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On a parabolic problem with nonlinear

Newton boundary conditions

Miloslav Feistauer, Karel Najzar, Karel Švadlenka

Abstract. The paper is concerned with the study of a parabolic initial-boundary value
problem with nonlinear Newton boundary condition considered in a two-dimensional
domain. The goal is to prove the existence and uniqueness of a weak solution to the
problem in the case when the nonlinearity in the Newton boundary condition does not
satisfy any monotonicity condition and to analyze the finite element approximation.

Keywords: parabolic convection-diffusion equation, nonlinear Newton boundary condi-
tion, Galerkin method, compactness method, finite element approximation, error esti-
mates

Classification: 35K60, 65N30, 65N15

Introduction

A number of problems of technology and science are described by partial dif-
ferential equations equipped with nonlinear Newton boundary conditions. Let
us mention, e.g. radiation and heat transfer problems ([2], [22], [27]), modeling
of electrolysis of aluminium with turbulent flow at the boundary ([11], [29]) and
some problems of elasticity ([18]). Our paper was inspired by some nonstandard
applications in biology, where the nutrition of kernels of plants can be described by
a parabolic partial differential equation equipped by mixed Dirichlet - nonlinear
Newton boundary conditions (see, e.g., [1], [7]).
Up to now, elliptic problems equipped with Newton nonlinear boundary con-

ditions have been analyzed analytically as well as numerically. In the analysis of
these problems one meets a number of obstacles, particularly in the very topical
case when the nonlinearity is unbounded and has a polynomial behaviour. The
first results for a problem of this type were obtained in [11], where the existence
and uniqueness of the solution of the continuous problem was proved with the aid
of the monotone operator theory and the convergence of the approximate solutions
to the exact one was established under the assumption that all integrals appearing
in the discrete problem were evaluated exactly. In [12], the convergence of the
finite element method was proved in the case that both volume and boundary
integrals were calculated with the aid of quadrature formulae. In the analysis of
the boundary terms it was not possible to apply the well-known Ciarlet–Raviart
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theory ([5], [6]) of the finite element numerical integration because of the nonlin-
earity on the boundary. The convergence analysis was obtained with the aid of a
suitable modification of results from [33]. Furthermore, the work [13] is concerned
with the derivation of error estimates. They were obtained thanks to the uniform
monotonicity of the problem in [13]. However, in contrast to standard nonlinear
situations treated, e.g., in [4], [16], [17], [34], where strong monotonicity was used,
an optimal O(h) error estimate for linear finite elements was not achieved. The
order of convergence is reduced due to the fact that only uniform monotonicity
with growth of degree t2+α, α > 0, holds now, and due to the nonlinearity in
the boundary integrals. Moreover, also the application of numerical integration
in the nonlinear boundary integral can lead to a further reduction of the rate of
convergence. The theoretically established decrease of the order of convergence
caused by the nonlinearity in the Newton boundary condition was confirmed with
the aid of numerical experiments in [15]. Finally, in [14], the effect of the approxi-
mation of a curved boundary is analyzed with the aid of Zlámal’s concepts of ideal
triangulation and ideal interpolation ([35]). Let us also mention that another ap-
proach was used in [19] and [20], where the problem for the Laplace equation with
nonlinear Newton boundary condition was transformed to a nonlinear boundary
integral equation.

Practical applications often require the solution of nonstationary transient
problems with Newton boundary conditions. In this paper we shall be concerned
with the analysis of nonstationary convection-diffusion problem equipped with
mixed Dirichlet - nonlinear Newton boundary conditions. In Section 1, the con-
tinuous problem is formulated. The concept of a weak solution is introduced
and some auxiliary results are established. We assume that the nonlinearity in
the Newton boundary condition has a linear growth and is Lipschitz-continuous.
Section 2 is devoted to the proof of the existence and uniqueness of the weak solu-
tion. In Section 3, under the assumption that the space domain is polygonal, the
finite element solution is analyzed and error estimates for the semidiscretization
in space are obtained.

1. Formulation of the problem

1.1 Function spaces and classical formulation.

Let Ω ⊂ R
2 be a bounded domain with a Lipschitz-continuous boundary Γ =

∂Ω consisting of three parts Γ1, Γ2, Γ3, see Figure 1. By Ω we denote the closure
of Ω. For T > 0 let us denote by QT the space-time cylinder Ω × (0, T ). Let n
denote the unit outer normal to Γ. By N we denote the set of all positive integers.

