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The fractional integral between weighted Orlicz

and BMOφ spaces on spaces of homogeneous type

Gladis Pradolini, Oscar Salinas

Abstract. In this work we give sufficient and necessary conditions for the boundedness
of the fractional integral operator acting between weighted Orlicz spaces and suitable
BMOφ spaces, in the general setting of spaces of homogeneous type. This result general-
izes those contained in [P1] and [P2] about the boundedness of the same operator acting
between weighted Lp and Lipschitz integral spaces on Rn. We also give some properties
of the classes of pairs of weights appearing in connection with this boundedness.

Keywords: weights, Orlicz spaces, BMO, fractional integral

Classification: Primary 42B25

1. Introduction and preliminaries

Let Iα, 0 < α < n, be the fractional integral operator on R
n, that is

Iαf(x) =

∫

Rn
f(y)|x − y|α−n dy, x ∈ R

n.

There are well known properties related to the boundedness of Iα acting on
the Lebesgue spaces Lp for 1 < p ≤ n/α, shortly: Iα : L

p → Lq, 1/q = 1/p−α/n

when p < n/α and Iα : L
n/α → BMO (in the last case an adequate extension is

required by reasons of convergence). Moreover there are versions with weights of
these results (see, for instance [MW] and [S]) and extensions of the weighted results
for Iγ acting between Orlicz spaces ([KK]). Less known are results concerning
the behaviour of Iα acting on Lp for p > n/α. In this line we have [HSV1],
where Harboure, the second author and Viviani prove one-weight boundedness
inequalities for an appropriate extension of Iα between weak and strong Lp spaces
and Lipschitz type integral spaces, characterizing the classes of weights involved.
The same authors, in [HSV2], extend one of their results by considering Orlicz
and BMOφ spaces and, in addition, prove that the classes of weights considered
coincide with the Ap Muckenhoupt’s classes. In two later works, [P1] and [P2],
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the first author shows a two-weight version of some results of [HSV1] and, in
particular, characterizes the pairs of weights (w, v) for which an extension of
Iα acting between weighted versions of Lp and Lipschitz type integral spaces is
bounded.
The purpose of this work is to try to give a unified view of the above results in

the general setting of spaces of homogeneous type. In particular we characterize
the classes of pairs of weights in connection with the boundedness of the fractional
integral operator of order γ, with 0 < γ < 1, between Orlicz and φ-Lipschitz
integral spaces, but now working in the context of spaces of homogeneous type.
Also, we study the properties of the classes of weights obtained and we give
examples of them. We wish to remark that the unweighted case of these results
in spaces of homogeneous type was studied in [GV] but for a slightly different
version of the operator Iγ .
On the other hand, in [GGKK] (see Chapter 3, Section 3.6), the particular case

Ln/γ − BMO for two weights is studied for another version of Iγ (closer to ours
than that one used in [GV]).
The paper is organized in the following way: the last part of this section

contains basic definitions about spaces of homogeneous type and Orlicz spaces,
Section 2 is dedicated to prove some properties of the classes of weights that we
are going to use; in Section 3 we present our main results about Iγ , Section 4
contains the proofs of the main theorems; finally some examples of weights can
be founded in Section 5.

Let X be a set. A function d : X ×X → R
+
0 is called a quasi-distance on X if

the following conditions are satisfied:

(i) for every x and y in X , d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(ii) for every x and y in X , d(x, y) = d(y, x),
(iii) there exists a constant K such that d(x, y) ≤ K(d(x, z)+d(z, y)) for every

x, y and z in X .

Let µ be a positive measure on the σ-algebra of subsets of X generated by the
d-balls B(x, r) = {y : d(x, y) < r}, with x ∈ X and r > 0. We assume that µ
satisfies the doubling condition, that is, there exists a constant A such that

(1.1) 0 < µ(B(x, 2Kr)) ≤ Aµ(B(x, r)) < ∞

holds for every ball B ⊂ X . The triple (X, d, µ), with d and µ as above, is called
a space of homogeneous type.

We consider the function ρ : X × X → R
+
0 defined by

ρ(x, y) =

{

(µ(B(x, d(x, y))) + µ(B(y, d(x, y)))) /2 if x 6= y,

0 if x = y.
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It is easy to check that ρ is a quasi-distance on X . If there exists α ≥ 1 such that

ρ1/α is a distance, then we set η = ρ1/α. If that does not happen, we take for η
a distance such that ηα is equivalent to ρ for some α ≥ 1 (from [MS], this choice
it is always possible), that is, there exist two constants C1 and C2, such that

C1η(x, y)α ≤ ρ(x, y) ≤ C2η(x, y)α

holds for every x and y in X . With this choice of η and α, a version of the usual
fractional integral operator of order γ, for 0 < γ < 1, can be defined in (X, d, µ)
as

(1.2) Iγf(x) =

∫

X
Qγ(x, y)f(y)dµ(y),

with

Qγ(x, y) =

{

η(x, y)α(γ−1) if x 6= y,

µ({x})γ−1 if x = y.

Now we summarize a few facts about Orlicz spaces. We are going to deal with
continuous functions φ defined and increasing on [0,∞) such that limt→0+ φ(t) =
0 and limt→∞ φ(t) =∞. We also assume that the following conditions are satis-
fied:

(1.3) φ is of lower type p, p > 1, that is there exists a constant C such that

φ(st) ≤ Cspφ(t)

for every s ∈ [0, 1] and every t ≥ 0;

(1.4) φ is of upper type q, that is there exists a constant C such that

φ(st) ≤ Csqφ(t)

for every s ≥ 1 and every t ≥ 0.

