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Čech-completeness and ultracompleteness in “nice” spaces

Miguel López de Luna, Vladimir V. Tkachuk1

Abstract. We prove that if Xn is a union of n subspaces of pointwise countable type then
the space X is of pointwise countable type. If Xω is a countable union of ultracomplete
spaces, the space Xω is ultracomplete. We give, under CH, an example of a Čech-
complete, countably compact and non-ultracomplete space, giving thus a partial answer

to a question asked in [BY2].

Keywords: ultracompleteness, Čech-completeness, countable type, pointwise countable
type

Classification: Primary 54H11, 54C10, 54D06; Secondary 54D25, 54C25

0. Introduction

Given a space X and an n ∈ N, we say that a property P is n-additive in
power n, if X ∈ P in case Xn = X1 ∪ X2 ∪ . . . ∪ Xn, where Xi ∈ P for all
i ≤ n. We will say that P is additive in finite powers if it is n-additive in power
n for every n ∈ N. In [Tk] it was proved that many non-additive properties
are additive in finite powers. In particular, it was shown that weight, character,
pseudocharacter and tightness are additive in finite powers. The paper [BGT]
provides some examples where metrizability is not 2-additive in power 2. In [Lo]
it was established that there are models of ZFC where the Čech-completeness is
not additive in power 2. Thus it is a natural question to ask which completeness-
like properties are additive in finite powers. In this paper we prove additivity in
finite powers for pointwise countable type.
In 1987, V.I. Ponomarev and V.V. Tkachuk introduced in [PT] the concept

of strongly complete spaces as those X which have countable character in βX .
In [BY1] the same property was defined internally and was called ultracomplete-
ness. Clearly, ultracompleteness is a stronger property than Čech-completeness
and it is a consequence of local compactness. Hence many categorical proper-
ties of ultracompleteness are similar to the properties of Čech-completeness. In
particular, ultracompleteness is hereditary with respect to closed subsets and it
is not additive. In this paper we prove that ultracompleteness is countably ad-
ditive in Xω, that is, if Xω =

⋃
i∈ω Xi and each Xi is ultracomplete, then the

1 Research supported by Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT) de México,
grant 400200-5-3012P-E.
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space Xω is ultracomplete. We also establish that any ultracomplete topological
group is locally compact. Under CH we answer positively a question posed by
Buhagiar and Yoshioka [BY2], proving the existence of a Čech-complete count-
ably compact non-ultracomplete space. We also show that in metrizable spaces
the Čech-completeness is additive and ultracompleteness is not.

1. Notation and terminology

Throughout this paper all spaces are assumed to be Tychonoff. Given a space
X , we denote its topology by T (X) and T ∗(X) = {U ∈ T (X) : U 6= ∅}. The
family of clopen non-empty subsets of X will be denoted by T ∗

c (X). If A ⊂ X
then T (A, X) = {U ∈ T (X) : A ⊂ U} and T (x, X) = T ({x}, X). The space X
is ultracomplete if χ(X, cX) ≤ ω for every compactification cX of the space X .
Following a Russian practice we say that a family is centered if it has the finite
intersection property. The sequence γ = {γn}n∈N of open covers of X is called
complete if, given a centered family H of subsets of X such that for every n ∈ N,
there exist H ∈ H and U ∈ γn with H ⊂ U , we have

⋂
H =

⋂
{H : H ∈ H} 6= ∅.

The space X is Čech-complete if it has a complete sequence of open covers and
X is of (pointwise) countable type if for any compact set F ⊂ X (for any x ∈ X)
there exists a compact K ⊂ X such that F ⊂ K (x ∈ K) and χ(K, X) ≤ ω.