We introduce the following notation of function spaces:

C(Ω) — space of functions continuous in Ω;

Ck(Ω), k ∈ N — space of functions having continuous derivatives of order
k in Ω;
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Figure 1: Computational domain

C∞
0 (0, T ) — space of infinitely differentiable functions with compact support
in (0, T );
Lp(Ω), 1 ≤ p < ∞ — space of measurable functions whose pth power is Lebesgue
integrable over Ω, equipped with the norm

(1.1) ‖u‖Lp(Ω) =

(∫

Ω
|u|p dx

)1/p

;

L2α(Ω), where α ∈ C(Ω), α1 ≥ α ≥ α0 > 0, α0, α1 = const, is the α-weighted
L2-space which is a Hilbert space with the scalar product

(1.2) (u, v)α =

∫

Ω
α(x)u(x)v(x) dx;

W k,p(Ω), 1 ≤ p < ∞— Sobolev space of functions from Lp(Ω) whose distribution
derivatives of order ≤ k are elements of Lp(Ω), equipped with the norm

(1.3) ‖u‖W k,p(Ω) =

( ∑

|α|≤k

‖Dαu‖p
Lp(Ω)

)1/p

,
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where Dαu = ∂α1+α2u
∂x

α1
1 ∂x

α2
2

, and α = (α1, α2), |α| = α1 + α2. We set Hk(Ω) =

W k,2(Ω). In H1(Ω) we shall also work with the seminorm

(1.4) |u|H1(Ω) =
(∫

Ω
|∇u|2 dx

)1/2
;

Hµ(Ω), µ ∈ (12 , 1) — space of functions u ∈ L2(Ω), for which

(1.5)
I(u) =

(∫
Ω

∫
Ω

|u(x)−u(y)|2

‖x−y‖2(1+µ) dxdy
)1/2

< ∞, with the norm

‖u‖Hµ(Ω) =
(
‖u‖2L2(Ω) + I2(u)

)1/2
.

Further, we shall introduce the Bochner spaces. Let X be a Banach space.
Then we define: C([0, T ];X) — space of functions u : [0, T ]→ X , continuous, for
which

(1.6) ‖u‖C([0,T ];X) = sup
t∈[0,T ]

‖u(t)‖X < ∞;

C1([0, T ];X) — space of functions u : [0, T ] → X continuously differentiable in
[0, T ];
Lp(0, T ;X), 1 ≤ p < ∞ — space of functions u : (0, T )→ X , strongly measurable
such that

(1.7) ‖u‖Lp(0,T ;X) =

(∫ T

0
‖u‖p

X dt

)1/p

< ∞.

For p = 2, X = L2(Ω) we have L2(0, T ;L2(Ω)) ≡ L2(QT );
L∞(0, T ;L2(Ω)) — space of functions u : (0, T )→ L2(Ω) such that

(1.8) ‖u‖L∞(0,T ;L2(Ω)) = ess sup
t∈(0,T )

‖u(t)‖L2(Ω) < ∞.

It is known that Lp(Ω), 1 < p < ∞, Hµ(Ω), µ ∈ (12 , 1], Lp(0, T ;X), 1 < p < ∞,
are reflexive Banach spaces.

In virtue of the Sobolev imbedding theorems,

Hs(Ω) →֒→֒ Hr(Ω), r, s ∈ N, 0 ≤ r < s,(1.9)

(compact imbedding)

H1(Ω) →֒ Lq(Ω), q ∈ [1,∞).(1.10)

(continuous imbedding)
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By [26] (in the case of domains with infinitely smooth boundary) and [8] (for
Lipschitz-continuous boundary),

(1.11) Hµ(Ω) →֒→֒ Hµ−ε(Ω), if µ ≥ ε > 0.

Hence, for µ ∈ (0, 1) we have

(1.12) H1(Ω) →֒→֒ Hµ(Ω) →֒→֒ H0(Ω) = L2(Ω).