Given φ, the complementary function (with respect to φ) is defined by

φ̃(s) = sup
t>0
(st − φ(t))

for s > 0. It is well known (see for example [RR]) that φ̃ satisfies similar properties

as φ. In particular, if φ is of lower type p then φ̃ is of upper type p′ and if φ is of
upper type q then φ̃ is of lower type q′, where r′ = r/(r− 1). Moreover, it can be
proved that there exist two constants C1 and C2 such that

(1.5) C1t ≤ φ̃−1(t)φ−1(t) ≤ C2t
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for every t > 0.
On the other hand, if φ is of lower type p then it is easy to check that φ̃−1 is

of lower type 1/p′ and if φ is of upper type q then φ̃−1 is of upper type 1/q′.
Let φ be a function as above. For such φ, the Orlicz space Lφ is defined as the

class of measurable functions f : X → R such that
∫

X
φ(|f(x)|) dµ(x) < ∞.

In this class we consider the following analog to the Luxemburg norm

‖f‖φ = inf

{

λ > 0 :

∫

X
φ(|f(x)/λ|) ≤ 1

}

.

Note that ‖ · ‖φ is not a norm, but in view of the properties of φ, it can be shown
that it is equivalent to a norm. Moreover, the Hölder type inequality

(1.6)

∣

∣

∣

∣

∫

f(x)g(x) dµ(x)

∣

∣

∣

∣

≤ C‖f‖φ‖g‖φ̃

holds for every f ∈ Lφ and every g ∈ Lφ̃ where Lφ̃ is the dual space of Lφ.

We define a weighted version of Lφ in the following way: given a weight w
(that is, a non negative and locally integrable function defined in X), we say that
f ∈ Lφ,w if f/w ∈ Lφ.

2. Properties of the weights

Now, we give the definition of the classes of pairs of weights which we are going
to use in connection with the boundedness of the fractional integral operator Iγ .

2.1 Definition. Given a function φ, β ∈ R and 0 < γ < 1, we say that (w, v)
belongs to Cγ(φ, β) if there exists a constant C such that the inequality
(2.2)

‖(1/w)χB‖∞

µ(B)β+γ−1/α−1
φ−1(1/µ(B))

∣

∣

∣

∣

∣

∣

∣

∣

v

(µ(B(xB , d(xB , .))) + µ(B))1−γ+1/α

∣

∣

∣

∣

∣

∣

∣

∣

φ

≤ C

holds for every ball B ⊂ X , where xB denotes the centre of B.

2.3 Remark. It is clear that the above condition is verified if and only if the
following pair of inequalities hold simultaneously for every B ⊂ X :

(2.4)
‖(1/w)χB‖∞

µ(B)β
φ−1(1/µ(B)) ||vχB ||φ ≤ C,

(2.5)
‖(1/w)χB‖∞

µ(B)β+γ−1/α−1
φ−1(1/µ(B))

∣

∣

∣

∣

∣

∣

∣

∣

χX−B
v

µ(B(xB , d(xB , ·)))1−γ+1/α

∣

∣

∣

∣

∣

∣

∣

∣

φ

≤ C.
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2.6 Remark. Replacing ‖(1/w)χB‖∞ by µ(B)/w(B) in (2.1) we obtain another
class of weights involved in a different version of the boundedness of Iγ (see

Section 3 below). We shall denote this class by C̃γ(φ, β).

2.7 Lemma. Let φ be an increasing function with lower type p, β ∈ R and

0 < γ < 1. If µ(X) = ∞ and β < 1/p′ − γ + 1/α then Cγ(φ, β) is reduced
to (2.4). If µ(X) < ∞ then condition Cγ(φ, β) is reduced to (2.4) for every
β ∈ R.

2.8 Remark. In the case µ(X) = ∞, the result for β = 1/p′ − γ + 1/α is not
true. This fact was proved in [P1] for the case φ(t) = tp in Euclidean spaces with
the Lebesgue measure.
On the other hand, if µ(X) < ∞, the proof is trivial and we omit it.

Proof of Lemma 2.7: Let B = B(xB , R) and B̃ = B(xB , 2KR). Note that

µ(B(xB , d(xB , y))) ≥ Coµ(B), with Co independent of B, for every y ∈ X − B̃.
We consider the sets Ωj = {y ∈ X : µ(B̄(xB , d(xB , y))) < 2jRo}, j = 0, 1, . . . ,

with Ro = Coµ(B) and B̄(x, r) = {y : d(x, y) ≤ r}, then using Lemma 2.5
of [MT], we get Ωj+1 ⊂ B̄(xB , Rj) and

(2.9) µ(B̄(xB , Rj)) ≤ C2j+1Ro,

where Rj = supy∈X{d(xB , y) : µ(B̄(xB , d(xB , y))) ≤ 2j+1Ro} and C only de-

pends on the constants of the space. Since X − B̃ ⊂ X − Ωo, we get
∫

X−B̃
φ

(

v(y)φ−1(1/µ(B))

µ(B)β+γ−1/α−1 µ(B(xB , d(xB , y)))1−γ+1/α infB w

)

dµ(y)