Given an A ⊂ X , we denote its closure in βX by A
βX
. A collection P ⊂ T ∗(X)

is a π-base in X if given a U ∈ T ∗(X), there exists a V ∈ P such that V ⊂ U .
A subset A ⊂ X is bounded in X if any continuous real-valued function on X is
bounded on A. If κ is a cardinal number, the Kowalsky hedgehog with κ spines
is formed from the union of κ copies of the unit interval [0, 1] by identifying the
zero points of each interval. Its metric is defined by d(x, y) = |x − y| if x and y
belong to the same interval (also called spine), and d(x, y) = x+y otherwise. The
point obtained from identifying the zeros of the spines is called the vertex of the
hedgehog. A normal space X is an F -space if any two disjoint open Fσ subsets of
X have disjoint closures in X . If x ∈ X then xn = (x1, x2, . . . , xn) ∈ Xn where
xi = x for all i ≤ n.

2. Additivity in powers

We will prove, among other things, that pointwise countable type is additive
in finite powers. It turns out that, in metrizable spaces, the Čech-completeness is
additive. We also prove that any locally ultracomplete topological group is locally
compact.

The next result is well-known (see for example [Ar]).

2.1 Theorem. Let X be a topological space.

(i) If X is of pointwise countable type then X is a union of Gδ-subsets in

every compactification cX of the space X .
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(ii) LetK be a compact space which containsX . If X is a union of Gδ-subsets

in K then X is of pointwise countable type.

2.2 Theorem. Let Xn = X1 ∪X2 ∪ . . .∪Xn where Xi is of pointwise countable

type for all i ≤ n. Then the space X is of pointwise countable type.

Proof: Before taking to the proof, we will establish the following result.

2.3 Lemma. If X = A1 ∪A2 ∪ . . .∪An where Ai is of pointwise countable type

for all i ∈ {1, 2, . . . , n} then
⋂n

i=1Ai is of pointwise countable type.

Proof: By Theorem 2.1(ii), it is sufficient to prove that
⋂n

i=1 Ai is a union of

Gδ-subsets of the compact set P =
⋂n

i=1Ai
βX
. Since each Ai is of pointwise

countable type, we have Ai =
⋃

α∈Ii
Gi

α where Gi
α is a Gδ-subspace of Ai

βX

for all α ∈ Ii and i = 1, 2, . . . , n. Let A′
i = Ai ∩ P for i ≤ n. We have

A′
i =

⋃
α∈Ii

(
Gi

α ∩ P
)
, and hence the subspace A′

i is a union of Gδ-subsets of

the compact space P for every i ≤ n. Since
⋃n

i=1A′
i =

⋃n
i=1(Ai ∩ P ) = P ∩

(⋃n
i=1 Ai

)
= X ∩P = X ∩

(⋂n
i=1 Ai

βX)
=
⋂n

i=1Ai, the set
⋂n

i=1Ai is a union of
Gδ-subsets of P and hence it is of pointwise countable type.

We will prove Theorem 2.2 by induction on n. The case n = 1 is clear. Suppose
that its conclusion is valid for every m < n.

Given an x0 ∈ X , consider the subspace of pointwise countable type F =
⋂n

i=1Xi

and the closed subset Y = {(xn−1
0 , y) : y ∈ X}. If Y ⊂ F then Y is of pointwise

countable type. Hence the space X is of pointwise countable type because X and
Y are homeomorphic.

If Y − F 6= ∅, we pick (xn−1
0 , y) ∈ Y − F . There are U ∈ T (x0, X), V ∈ T (y, X)

and i0 ∈ {1, 2, . . . , n} such that (Un−1×V )∩Xi0 = ∅. Without loss of generality,
we may assume that i0 = 1.

Since Un−1×V ⊂ X2∪X3∪. . .∪Xn, we obtain Un−1×V = X
′

2∪X
′

3∪. . .∪X
′

n where

X
′

j = Xj∩(U
n−1×V ) is of pointwise countable type for 2 ≤ j ≤ n. As Un−1×{y}

is a closed subspace of Un−1 × V , we have Un−1 × {y} = X
′′

2 ∪ X
′′

3 ∪ . . . ∪ X
′′

n

where the space X
′′

j = X
′

j ∩ (U
n−1 × {y}) is of pointwise countable type for all

j = 2, 3, . . . , n. Since Un−1×{y} and Un−1 are homeomorphic we conclude that

Un−1 = X
′′′

2 ∪X
′′′

3 ∪ . . .∪X
′′′

n where all X
′′′

j are of pointwise countable type. By

the inductive hypothesis the open subspace U ∋ x0 is of pointwise countable type.
Being x0 ∈ X an arbitrary point, the space X is of locally pointwise countable
type, so it is of pointwise countable type. �

2.4 Corollary. If Xn = X1 ∪ X2 ∪ . . . ∪ Xn where Xi is locally Čech-complete

for i ≤ n, then X is of pointwise countable type.
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2.5 Theorem. Let X = A1∪A2∪. . .∪An where Ai is an ultracomplete subspace

of X for all i = 1, 2, . . . , n. If X = Ai for all i ∈ {1, 2, . . . , n}, then X is

ultracomplete.

Proof: Since X = Ai, we have Ai
βX
= βX . For each i ∈ {1, 2, . . . , n}, we

choose a countable base Ui ⊂ T (βX) for Ai. Consider the family

W = {U1 ∪ U2 ∪ . . . ∪ Un : Ui ∈ Ui for every i = 1, 2, . . . , n}.

It is clear that W ⊂ T (βX) and W is countable. We shall prove that W is a
base for X in βX . If V ∈ T (X, βX) then Ai ⊂ V for all i ≤ n. Hence for each
i ∈ {1, 2, . . . , n} there exists Uj(i) ∈ Ui for which Ai ⊂ Uj(i) ⊂ V . This implies

that
⋃n

i=1 Uj(i) ∈ W and

X =
n⋃

i=1

Ai ⊂
n⋃

i=1

Uj(i) ⊂ V.

�

If not all subspaces Ai are dense in X then X is not necessarily ultracomplete.
The following corollary shows what we can have in general case.

2.6 Corollary. Suppose that X = A1∪A2 ∪ . . .∪An, where Ai is ultracomplete

for all i = 1, 2, . . . , n. Then there exists G ∈ T ∗(X) such that G is ultracomplete.

Proof: We use induction on n. The case n = 1 is obvious. Suppose that n ≥ 2
and our assertion is true for every k < n. If X = Ai for all i ≤ n, Theorem 2.5
shows that X is ultracomplete and hence, we can take G = X , so the assertion is
proved. Assume that there is an i0 ∈ {1, 2, . . . , n} such that X 6= Ai0 . Without

loss of generality, we may suppose that i0 = 1. Since X−A1 ⊂ A2∪A3∪ . . .∪An

there exists W ∈ T ∗(X) for which W ⊂ W ⊂ X − A1 ⊂ A2 ∪ A3 ∪ . . . ∪ An.
Therefore, W = A′

2 ∪ A′
3 ∪ . . . ∪ A′

n where A′
j = Aj ∩ W is ultracomplete for

2 ≤ j ≤ n. By the inductive hypothesis, there exists H = W ∩ U 6= ∅ for some
U ∈ T ∗(X) such that H is ultracomplete. There exists G ∈ T ∗(X) for which
G ⊂ G ⊂ W ∩ U ⊂ H , because W ∩ U ∈ T ∗(X). Since H is ultracomplete, the
subspace G is ultracomplete as well. �

2.7 Theorem. Let X be a metrizable space. Given an n ∈ N, suppose that

Xn = X1∪X2∪. . .∪Xn where eachXi is ultracomplete. ThenX is ultracomplete.

Proof: By Corollary 11 of [PT] there is a compact Ki ⊂ Xi such that Xi−Ki is
locally compact. Denote by pj : X

n → X the projection of Xn onto its j-th factor
and let K =

⋃n
i,j=1 pj(Ki). The setK ⊂ X is compact and Y n∩(K1∪. . .∪Kn) =

∅, where Y = X − K. If Yi = Xi ∩ Y n then Yi is an open subset of the locally
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compact spaceXi−Ki. Thus, Y
n is a union of ≤ n locally compact spaces. Apply

Corollary 1.4 of [Tk] to conclude that Y is locally compact. As a consequence, X
is a metrizable space whose points of non-local compactness lie inside a compact
set K. Hence X is ultracomplete by Corollary 11 from [PT]. �

2.8 Theorem. If Xω is a countable union of ultracomplete subspaces, then the

space Xω is ultracomplete.