Due to the theorem on traces (see [26] for domains with infinitely smooth bound-

aries and [23] for Lipschitz-continuous boundaries), for every µ ∈ (12 , 1] the trace
mapping θ : Hµ(Ω) → L2(∂Ω), is continuous. This means that there exists
CTr(µ) > 0 such that

(1.13) ‖u‖L2(∂Ω) ≤ CTr(µ)‖u‖Hµ(Ω), u ∈ Hµ(Ω).

We set CTr = CTr(1).
Now we introduce the following initial-boundary value problem: Find a function

u = u(x, t) defined in QT such that

(1.14) α(x)
∂u(x, t)

∂t
= div (β(x)∇u(x, t) + v(x)u(x, t)) + q(x) in QT ,

β(x)
∂u(x, t)

∂n
+ γ(x)u(x, t) = G(x, u(x, t)) on Γ1,(1.15)

u(x, t) = 0 on Γ2,(1.16)

β(x)
∂u(x, t)

∂n
= 0 on Γ3,(1.17)

u(x, 0) = u0(x), x ∈ Ω.(1.18)

Let us assume that the functions from (1.14)–(1.18) have the following proper-
ties:

α ∈ C(Ω), α1 ≥ α ≥ α0 > 0, α0, α1 = const,(1.19)

β ∈ C1(Ω), β1 ≥ β ≥ β0 > 0, β0, β1 = const,(1.20)

v ∈
[
C1(Ω)

]2
,(1.21)

γ ∈ C(Γ1), |γ| ≤ γ1 = const,(1.22)

q ∈ L2(Ω),(1.23)

u0 ∈ L2(Ω).(1.24)
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Moreover, G : Γ1 × R → R, G = G(x, u), is continuous, has a linear growth
and is Lipschitz-continuous with respect to u. This means that there exist g ≥ 0,
g ∈ L2(Γ1), K ≥ 0, LG, such that

|G(x, u)| ≤ g(x) +K|u|, ∀x ∈ Γ1, ∀u ∈ R,(1.25)

|G(x, u)− G(x, u∗)| ≤ LG|u − u∗|, ∀x ∈ Γ1, ∀u, u∗ ∈ R.(1.26)

(Let us note that (1.25) follows from (1.26).)
Classical solution of the above initial-boundary value problem is a function

u ∈ C2(QT ) satisfying equation (1.14), boundary conditions (1.15)–(1.17) and
initial condition (1.18) pointwise.
In the analysis of this problem it will be necessary to work with a number

of various constants. Constants with fixed meaning in the whole paper will be
denoted by symbols K, LG, γ1, α0, α1, β0, CTr, CF, C0, C1, . . . . On the other
hand, by C we shall denote a generic constant having, in general, different values
in different places.

1.2 Weak solution.

In order to define the concept of a weak solution, we introduce the space of
test functions

(1.27) V = {ϕ ∈ H1(Ω); ϕ | Γ2 = 0}.
Let us remind that the well-known Friedrichs inequality holds in this space: there
exists a constant CF > 0 such that

(1.28) ‖ϕ‖H1(Ω) ≤ CF|ϕ|H1(Ω) ∀ϕ ∈ V.

This implies that | · |H1(Ω) is a norm on V equivalent with the norm ‖ · ‖H1(Ω).

The norm | · |H1(Ω) on V is induced by the scalar product ((·, ·))V defined by

(1.29) ((u, v))V =

∫

Ω
∇u · ∇v dx.

The weak formulation is derived in a standard way: We assume that u is a
classical solution, multiply equation (1.14) by an arbitrary test function ϕ ∈ V ,
integrate over Ω and use Green’s theorem and conditions (1.15)–(1.17). We obtain
the relation∫

Ω
α

∂u

∂t
ϕ dx =

∫

Ω
div [β∇u + vu]ϕdx+

∫

Ω
qϕ dx

=

∫

∂Ω
[β∇u + vu] · nϕdS −

∫

Ω
[β∇u+ vu] · ∇ϕdx+

∫

Ω
qϕ dx

=

∫

Γ1

[G(x, u)− γu+ v · nu]ϕdS +

∫

Γ3

v · nuϕdS

−
∫

Ω
β∇u · ∇ϕdx −

∫

∂Ω
v · nuϕdS +

∫

Ω
div(vu)ϕdx+

∫

Ω
qϕ dx.



