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On D-property of strong Σ spaces

Raushan Z. Buzyakova

Abstract. It is shown that every strong Σ space is a D-space. In particular, it follows
that every paracompact Σ space is a D-space.
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In this paper we will show that any strong Σ space is a D-space. This result
positively answers Borges and Matveev’s question whether any paracompact Σ
space is a D-space. The notion ofD-space was introduced by Eric van Douwen [6].

A neighborhood assignment for a space X is a function ϕ from X to the topol-
ogy of X such that x ∈ ϕ(x) for any x ∈ X . A space X is a D-space, if for any
neighborhood assignment ϕ for X there exists a closed discrete subset D of X

such that X =
⋃

d∈D ϕ(d).

It is natural to ask which spaces possess the D-property. It is known that
σ-compact spaces, metrizable spaces, semi-stratifiable spaces, and paracompact
p-spaces are all D-spaces (see [5], [2]). In [5], DeCaux showed that every finite
product of copies of the Sorgenfrey line is aD-space. The D-property of subspaces
of generalized ordered spaces was studied in [8]. In a recent paper [10] of Fleissner
and Stanley, the authors give conditions under which a subspace of a product of
finitely many ordinals is aD-space. Several interesting questions onD-spaces were
raised by E. van Douwen and W.F. Pfeffer in [7], which was the first published
paper that contained results on D-spaces. Some other results and questions on
D-spaces can be found in [5], [2], [3], [4], [8], [10].
The result in this article is obtained in an attempt to answer E.K. van Douwen’s

question whether each Lindelöf space is aD-space. However, this question remains
unanswered. And, one of approaches to solve this problem could be to consider
continuous images of Lindelöf D-spaces.

Question (A. V. Arhangelskii). Is it true that a continuous image of a Lindelöf
D-space is a D-space?

We consider only Tychonoff spaces. In notation and terminology, we will fol-
low [9].
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A space X is a strong Σ space if there exist a σ-locally-finite family γ of closed
sets in X and a cover K of X by compact subsets, such that for any open set U

containing an element K of K, K ⊆ Γ ⊆ U for some Γ ∈ γ.

The class of strong Σ spaces is wide and it contains all metrizable spaces, σ-
compact spaces, Lindelöf Σ spaces, paracompact Σ spaces, paracompact p-spaces,
Moore spaces, spaces with countable network, as well as spaces with σ-discrete
network (σ spaces). Thus, our result implies that the mentioned spaces are all D-
spaces. In addition, a finite (countable) product of strong Σ spaces is a D-space as
well, since the class of strong Σ spaces is closed with respect to countable products.
Therefore, in particular, the product of a Lindelöf Σ space with a Moore space
is still a D-space. However, as shown in [4], in general case the product of two
D-spaces need not be a D-space.

Theorem. Every strong Σ space X is a D-space.

Proof: Let K and γ be the families from the definition of a strong Σ space.
Represent γ as

⋃

{γn}, where each γn is a locally-finite family of closed sets in
X and γn ⊆ γn+1. Enumerate each γn = {Γn

α}, where α ranges through some
ordinal number.
Let ϕ be an arbitrary neighborhood assignment. We need to find a discrete

closed subset D in X such that X =
⋃

d∈D ϕ(d). Recursively, we will define closed
discrete sets Dn such that D =

⋃

Dn.

Step 0. Set D0 = ∅.

Assume Dm is defined for all 0 < m < n.

Step n. Recursively, we will define finite sets Dn
α such that Dn = (

⋃

Dn
α)∪Dn−1.

Sub-step 0. Set Dn
0 = ∅.

Assume Dn
β is defined for all 0 < β < α.

Sub-step α. Let U =
⋃

{ϕ(d) : d ∈ (
⋃

β<α Dn
β
) ∪ Dn−1}. Take the first Γ in γn

that satisfies the following requirement.

Requirement Rn
α: there exists K ∈ K which is not fully covered by U . And there

exist x1, . . . , xk ∈ K \ U such that K \ U ⊆ Γ \ U ⊆ ϕ(x1) ∪ · · · ∪ ϕ(xk).

If no such Γ exists, sub-recursion stops. Put Dn
α = {x1, . . . , xk}.

Let Dn = (
⋃

Dn
α)∪Dn−1. We need to show that Dn is closed and discrete in X .

Take an arbitrary x ∈ X . We need to separate x fromDn\{x} by a neighborhood.
Consider the family

γ′n = {Γβ : Γβ is the first in γn satisfying Requirement Rn
α for some α}.

Since γ′n ⊆ γn, γ′n is locally-finite too. Therefore, there exists a neighborhood
of x that intersects only a finite number of elements in γ′n, and therefore, only
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finite number of sets Dn
α’s. Since the Dn

α’s are finite, x is not in the closure of
(
⋃

Dn
α) \ {x}. And x can be separated from Dn−1 \ {x} since the latter is closed

and discrete by assumption.

The construction is complete. Put D =
⋃

Dn.

Let us show that X =
⋃

d∈D ϕ(d). Assume the contrary. Then there exists a

K in K such that K ′ = K \
⋃

d∈D ϕ(d) 6= ∅. Since K ′ is compact we can find

x1, . . . , xk ∈ K ′ such that K ′ ⊆ ϕ(x1) ∪ · · · ∪ ϕ(xk). Consider a compactum
K ′′ = K \ (ϕ(x1)∪· · ·∪ϕ(xk)). Find the smallest n such that K ′′ ⊆

⋃

d∈Dn

ϕ(d).
Now take the first γl containing such a Γ that

K ⊆ Γ ⊆ ϕ(x1) ∪ · · · ∪ ϕ(xk) ∪
(
⋃

d∈Dn

ϕ(d)
)

.

Let m = max{n, l}. Then γl ⊆ γm+1, and therefore, Γ ∈ γm+1. By the choice
of n and l, Γ satisfies the Requirement starting not later than from Sub-step 1 of
Stepm+1. And eventually, Γ will be the first in γm+1 satisfying the Requirement.
Therefore, Γ must be covered by

⋃

d∈D ϕ(d), and so must K.
Let us show now that D is closed and discrete. Take an arbitrary x ∈ X .

We need to show that x can be separated from D \ {x} by a neighborhood of x.
There exists an n such that x ∈

⋃

d∈Dn

ϕ(d). This means that x is separated

from D \ Dn by
⋃

d∈Dn

ϕ(d) (follows from the construction of Dn’s). And x can
be separated from Dn \ {x}, since Dn is closed and discrete. �
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