≤

∫

X−Ωo

φ

(

v(y)φ−1(1/µ(B))

µ(B)β+γ−1/α−1 µ(B̄(xB , d(xB , y)))1−γ+1/α infB w

)

dµ(y)

≤

∞
∑

j=0

∫

Ωj+1−Ωj

φ

(

C
v(y)φ−1(1/µ(B))

µ(B)β 2j(1−γ+1/α) infB w

)

dµ(y),

where we have used that µ(B̄(xB , d(xB , y))) ≃ 2jµ(B) if y ∈ Ωj+1 −Ωj . Now, if

B∗
j = B(xB , 2Rj), from (2.9) we have that µ(B∗

j ) ≤ C2jµ(B). Then, since φ−1

is of upper type 1/p, we have that φ−1(1/µ(B∗
j )) ≥

C

2j/p
φ−1(1/µ(B)). So, from

the fact that Ωj+1 − Ωj ⊂ B∗
j and B ⊂ B∗

j , we obtain that the last expression is

bounded by

C
∞
∑

j=0

∫

B∗

j

φ

(

v(y)

µ(B∗
j )

β 2j(1−γ+1/α−β)

φ−1(1/µ(B))

infB∗

j
w

)

dµ(y)

≤ C

∞
∑

j=0

∫

B∗

j

φ

(

C
v(y)φ−1(1/µ(B∗

j ))

µ(B∗
j )

β2j(1/p′−γ+1/α−β) infB∗

j
w

)

dµ(y).
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Finally, since β < 1/p′ − γ + 1/α and φ is of lower type p, the last term is
bounded by

(2.10) C

∞
∑

j=0

1

2j(1/p′−γ+1/α−β)p

∫

B∗

j

φ

(

v(y)φ−1(1/µ(B∗
j )

µ(B∗
j )

β infB∗

j
w

)

dµ(y)

which is finite since (w, v) satisfies (2.4). So it is obvious that (w, v) ∈ Cγ(φ, β).
From this fact and Remark 2.3 we conclude the proof. �

In connection with the previous lemma, it is important to note that the case
β > 1/p′ − γ + 1/α in many examples, lead to trivial weights. In fact, we have
the following result.

2.11 Theorem. Let 0 < γ < 1 and let (X, d, µ) be a space of homogeneous type
containing a sequence {Bi} of balls in X with µ(Bi)→ 0 and Bi+1 ⊂ Bi. Then,

if β > 1/q′−γ+1/α, condition Cγ(φ, β) is satisfied if and only if v = 0 a.e. in X
or if there exists io such that v = 0 a.e. in Bi, i ≥ io.

Proof: Let {Bi} be as in the assumption of the theorem. From condition (2.5)
for such balls Bi we have
(2.12)
∫

X−Bi

φ

(

C
v(y)φ−1(1/µ(Bi))

µ(Bi)β+γ−1/α−1 µ(B(xB , d(xB , y)))1−γ+1/α infBi
w

)

dµ(y) ≤ 1.

From the fact that µ(Bi) → 0, there exists io such that µ(Bi) < 1 for i > io.

Since φ−1 is of lower type 1/q we have that φ−1(1/µ(Bi)) ≥ C1/µ(Bi)
1/q and

then, using that φ has lower type p we get
(2.13)

1

µ(Bi)(β+γ−1/α−1/q′)p

∫

X−Bi

φ

(

v(y)

µ(B(xB , d(xB , y)))1−γ+1/α infBi
w

)

dµ(y) ≤ 1.

Suppose that there exists il > io such that infBil
w = lo > 0, otherwise, if

infBi
w = 0 for all i > io, from condition Cγ(φ, β) (see Remark 2.3), we obtain

v = 0 a.e. in Bi. Then, for every i > il, we have that
(2.14)
∫

X−Bi

φ

(

v(y)

µ(B(xB , d(xB , y)))1−γ+1/α

)

dµ(y) ≤ Cµ(Bi)
(β+γ−1/α−1/q′)p.

The right hand side of (2.14) tends to 0 when i → ∞, and then we get that
v = 0 a.e. in X . �
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3. Statement of main results

First, we shall introduce the φ−Lipschitz integral spaces that we are going to
consider. The functions φ we are going to deal with, have the properties mentioned
at the end of Section 1.

3.1 Definition. Let w be a weight, 0 < γ < 1, β ∈ R and φ a function. We say

that a locally integrable function f belongs to Lφ
w(β, γ) if there exists a constant

C such that

(3.2)
‖(1/w)χB‖∞

µ(B)β+γ+1φ−1(1/µ(B))

∫

B
|f(x)− mBf | dµ(x) ≤ C

for every ball B ⊂ X .

3.3 Definition. Let w be a weight, 0 < γ < 1, β ∈ R and φ a function. We say

that a locally integrable function f belongs to L̃
φ
w(β, γ) if there exists a constant

C such that

(3.4)
1

w(B)µ(B)β+γφ−1(1/µ(B))

∫

B
|f(x)− mBf | dµ(x) ≤ C

for every ball B ⊂ X .

3.5 Remark. For sake of simplicity we use two parameters β and γ in the defi-

nition of the spaces Lφ
w(β, γ) and L̃φ

w(β, γ), that will be useful in the estimates.

