c ∩ . . . ∩ U(xnk
)c ∩ {yn : n ∈ ω}| = ω,

and let
zk ∈ U(xn1)

c ∩ U(xn2)
c ∩ . . . ∩ U(xnk

)c ∩ {yn : n ∈ ω},

with
zk /∈ {z1, z2, . . . , zk−1}.

The so defined sequence {zn : n ∈ ω} is a subset of K and since

{zn : n ∈ ω} ∩ [U(x0) ∪
⋃

{U(xnk
) : k ∈ ω}] = ∅,

it follows that it has no τ ′-accumulation points in K, contrary to the hypothesis.
�

Lemma 3.5. Let (X, τ) be a KC-space which is not countably compact. Then
X can be condensed onto a weaker KC-topology.

Proof: Let τ ′ be the topology defined by (NT). We will prove that (X, τ ′) is a
KC-space.
For this we will show that there is an F ∈ F with F ∩ K

τ
= ∅ and the proof

will be a consequence of Lemma 3.3.
Indeed, suppose for a contradiction that there is F0 ∈ F such that F0 ⊂ K

τ
.

Let F1, F2 be subsets of F0 with |F1| = |F2| = ω, F1 ∪F2 = F0, and F1 ∩F2 = ∅.
Suppose that F1 ∈ F . We claim that F1 ∪ K is τ -compact.
Actually let {Ui : i ∈ I} be a τ -open cover of F1 ∪ K. Then countably many

of the U ′

is, say, {Uin : n ∈ ω}, cover the countable set F1, and if we write

U ′(x0) = U(x0) ∪
⋃

{Uin : n ∈ ω},

where U(x0) is a member of {Ui : i ∈ I} which contains x0 then U ′(x0) is a
τ ′-open neighborhood of x0, and we will have

⋃
{Ui : i ∈ I} = U ′(x0) ∪

⋃
{Vj : j ∈ J},
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where {Vj : j ∈ J} is a subcollection of {Ui : i ∈ I} which covers U ′(x0)
c ∩ K.

But {Ui : i ∈ I} is also a τ ′-open cover of K. So it contains a finite subcover.
It turns out that finitely many V ′

j s, say, Vj1 , Vj2 , . . . , Vjk
, cover the set

K ∩ (U(x0) ∪
⋃

{Uin : n ∈ ω})c = K ∩ U ′(x0)
c.

Now ⋃
{Vjm

: m = 1, 2, . . . , k} ∪
⋃

{Uin : n ∈ ω} ∪ U(x0)

is a countable τ -open cover ofK and in view of Lemma 3.4 it has a finite subcover.
So K ∪ F1 is τ -compact and therefore τ -closed. But this is impossible since

every x ∈ F2 is a τ -accumulation point of K.
So there must be an F ∈ F with

F ∩ K
τ
= ∅

and Lemma 3.3 implies that K is τ -closed. Now from Remark 3.1 it follows that
K is τ ′-closed. �

The following theorem answers a question posed in [1]. Its proof is an imme-
diate consequence of Lemma 3.5.

Theorem 3.6. Every minimal KC-space is countably compact.
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