On a parabolic problem with nonlinear Newton boundary conditions 435

Hence,

(1.30)

∫

Ω
α

∂u

∂t
ϕ dx +

∫

Ω
[β∇u · ∇ϕ − div(vu)ϕ] dx

=

∫

Γ1

[G(x, u)− γu]ϕdS +

∫

Ω
qϕ dx.

Let us introduce the following notation:

(u, ϕ)α =

∫

Ω
αuϕdx,(1.31)

a0(u, ϕ) =

∫

Ω
β∇u · ∇ϕdx,(1.32)

a1(u, ϕ) = −
∫

Ω
div(vu)ϕdx,(1.33)

a(u, ϕ) = a0(u, ϕ) + a1(u, ϕ),(1.34)

d0(u, ϕ) =

∫

Γ1

G(x, u)ϕdS,(1.35)

d1(u, ϕ) = −
∫

Γ1

γuϕdS,(1.36)

d(u, ϕ) = d0(u, ϕ) + d1(u, ϕ).(1.37)

Then (1.30) can be written in the form

(1.38)
d

dt
(u(t), ϕ)α + a(u(t), ϕ) = d(u(t), ϕ) + (q, ϕ) ∀ϕ ∈ V.

In what follows we prove several important properties of these forms.

Lemma 1. The forms a, d are defined for u, ϕ ∈ V . For these functions we have

|a0(u, ϕ)| ≤ C1|u|H1(Ω)|ϕ|H1(Ω),(1.39)

|a1(u, ϕ)| ≤ C2|u|H1(Ω)|ϕ|H1(Ω),(1.40)

|d0(u, ϕ)| ≤ C3(1 + |u|H1(Ω))|ϕ|H1(Ω),(1.41)

|d1(u, ϕ)| ≤ C4|u|H1(Ω)|ϕ|H1(Ω),(1.42)

a(u, u) ≥ β0
2
|u|2H1(Ω) − C0‖u‖2L2(Ω) for u ∈ V,(1.43)

with constants C0, . . . , C4 > 0 independent of u, ϕ and β0 > 0 from (1.20). If,
moreover,

v · n ≤ 0 on Γ1 ∪ Γ3,(1.44)

div v ≤ 0 in Ω,(1.45)
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then

(1.46) a(u, u) ≥ β0|u|2H1(Ω), u ∈ V.

Proof: Using the Cauchy inequality, the theorem on traces, the Friedrichs in-
equality and assumptions (1.20)–(1.25), we find that

|a0(u, ϕ)| ≤
∫

Ω
|β∇u · ∇ϕ| dx ≤ β1

∫

Ω
|∇u · ∇ϕ| dx

≤ C1|u|H1(Ω)|ϕ|H1(Ω),

|a1(u, ϕ)| ≤
∫

Ω
| div(vu)ϕ| dx ≤

∫

Ω
| div v uϕ| dx+

∫

Ω
|v · ∇u ϕ| dx

≤ Cv(‖u‖L2(Ω)‖ϕ‖L2(Ω) + |u|H1(Ω)‖ϕ‖L2(Ω))

≤ CFCv(CF + 1)|u|H1(Ω)|ϕ|H1(Ω) = C2|u|H1(Ω)|ϕ|H1(Ω),

|d0(u, ϕ)| ≤
∫

Γ1

|G(u, x)ϕ| dS ≤
∫

Γ1

g|ϕ| dS +K

∫

Γ1

|uϕ| dS

≤ ‖g‖L2(Γ1)‖ϕ‖L2(∂Ω) +K‖u‖L2(∂Ω)‖ϕ‖L2(∂Ω)

≤ CTrCF‖g‖L2(Γ1)|ϕ|H1(Ω) +KC2TrC
2
F|ϕ|H1(Ω)|u|H1(Ω)

= C3(1 + |u|H1(Ω))|ϕ|H1(Ω),

|d1(u, ϕ)| ≤
∫

Γ1

|γuϕ| dS ≤ γ1

∫

Γ1

|uϕ| dS ≤ γ1‖u‖L2(∂Ω)‖ϕ‖L2(∂Ω)

≤ C4|u|H1(Ω)|ϕ|H1(Ω),

where Cv = ‖v‖C1(Ω), CTr is the constant from the theorem on traces (1.13)

and CF is the constant from the Friedrichs inequality (1.28) and C1 = β1, C2 =
CFCv(CF +1), C3 = CTrCFmax{‖g‖L2(Γ1), KCTrCF}, C4 = γ1C