It is easy to check that Lφ
w(β, γ) ⊆ L̃φ

w(β, γ). On the other hand, if w belongs
to the A1 Muckenhoupt’s class with respect to X (that is w(B)/µ(B) ≤ C infB w
for every ball B), it is obvious that both spaces coincide. In the Euclidean case,

if φ(t) = tp and β = (δ − γ)/n + 1/p then the spaces Lφ
w(β, γ) and L̃φ

w(β, γ)
agree with the Lipschitz integral spaces Lw(δ) and Lw(δ) defined in [P1] and [P2]
respectively. The case with general φ and w ∈ A1 was considered in [HSV2] for
the one weight results, as we said before.

Now we are able to state the results about the boundedness of the fractional
integral operator.

3.6 Theorem. Let φ be an increasing function, 0 < γ < 1, β ∈ R and (w, v) ∈

Cγ(φ̃, β). Then, the operator Iγ can be extended to a bounded linear operator Ĩγ

from Lφ,v into L
φ
w(β, γ), i.e. there exists a constant C such that

(3.7)
‖(1/w)χB‖∞

µ(B)β+γ+1φ−1(1/µ(B))

∫

B

∣

∣

∣
Ĩγf(x)− mB(Ĩγf)

∣

∣

∣
dµ(x) ≤ C‖f/v‖φ

for every B(xB , R).
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3.8 Remark. Even though we will restrict our attention in this paper to the

boundedness of the fractional integral operator involving the spaces Lφ
w(β, γ) and

the corresponding classes Cγ(φ̃, β), similar results can be obtained for the spaces

L̃φ
w(β, γ) and the classes C̃γ(φ̃, β). The proof follows similar lines as Theorem 3.6
and we omit it.

For certain functions φ, a likewise reciprocal result of Theorem 3.6 holds if we
restrict the balls B = B(xB , R) to those with R smaller than a fraction of µ(X).
This is established in the following theorem.

3.9 Theorem. Let φ be an increasing function with lower type p and upper type
q, 0 < γ < 1 and β < 1/q − γ + 1/α. If (3.7) holds for every B then there exists
a constant θ, 0 < θ < 1, only depending on the constants of the space X , such
that Cγ(φ̃, β) holds restricted to the balls with radius smaller than θµ(X) (that

is (2.2) for φ̃ and these balls).

3.10 Corollary. Let φ be an increasing function with upper type q, 0 < γ < 1
and β < 1/q − γ + 1/α. If µ(X) =∞ then (3.7) implies that (w, v) ∈ Cγ(φ̃, β).

3.11 Remark. If we suppose in the above theorem that ‖(1/w)χX‖∞ < ∞ (that
is infX w > 0) and v ∈ L

φ̃
(X) it can be proved that, when µ(X) < ∞, condition

Cγ(φ̃, β) holds for every ball. Related to these conditions, note that if infB w = 0

for any ball B then, from condition Cγ(φ̃, β) we obtain that v = 0 a.e. in B.

4. Proofs

Proof of Theorem 3.6: Let us first show that Iγ defined by (1.2) can be

extended to an operator Ĩγ such that Ĩγf(x) is finite in almost every x ∈ X when
f ∈ Lφ,v. Take xo ∈ X . With this point we consider the following definition for

Ĩγ

(4.1) Ĩγf(x) =

∫

X
(Qγ(x, y)− Qγ(xo, y)(1− χB(xo,1)(y))) f(y) dµ(y).

For a ball B = B(xB , R), (4.1) can be formally written as aB + I(x), where
(4.2)

aB =

∫

X

(

(1− χB̃(y))Qγ(xB , y)− (1− χB(xo,1)(y))Qγ(xo, y)
)

) f(y) dµ(y),

(4.3) I(x) =

∫

X

(

Qγ(x, y)− (1− χB̃(y))Qγ(xB , y)
)

f(y) dµ(y)

with B̃ = B(xB , 2KR).
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Let us first estimate aB . With B∗ = B(xo, K
2d(xo, xB) + 2K

2R+ 1) we have
aB = I + II where

I =

∫

B̃∗

(

(1− χB̃(y))Qγ(xB , y)− (1 − χB(xo,1)(y))Qγ(xo, y)
)

f(y) dµ(y),

II =

∫

X−B̃∗

(

(1− χB̃(y))Qγ(xB , y)− (1 − χB(xo,1)(y))Qγ(xo, y)
)

f(y) dµ(y).

If y ∈ X − B∗ then the expression enclosed by external parentheses in II is
equal to

(4.4)

|Qγ(xB , y)− Qγ(xo, y)| = |η(xB , y)α(γ−1) − η(xo, y)
α(γ−1)|

=

∣

∣

∣
η(xo, y)

α(1−γ) − η(xB , y)α(1−γ)
∣

∣

∣

η(xB , y)α(1−γ)η(xo, y)α(1−γ)
.

Since η ≃ ρ1/α, it is easy to see that η(xB , y) ≃ µ(B(xB , d(xB , y)))1/α. In fact,
we have that µ(B(xB , d(xB , y))) ≃ µ(B(y, d(xB , y))) and, from the definition of
ρ, the conclusion follows. On the other hand if y ∈ X − B∗ then d(xB , xo) ≤
K2d(xo, xB) + 2K

2R + 1 ≤ d(xo, y), so d(xB , y) ≤ K(d(xB , xo) + d(xo, y)) ≤
2Kd(xo, y). Then we have that B(xB , d(xB , y)) ⊂ B(y, 4K3d(xo, y)). From the
doubling property of µ we obtain that µ(B(xB , d(xB , y))) ≤ Cµ(B(y, d(xo, y))),
and from the fact that

η(xo, y)
α ≃ ρ(xo, y) ≃ µ(B(y, d(xo, y))),

we get

η(xo, y)
α ≥ Cµ(B(xB , d(xB , y))).