Proof: Call a subset Z ⊂ Xω strongly dense in Xω if pA(Z) = XA for any finite

A ⊂ ω; here pA : X
ω → XA is the natural projection onto the face XA. This

concept belongs to Tkachenko [Tk1] as well as the following

Lemma. If Z is a strongly dense in Xω then the map pA : Z → XA is open for

any finite A ⊂ ω.

Tkachenko also proved in [Tk1, Lemma 2] that if Y is any space such that
Y ω =

⋃
{Zi : i ∈ ω} then either some Zi is strongly dense in Y ω or there exists a

finite B ⊂ ω and a point z ∈ Y B such that Zi∩p−1B (z) is strongly dense in p−1B (z)
which is identified with Y ω in an obvious way. An easy consequence is that there
is always an i ∈ ω and a closed subspace F ⊂ Zi such that F maps openly and
continuously onto Y .
Now, assume that Xω =

⋃
{Xi : i ∈ ω} where Xi is ultracomplete for all

i ∈ ω. Letting Y = Xω we obtain Y ω = (Xω)ω = Xω =
⋃

i∈ω Xi. Applying
the mentioned results of Tkachenko we can find i ∈ ω and a closed F ⊂ Xi

such that there is an open continuous map of F onto Y = Xω. The space F
is ultracomplete being a closed subspace of an ultracomplete space Xi. Since
an open continuous image of an ultracomplete space is ultracomplete, the space
Y = Xω is also ultracomplete. �

Our next proposition shows that Čech-completeness is finitely additive in me-
trizable spaces. The original proof given by the authors was somewhat technical.
With the permission of O. Okunev, we present here the proof he suggested after
being informed about this result.

2.9 Proposition. Let X be a metrizable space. If X = A1∪A2∪ . . .∪An where

Ai is Čech-complete for all i ≤ n, then X is Čech-complete.

Proof: Let us consider the completion X̃ of the space X . Since X̃ is a metric

space, each subspace Ai with i ≤ n is a Gδ-subset of X̃. A finite union of Gδ-sets

is a Gδ-set, so the space X is a Gδ-subset of X̃. Therefore X is Čech-complete.
�

2.10 Example. There exists a non-ultracomplete separable metric space which

is a union of two ultracomplete subspaces.

Proof: Let H be the Kowalsky hedgehog with countably many spines. Then H
is locally compact at all points except the vertex h. By [PT, Corollary 11], the
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space H is ultracomplete. Now let Hi be a homeomorphic copy of H for each
i ∈ ω with hi ∈ Hi being the respective copy of h.

The space X =
⊕

i∈ω Hi is separable and metrizable and the set {hi : i ∈ ω}
of its points of non-local compactness is not compact. Apply again Corollary 11
from [PT] to conclude that X is not ultracomplete. However, X = A ∪ B, where
A = {hi : i ∈ ω} and B = X−A and both subspaces A and B are locally compact
and hence ultracomplete. �

2.11 Theorem. Let G be topological group. If there is an open non-empty
U ⊂ G such that U is ultracomplete then G is locally compact.

Proof: The set of points of local compactness is open in any space. Thus, if
the set of points of local compactness in U is non-empty, then it meets U and
therefore there is a point x of local compactness in U . It is clear that x will be
point of local compactness in G. By homogeneity of G, all points of G will be
points of local compactness, i.e., G is locally compact.