Collecting these estimates and using the mean value theorem we have that the
last expression in (4.4) is bounded by

C
|η(xo, y)− η(xB , y)|

µ(B(xB , d(xB , y)))1−γ+1/α
≤ C

η(xo, xB)

µ(B(xB , d(xB , y)))1−γ+1/α

≤ C
µ(B∗)1/α

µ(B(xB , d(xB , y)))1−γ+1/α
.

Then we have

II ≤ Cµ(B∗)1/α
∫

X−B̃∗

|f(y)|

µ(B(xB , d(xB , y)))1−γ+1/α
dµ(y).
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Note that, if y ∈ X − B̃∗ then µ(B(xB , d(xB , y))) ≃ µ(B(xo, d(xo, y))), so, the
last inequality allows us to write

II ≤ Cµ(B∗)1/α
∫

X−B̃∗

|f(y)|

µ(B(xo, d(xo, y)))1−γ+1/α
dµ(y)

≤ Cµ(B∗)1/α ‖f/v‖φ

∥

∥

∥

∥

vχX−B̃∗

µ(B(xo, d(xo, .)))1−γ+1/α

∥

∥

∥

∥

φ̃

≤ Cµ(B∗)β+γφ−1(1/µ(B∗)) inf
B∗

w ‖f/v‖φ < ∞,

where we have used the fact that (w, v) ∈ Cγ(φ̃, β).

To estimate I we first note that if y ∈ B̃∗ then

(

(1− χB̃(y))Qγ(xB , y)− (1− χB(xo,1)(y))Qγ(xo, y)
)

≤ C
(

µ(B)γ−1 + µ(B(xo, 1))
γ−1

)

,

and thus we have

I ≤ C
(

µ(B)γ−1 + µ(B(xo, 1))
γ−1

)

∫

B∗

|f(y)| dµ(y)

≤ C
(

µ(B)γ−1 + µ(B(xo, 1))
γ−1

)

‖f/v‖φ‖vχB̃∗
‖
φ̃

≤ C
(

µ(B)γ−1 + µ(B(xo, 1))
γ−1

)

µ(B̃∗)1+βφ−1(1/µ(B∗)) inf
B̃∗

w‖f/v‖φ < ∞.

Combining this inequality with the result for II we get that aB is finite.

To see that I(x) is finite, we first note that

I(x) =

∫

B̃
Qγ(x, y) f(y) dµ(y) +

∫

X−B̃

(

Qγ(x, y)− Qγ(xB , y)
)

f(y) dµ(y)

= I1(x) + I2(x).

From the definition of Qγ it is clear that Qγ(x, y) ≃ µ(B(y, d(x, y)))γ−1. On

the other hand, if y ∈ B̃ and x ∈ B, then µ(B(y, d(x, y))) ≤ Coµ(B). Now, let

y ∈ B̃. Let us consider the same sets taken for the proof of Lemma 2.7, that is
Ωj = {x ∈ B : µ(B(y, d(x, y))) ≤ 2−jCoµ(B)}, for j = 0, 1, . . . . So we have

that Ωj ⊂ B̄(y, Rj) and µ(B̄(y, Rj)) ≤ C2−jCoµ(B), with Rj = sup{d(x, y) :

µ(B(y, d(x, y))) ≤ 2−jCoµ(B)} where the sup is taken over all x ∈ X . Then we



The fractional integral between weighted Orlicz and BMOφ spaces . . . 479

get

∫

B
Qγ(x, y) dµ(x) ≤

∞
∑

j=0

∫

Ωj−Ωj+1

Qγ(x, y) dµ(x)

≤ C

∞
∑

j=0

(2−jµ(B))γ−1µ(Ωj)

≤ C

∞
∑

j=0

2−j(γ−1)µ(B)γ−12−jµ(B)

≤ Cµ(B)γ
∞
∑

j=0

2−jγ ≤ Cµ(B)γ .

Using these facts we obtain

(4.5)

∫

B

|I1 (x)|dµ(x) ≤ C

∫

B̃
|f(y)|

∫

B
Qγ(x, y) dµ(x) dµ(y)

≤ Cµ(B)γ
∫

B̃
|f(y)| dµ(y).

Since (w, v) ∈ Cγ(φ̃, β) the last expression is bounded by

Cµ(B)γ+β+1 φ−1(1/µ(B)) inf
B

w‖f/v‖φ.

On the other hand, if x ∈ B and y ∈ X − B̃, proceeding as in (4.4) we have that

|Qγ(x, y)− Qγ(xB , y)| ≤ C
µ(B)1/α

µ(B(xB , d(xB , y)))1−γ+1/α
.

Since (w, v) ∈ Cγ(φ̃, β) we get

(4.6)

|I2(x)| ≤ Cµ(B)1/α
∫

X−B̃

|f(y)|

µ(B(xB , d(xB , y)))1−γ+1/α
dµ(y)

≤ Cµ(B)1/α‖f/v‖φ

∥

∥

∥

∥

vχX−B̃

µ(B(xB , d(xB , .)))1−γ+1/α

∥

∥

∥

∥

φ̃

≤ Cµ(B)β+γφ−1(1/µ(B)) inf
B

w‖f/v‖φ < ∞.

So, from the estimates for I(x) and aB , we get |Ĩγf(x)| < ∞ a.e. x ∈ X .
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Now we are going to prove the boundedness result for Ĩγ . From the decompo-

sition of Ĩγf(x) as I(x) + aB and the estimates (4.5) and (4.6), we can write
∫

B

∣

∣

∣
Ĩγf(x)− aB

∣

∣

∣
dµ(x) =

∫

B
|I(x)| dµ(x)

≤

∫

B
|I1(x)| dµ(x) +

∫

B
|I2(x)| dµ(x)

≤ Cµ(B)β+γ+1φ−1(1/µ(B)) inf
B

w‖f/v‖φ

which proves (3.7) since
∫

B

∣

∣

∣
Ĩγf(x)− mB(Ĩγ)

∣

∣

∣
dµ(x) ≤ C

∫

B

∣

∣

∣
Ĩγf(x)− aB

∣

∣

∣
dµ(x)

≤ Cµ(B)β+γ+1φ−1(1/µ(B)) inf
B

w‖f/v‖φ.

This completes the fact that Ĩγ is a bounded linear operator Ĩγ from Lφ,v into

L
φ
w(β, γ). �

In order to prove Theorem 3.9, we introduce two tools. First, let the function
Kγ for γ ∈ (0, 1) be defined by

Kγ(x, z, y) =



















η(x, y)α(γ−1) − η(z, y)α(γ−1) if x 6= y and z 6= y,

µ({x})γ−1 − η(z, y)α(γ−1) if x = y and z 6= y,

η(x, y)α(γ−1) − µ({z})γ−1 if x 6= y and z = y,

0 if x = y = z,

for x, y, and z in X .

It is easy to see that the left hand side of (3.7) is equivalent to the following
expression involving Kγ

(4.7)
‖(1/w)χB‖∞

µ(B)β+γ+2φ−1(1/µ(B))

∫

B

∫

B

∣

∣

∣

∣

∫

X
Kγ(x, z, y)f(y) dµ(y)

∣

∣

∣

∣

dµ(z) dµ(x).

Now, we introduce a quasi-distance naturally associated to (X, d, µ). Let δ :
X × X → R be defined by

δ(x, y) =

{

µ(B(x, d(x, y))) if x 6= y,

0 if x = y.

It is easy to see (see [MST]) that the function δ satisfies

(i) δ(x, y) ≥ 0 and δ(x, y) = 0 if and only if x = y,
(ii) δ(x, y) ≤ Aδ(y, x) and
(iii) δ(x, y) ≤ A2(δ(x, z) + δ(y, z)) for every x, y, and z in X ,
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where A is the doubling constant of µ with the quasi-metric d.

We observe that δ(x, y) does not necessarily satisfy a symmetric condition as d.
The function δ is called the non-necessarily symmetric quasi-distance associated
to (X, d, µ). We denote by Bδ(x, r) the set {y : δ(x, y) < r}. The above conditions
on δ imply the existence of a constant D such that

(4.9) 0 < µ(Bδ(x, 2Kr)) ≤ D µ(Bδ(x, r)) < ∞.

In [MST] it is also proved that δ has the following properties:

(i) Bδ(x, r) = {x}, if 0 < r < µ({x}),
(ii) µ(Bδ(x, r)) ≤ r, if µ({x}) ≤ r,
(iii) Bδ(x, r) = X , if µ(X) ≤ r,
(iv) A−2r ≤ µ(Bδ(x, r)), if r < µ(X).

In the proof of Theorem 3.9 we need the next lemma, which is a slight modifi-
cation of Lemma 2.9 in [BS] for the case of a non-symmetric quasi-distance δ, so
the proof is omitted here.

4.10 Lemma. Let (X, δ, µ) be a space of homogeneous type with δ given by
(4.8). For each γ ∈ (0, 1) there exist two constants, Ko and C, depending only
on γ and the constants of the space such that, for every ball B = Bδ(xB , R)
satisfying (2KA)−1µ({xB}) ≤ R ≤ K−1

o µ(X), the inequality

(4.11)
1

µ(B∗)2

∫

B∗

∫

B∗

∣

∣

∣

∣

∫

B
Kγ(x, z, y)f(y)dµ(y)

∣

∣

∣

∣

dµ(z)dµ(x)

≥ C
1

µ(B)1−γ

∫

B
f(x)dµ(x)

holds with B∗ = Bδ(xB , KoR) for every non negative function f .

Proof of Theorem 3.9: Since φ̃ is of lower type q′ and β < 1/q − γ + 1/α, by
Lemma 2.7 we only need to estimate

(4.12)
‖(1/w)χB‖

µ(B)β
φ̃−1(1/µ(B))‖vχB‖φ̃ ≤ C.

Let us first give an outline of the proof that is based on the following steps:

(a) The results holds if we have (X, δ, µ) in place of (X, d, µ).

(b) If condition (4.12) holds for δ-balls then it holds for d-balls.

(c) If (3.7) holds with d-balls then it holds with δ-balls.