If there are no points of local compactness in U then U is bounded in U [PT], i.e.,
U is pseudocompact. Observe that U is Čech-complete and hence there exists
a compact K ⊂ G with χ(K, G) ≤ ω. It was proved in [Pa] that such groups
are paracompact and hence any pseudocompact closed subspace of G has to be
compact. As a consequence U is compact which is a contradiction. �

2.12 Corollary. Any locally ultracomplete topological group is locally compact.

2.13 Corollary. If a topological group G is a finite union of its ultracomplete
subspaces then G is locally compact.

Proof: By Corollary 2.6 there is an open non-empty U ⊂ G such that U is
ultracomplete. By Theorem 2.11 G is locally compact. �

3. An example of a countably compact, Čech-complete but not

ultracomplete space

Under CH, we give an example of a countably compact subspace of βω, which is
Čech-complete but not ultracomplete, thus answering a question posed in [BY2].
Let βω be the Stone-Čech compactification of ω. We will deal with the remain-

der ω∗ = βω − ω. A point x in a topological space X is a P -point of X if every
Gδ-set containing x is a neighborhood of x. It is known that, under CH, there
are P -points in ω∗.

3.1 Lemma. Assuming CH, take any P -point p ∈ ω∗. Then there exist families

{Uβ : β < ω1}, {Vβ : β < ω1} ⊂ T ∗
c (ω

∗) such that

(1) Uβ ⊂ Uβ′ Vβ ⊂ Vβ′ if β < β′ < ω1;

(2)
(⋃

β<ω1
Uβ

)
∩
(⋃

β<ω1
Vβ

)
= ∅;
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(3)
(⋃

β<ω1
Uβ

)
∪
(⋃

β<ω1
Vβ

)
= ω∗;

(4) p ∈
(⋃

β<ω1
Uβ

)
∩
(⋃

β<ω1
Vβ

)
−
((⋃

β<ω1
Uβ

)
∪
(⋃

β<ω1
Vβ

))
.

Proof: Let O = {Oα : α < ω1} ⊂ T ∗
c (ω

∗) be a π-base in ω∗ with p /∈ Oα for
every α < ω1. Take a local base {Wα : α < ω1} ⊂ T ∗

c (ω
∗) at p for which, if α < α′

thenWα′ ⊂ Wα. Take any x, y ∈ ω∗−{p}with x 6= y. ConsiderW ′
0, W

′′
0 ∈ T ∗

c (ω
∗)

such that W ′
0 ⊂ W0, W ′′

0 ⊂ W0, W ′
0 ∩ W ′′

0 = ∅ and
(
W ′
0 ∪ W ′′

0

)
∩ {x, y, p} = ∅.

There are U ′
0, V

′
0 ∈ T ∗

c (ω
∗) for which x ∈ U ′

0, y ∈ V ′
0, p /∈

(
U ′
0 ∪ V ′

0

)
, U ′
0 ∩ V ′

0 = ∅

and
(
U ′
0 ∪ V ′

0

)
∩
(
W ′
0 ∪ W ′′

0

)
= ∅. Let U ′′

0 = U ′
0 ∪ W ′

0, V ′′
0 = V ′

0 ∪ W ′′
0 . In case(

U ′′
0 ∪ V ′′

0

)
∩ O0 6= ∅, let U0 = U ′′

0 , V0 = V ′′
0 . Otherwise, take U0 = U ′′

0 ∪ O0 and

V0 = V ′′
0 .

Assume that, for some α < ω1, we constructed families {Uβ : β < α} ⊂ T ∗
c (ω

∗),
{Vβ : β < α} ⊂ T ∗

c (ω
∗) such that

(1α) Uβ ⊂ Uβ′ Vβ ⊂ Vβ′ if β < β′ < α;

(2α)
(⋃

β<α Uβ

)
∩
(⋃

β<α Vβ

)
= ∅ and p /∈

(⋃
β<α Uβ

)
∪
(⋃

β<α Vβ

)
;

(3α)
(
Uβ ∪ Vβ

)
∩ Oβ 6= ∅ for all β < α;

(4α) Uβ ∩ Wβ 6= ∅ and Vβ ∩ Wβ 6= ∅ for all β < α.