To prove (a), suppose that (3.7) holds with δ-balls and let B = Bδ(xB , R) be a
ball such that R ≤ K−1

o µ(X), where Ko is the same constant as in Lemma 4.10.
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If (2KA)−1µ({xB}) ≤ R from that lemma, (4.7) and the doubling property of µ
we have

‖(1/w)χB‖∞
µ(B)1−γ

∫

B
|f(x)| dµ(x)

≤
‖(1/w)χB∗‖∞

µ(B∗)2

∫

B∗

∫

B∗

∣

∣

∣

∣

∫

B
Kγ(x, z, y)f(y)dµ(y)

∣

∣

∣

∣

dµ(z) dµ(x)

≤ Cµ(B)β+γφ−1(1/µ(B))‖f/v‖φ

where B∗ = Bδ(xB , KoR). Then, the operator T defined as

T (g) =

∫

B
g(x)v(x) dµ(x)

satisfies

|T (f/v)| =

∣

∣

∣

∣

∫

B
f(x) dµ(x)

∣

∣

∣

∣

≤ Cµ(B)βφ−1(1/µ(B)) inf
B

w‖f/v‖φ

for every f such that f/v ∈ Lφ. So T belongs to (Lφ)
∗ = Lφ̃ and we can write

‖vχB‖φ̃ = sup
‖f/v‖φ≤1

|T (f/v)| ≤ Cµ(B)β+1φ−1(1/µ(B)) inf
B

w

which proves the result for the case of δ-balls, with (2KA)−1µ({xB}) ≤ R ≤
K−1

o µ(X).

Now, suppose R ≤ (2KA)−1µ({xB}) ≤ K−1
o µ(X). If K−1

o µ(X) < µ({xB}),
by (i) of normality properties of δ (see after 4.9) we have that B(xB , R) = {xB}.

Then we can choose R̃ such that (2KA)−1µ({xB}) ≤ R̃ ≤ K−1
o µ(X) < µ({xB})

and the conclusion follows from the above case since B(xB , R̃) = B(xB , R) =
{xB}.
On the other hand, if µ({xB}) ≤ K−1

o µ(X), we get the conclusion from the first

case by taking R̃ such that µ({xB})(2KA)−1 < R̃ < µ({xB}), since B(xB , R) =

B(xB , R̃) = {xB}.

Now we prove (b). Let S be any positive number and R̃ = µ(Bd(xB , S)). Then

(4.13) Bd(xB , S) ⊂ B̄δ(xB , R̃) ⊂ Bδ(xB , 2R̃)

where B̄δ(xB , R̃) = {y : δ(xB , y) ≤ R̃}. Moreover, since (X, δ, µ) is a normal
space of homogeneous type we have that

(4.14) µ(Bδ(xB , 2R̃)) ≃ µ(Bδ(xB , R̃)) ≃ R̃ = µ(Bd(xB , S)).
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Since (4.12) holds for any δ-ball it holds for Bδ(xB , 2R̃). From (4.13) and (4.14)
we obtain

‖(1/w)χBd(xB,S)‖∞

µ(Bd(xB , S))β
φ̃−1(1/µ(Bd(xB , S))‖vχBd(xB ,2KS))‖φ̃ ≤ C

for all s > 0, which says that (w, v) ∈ C(φ̃, β) with respect to d.

Finally we prove (c). If S = sup{d(xB , y) : y ∈ B̄δ(xB , R)} then, from
Lemma 2.5 of [MT] we have that

(4.15) Bd(xB , S) ⊂ B̄δ(xB , R) ⊂ B̄d(xB , S).

Then we obtain that Bδ(xB , R) ⊂ Bd(xB , 2S) and

(4.16) µ(Bδ(xB , R)) ≤ Cµ(Bd(xB , 2S)).

On the other hand, since µ satisfies the doubling condition, from (4.15), (1.1)
and (4.9) we have that

(4.17)
µ(Bd(xB , 2S)) ≤ Aµ(Bd(xB , S)) ≤ Aµ(Bδ(xB , 2R))

≤ ADµ(Bδ(xB , R)).

From (4.16) and (4.17) we obtain that

(4.18) µ(Bδ(xB , R)) ≃ Cµ(Bd(xB , 2S)).

Now, since (3.7) holds for any d-ball, it holds for Bd(xB , 2S) and from (4.18)
we have

‖(1/w)χBδ(xB ,R)‖∞

µ(Bδ(xB , R))β+γ+1φ−1(1/µ(Bδ(xB , R)))

×

∫

Bδ(xB ,R)
|Ĩγf(x) − mBδ(xB ,R)(Ĩγf)| dµ(x)

≤ C
‖(1/w)χBd(xB ,2S)‖∞

µ(Bd(xB , 2S))β+γ+1φ−1(1/µ(Bd(xB , 2S)))

×

∫

Bd(xB ,2S)
|Ĩγf(x)− mBd(xB ,2S)(Ĩγf)| dµ(x)

≤ C‖f/v‖φ.

Then we obtain (4.12) for δ-balls. We are done. �

4.19 Remark. From Theorem 3.9, if µ(X) < ∞, we have that Cγ(φ̃, β) holds
with R smaller than a fraction of µ(X). But, if R > µ(X) then, by (iii) of
normality properties of δ, Bδ(xB , R) = X and if Cµ(X) ≤ R ≤ µ(X), by (iv),
A−2K−1

o µ(X) ≤ A−2R ≤ µ(Bδ(xB , R)) ≤ µ(X) and thus µ(Bδ(xB , R)) ≃ µ(X).
So the first part of Remark 3.11 follows.
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5. Examples

Now, we give some examples of pairs of weights belonging to Cγ(φ, β).