Let Fα =
⋃

β<α Uβ and Gα =
⋃

β<α Vβ . Being ω∗ an F -space, we have Fα ∩

Gα = ∅. Since p /∈
(⋃

β<α Uβ

)
∪
(⋃

β<α Vβ

)
and p is a P -point, there exists

W ∈ T (p, ω∗) withW ⊂
(
ω∗ −

⋃
β<α Uβ

)
∩
(
ω∗ −

⋃
β<α Vβ

)
. As a consequence,

W ∩

((
⋃

β<α

Uβ

)
∪

(
⋃

β<α

Vβ

))
= ∅.

Hence, p /∈ Fα ∪ Gα and there exists βα ≥ α such that Wβα
⊂ W .

By normality of ω∗, we can choose clopen, disjoint sets U ′
α, V ′

α ⊂ ω∗ for which
Fα ⊂ U ′

α, Gα ⊂ V ′
α, and p /∈

(
U ′

α ∪ V ′
α

)
. Let W ′, W ′′ ⊂ Wβα

be disjoint, clopen

sets for which p /∈ W ′ ∪ W ′′ and
(
W ′ ∪ W ′′

)
∩
(
U ′

α ∪ V ′
α

)
= ∅. Define U ′′

α =

U ′
α ∪ W ′, V ′′

α = V ′
α ∪ W ′′. To end our construction, in case

(
U ′′

α ∪ V ′′
α

)
∩ Oα 6= ∅,

we take Uα = U ′′
α and Vα = V ′′

α . Otherwise, we choose Uα = U ′′
α ∪ Oα and

Vα = V ′′
α . It is easy to see that the properties (1α+1)-(4α+1) are fulfilled and

hence the inductive construction goes on until ω1.

As a result, we obtain families {Uβ : β < ω1} and {Vβ : β < ω1} for which
the properties (1α)-(4α) are fulfilled for all α < ω1. We conclude by showing that
the families {Uα : α < ω1} and {Vα : α < ω1} so obtained satisfy the conditions
of our Lemma. If β < β′ < ω1 then the condition (1β′+1) implies Uβ ⊂ Uβ′ and
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Vβ ⊂ Vβ′ , and hence (1) is fulfilled. The condition (2) is an immediate consequence
of the fact that (2α) holds for all α < ω1. Now, (3) holds because (3α) is true
for each α < ω1. Finally, if U ∈ T (p, ω∗) then Wα ⊂ U for some α < ω1. By
(4α+1) we have Uα ∩ Wα 6= ∅ and therefore

(⋃
{Uβ : β < ω1}

)
∩ U 6= ∅ whence

p ∈
⋃
{Uβ : β < ω1}. Analogously, p ∈

⋃
{Vβ : β < ω1}, that is, the condition (4)

is fulfilled. �

3.2 Example. Under CH there exists a Čech-complete, countably compact, non-

ultracomplete space.

Proof: Let A ⊂ ω∗ be a discrete and countable set. Then A−A is homeomorphic
to ω∗, so we can apply Lemma 3.1 to find a P -point p in the space A − A and
families {Uα : α < ω1}, {Vα : α < ω1} of clopen subsets of A − A which satisfy
the conditions (1), (2), (3) and (4) of Lemma 3.1.

Take X = ω∗ − (F ∪ A) where F =
(
A − A

)
−
⋃

α<ω1
Vα. It is clear that X is

Čech-complete. Let us prove that X is a countably compact, non-ultracomplete
space.

Choose a local base {Wα : α < ω1} ⊂ T ∗
c (A − A) at p for which, if α < α′ then

Wα′ ⊂ Wα. Suppose that X is ultracomplete. Since ω∗ is a compactification of X
and ω∗ −X = F ∪A, there exists a sequence {Kn : n ∈ ω} of compact subspaces
of F ∪ A with Kn ⊂ Kn+1 for all n ∈ ω, which witness the ultracompleteness of
X , i.e., for any compact K ⊂ F ∪A there exists an n ∈ ω such that K ⊂ Kn. Let
An = A ∩Kn. Since An ⊂ A ∪ F , we have A∗