• Let us first consider X = R
n, d the Euclidean metric, φ(t) = tp

′

and µ the
Lebesgue measure. Then, the condition C(φ, β) is the condition H(p, γn, nβ −
n/p+nγ) defined in [P] and, consequently, the pairs given there belong to Cγ(φ, β).

• Let us now consider X =

{

1

2i

}

i∈N

, d the Euclidean metric and µ such that

µ({1/2i}) = 1/2i. It is easy to check that (X, d, µ) is a space of homogeneous
type. We shall prove that the pair (w, v) defined by

w(x) = |x|θ−β and v(x) = |x|θ,

belongs to Cγ(φ, β) for every γ in (0, 1), with φ(t) = tα, α > 1 and 1/α ≤ θ ≤ β.
Since µ(X) < ∞, from Remark 2.8 we only need to estimate (2.4) for every ball

B ⊂ X . Let us first consider B(
1

2i0
, R) =

{

1

2i0

}

, then

‖(1/w)χB‖∞

µ(B)β+1/α

(
∫

B
vα
)1/α

= C
1

2i0(β−θ)
2i0(β+1/α)

(

1

2i0(αθ+1)

)1/α

≤ C.

Let us now suppose that B(
1

2i0
, R) = {x1, . . . , xn}, with xi ∈ X . Then R <

1

2i0
and

µ(B) =

i0+n
∑

k=i0

1

2k
=
1

2i0

(

2−
1

2n

)

.

Furthermore

∫

B
vα =

i0+n
∑

k=i0

1

2k(θα+1)
=

1

2i0(θα+1)

2(n+1)(θα+1) − 1

2θα+1 − 1

1

2n(θα+1)
.

Then

‖(1/w)χB‖∞

µ(B)β+1/α

(
∫

B
vα
)1/α

= C
2−io(β−θ)

2−io(β+1/α) (2− (1/2n))β+1/α

1

2io(θ+1/α)

(

2θα+1

2θα+1 − 1

)1/α

≤ C

(

2θα+1

2θα+1 − 1

)1/α
1

(2− (1/2n))β+1/α
.
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Since 2 − 1/2n ≥ C > 0 the last term in the above expression is bounded by
a constant.

On the other hand, if B(
1

2i0
, R) contains infinitely many xi ∈ X , then R ≥

1

2i0
and if io ≥ 3, there exists m ∈ N, m ≤ i0 − 2 such that 1/2

m+1 − 1/2i0 ≤ R ≤
1/2m − 1/2i0. Then

µ(B) =

∞
∑

k=m+1

1

2k
=
1

2m
and inf

B
w =

1

2(m+1)(θ−β)
.

On the other hand
∫

B
vα =

∞
∑

k=m+1

1

2k(θα+1)
=

1

2m(θα+1)2θα+1 − 1
.

Thus

(5.1)
‖(1/w)χB‖∞

µ(B)β+1/α

(
∫

B
vα
)1/α

≤ C
2(θ−β)

(

2θα+1 − 1
)1/α

.

If io = 2 or io = 1, then B(1/2io , R) = X . So, we can take m = 0 and the
same estimates hold. This proves that (w, v) ∈ Cγ(φ, β).

• With the same space (X, d, µ) from the previous example, let us now consider
φ defined by

φ(t) =

{

tp 0 ≤ t ≤ 1

tq t > 1
with 1 < p < q.

It is not too hard to see that φ is of lower type p and of upper type q. The pair
(w, v) defined by

w(x) = |x|η and v(x) = |x|θ

with −1/p < η < 0, θ > 0 and −1/q < β < −1/p − η belongs to Cγ(φ, β) for

every γ in (0, 1). In fact, let us first suppose that B(1/2i0 , R) = {x1, . . . , xn},

with xi ∈ X . In the previous example we obtain that µ(B) =
1

2i0
(2 − 1/2n).

From this estimate and the fact that φ is of lower type p and of upper type q, we
get

∫

B̃
φ

(

v(y)φ−1(1/µ(B))

infB wµ(B)β

)

=

i0+n
∑

k=i0

φ

(

2−kθφ−1(1/µ(B))

2−i0η(2 − 1/2n)β2−i0β

)

µ({2−k})

≤ C
2i0((β+η)p+1)

(2 − 1/2n)βq+1

i0+n
∑

k=i0

2−k(θp+1)

≤ C
2i0((β+η−θ)p)

(2 − 1/2n)(βq+1)

1

(1− 2−(θp+1))2θp+1
≤ C.
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If B(1/2i0 , R) contains infinitely many xi ∈ X , proceeding as in the above

example, we get that µ(B) = 1/2m and infB w = 1/2(m+1)η. Then

∫

B̃
φ

(

v(y)φ−1(1/µ(B))

infB wµ(B)β

)

=

∞
∑

k=m+1

φ

(

2−kθφ−1(1/µ(B))

2−η(m+1)2−mβ

)

µ(2−k)

≤ C2m+m(β+η)p+ηp
∞
∑

k=m+1

2−k(θp+1)

≤ C2m(β+η−θ)p+ηp ≤ C.

This completes the proof. �
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