n = An − An ⊂ F . Now, p /∈ A∗
n for

all n ∈ ω. In fact, as A∗
n is open in A−A, if p ∈ A∗

n by condition (4) of Lemma 3.1
we would have A∗

n∩
(⋃

α<ω1
Vα

)
6= ∅, which contradicts A∗

n ⊂ F . From the above

it follows that given an n ∈ ω, there exists αn < ω1 such that Wαn
∩ A∗

n = ∅.
Hence, if α > αn for every n ∈ ω then Wα ∩

(⋃
n<ω A∗

n

)
= ∅. We choose a clopen

set O ⊂ Wα ∩
(⋃

α<ω1
Uα

)
. As O = B −B = B∗ for some B ⊂ A, we obtain that

B ∪ B∗ ⊂ F ∪ A is compact. There exists an n ∈ ω for which B ∪ B∗ ⊂ Kn and
therefore B ⊂ Kn ∩ A = An. Thus B∗ ⊂ A∗

n, which contradicts the choice of O.

To prove that X is countably compact, suppose thatD ⊂ X is a countably infinite
closed discrete subspace of X . Then D−D ⊂ ω∗−X = F ∪A. Assume first that
(D−D)∩A 6= ∅. If a ∈ D ∩A then take a clopen U ⊂ ω∗ such that U ∩A = {a}
and hence U ∩ A = {a}. Since a ∈ D and U ∈ T (a, ω∗) the set D ∩ U has
to be infinite. Therefore the closed set D ∩ U has cardinality 2c which implies
(D ∩U)− (D ∪ {a}) 6= ∅. If x ∈ (D ∩U)− (D ∪ {a}) then x ∈ (D−D)− (F ∪A)
which is a contradiction.

The reasoning above shows that (D−D)∩A = ∅ and hence D−D ⊂ F . Assume

first that D′ = D − A is infinite. Then D′ ∩ A = ∅ and A ∩ D′ = ∅ because
D′−D′ ⊂ D−D ⊂ F ⊂ ω∗−A. Since ω∗ is an F -space, we haveD′∩A = ∅ which is
a contradiction with the fact that the non-empty set D′−D′ is a subset of F ⊂ A.
Thus D −A is finite and E = D ∩A = D ∩ (A−A) ⊂ X ∩ (A−A) =

⋃
α<ω1

Vα.
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The set E is infinite because E = D − (D − A). The family {Vα : α < ω1} is
increasing and E is countable, so E ⊂ Vα for some α < ω1. As a consequence,
E − E ⊂ E ⊂ Vα which contradicts the fact that E − E ⊂ D − D ⊂ F and F is
disjoint from Vα. This last contradiction proves that X is countably compact.

�

4. Open problems

The following questions suggest a further development of the research under-
taken in this paper. They may be difficult or easy, but some new methods are
needed to tackle them.

4.1 Problem. Suppose that X2 = X1 ∪ X2 where Xi is of countable type for

i = 1, 2. Is the space X of countable type?

4.2 Problem. Suppose that X2 = X1 ∪ X2 where Xi is locally Čech-complete

for i = 1, 2. Must X be locally Čech-complete?

4.3 Problem. Suppose that X = X1 ∪ X2 where X is a stratifiable space and
Xi is Čech-complete for i = 1, 2. Must X be Čech-complete?

4.4 Problem. Suppose thatX2 = X1∪X2 whereXi is ultracomplete for i = 1, 2.
Must X be ultracomplete?

4.5 Problem. Suppose thatX2 = X1∪X2 whereXi is ultracomplete for i = 1, 2.
Must X be Čech-complete?

4.6 Problem. Suppose that X2 = X1 ∪ X2 where Xi is locally ultracomplete

for i = 1, 2. Must X be locally ultracomplete?

4.7 Problem. Let X be a pseudocompact ultracomplete space. Must X have
points of local compactness?

4.8 Problem. Let X be a countably compact ultracomplete space. Must X have
points of local compactness?

4.9 Problem. Let X be a countably compact space with βX − X countable.
Must X be ultracomplete?

4.10 Problem. LetX be a homogeneous ultracomplete space. MustX be locally
compact?

4.11 Problem. Let X be a homogeneous countably compact Čech-complete spa-
ce. Must X be ultracomplete?
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