2
FC
2
Tr. Further,

we have

(1.47) a(u, u) ≥ β0|u|2H1(Ω) −
∫

Ω
div(vu)u dx ≥ β0

2
|u|2H1(Ω) − C0‖u‖2L2(Ω),

with C0 = Cv(1 + 1/(2β0)), since
∫

Ω
div(vu)u dx ≤ |

∫

Ω
u2 div v dx|+ |

∫

Ω
(v · ∇u)u dx|

≤ Cv(‖u‖2L2(Ω) +
∫

Ω
|∇u| |u| dx)

≤ Cv(‖u‖2L2(Ω) + |u|H1(Ω)‖u‖L2(Ω))

≤ β0
2
|u|2H1(Ω) + C0‖u‖2L2(Ω),



On a parabolic problem with nonlinear Newton boundary conditions 437

where we have used Young’s inequality:

(1.48) ab ≤ 1
2
εa2 +

1

2ε
b2, a, b ≥ 0, ε > 0

with ε = β0.
Under assumptions (1.44), (1.45), we obtain

(1.49) a(u, u) ≥ β0|u|2H1(Ω) −
∫

Ω
div(vu)u dx ≥ β0|u|2H1(Ω),

since
∫

Ω
div(vu)u dx =

∫

∂Ω
v · nu2 dS −

∫

Ω
v · ∇u u dx

=

∫

Γ1∪Γ3

v · nu2 dS − 1
2

[∫

∂Ω
v · nu2 dS −

∫

Ω
u2 div v dx

]

=
1

2

∫

Γ1∪Γ3

v · nu2 dS +
1

2

∫

Ω
u2 div v dx ≤ 0.

�

Definition of a weak solution. We say that u is a weak solution of problem
(1.14)–(1.18), if
(a) u ∈ L2(0, T ;V ) ∩ L∞

(
0, T ;L2(Ω)

)
,

(b) u satisfies identity (1.38) for all ϕ ∈ V in the sense of distributions on (0, T ),
i.e.,

(1.50)

−
∫ T

0
(u(t), ϕ)αϑ′(t) dt+

∫ T

0
a(u(t), ϕ)ϑ(t) dt =

∫ T

0
d(u(t), ϕ)ϑ(t) dt

+

∫ T

0
(q, ϕ)ϑ(t) dt ∀ϑ ∈ C∞

0 (0, T ), ∀ϕ ∈ V,

and,
(c) u satisfies the initial condition

(1.51) u(0) = u0.

2. Existence of a weak solution

The goal of the next two paragraphs will be the proof of the existence and
uniqueness of a weak solution of the problem (1.14)–(1.18):

Theorem 1. There exists a unique solution of problem (1.50), (1.51).
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2.1 Proof of existence.

The existence of a weak solution will be proved with the aid of the Galerkin
method. The space V is separable and, hence, there exists its basis {wk}∞k=1 such
that

(2.1) V =

∞⋃

k=1

Xk

H1(Ω)

, where Xk = span{w1, . . . , wk}.

Let us define the Galerkin approximation uk ∈ C1 ([0, T ], Xk) which satisfies
the conditions

d

dt
(uk(t), wi)α + a(uk(t), wi) = d(uk(t), wi) + (q, wi),(2.2)

i = 1, . . . , k, t ∈ (0, T ),
uk(0) = u0k = Pku0.(2.3)

Here, the mapping Pk is the L2-projection on Xk, i.e., for u ∈ L2(Ω), we define
Pku ∈ Xk so that

(2.4) (Pku, ϕ) = (u, ϕ) ∀ϕ ∈ Xk.

In the sequel, we shall employ the following inequality from [3]:

(2.5) ‖w‖2L2(∂Ω) ≤ C5‖w‖L2(Ω)|w|H1(Ω) ∀w ∈ V,

called the multiplicative trace inequality.
Now we derive a priori estimates of approximate solutions uk.

Lemma 2. There exists a constant C > 0 such that each solution uk of problem

(2.2), (2.3) satisfies the estimates

‖uk‖L∞(0,T ;L2(Ω)) ≤ C,(2.6)

‖uk‖L2(0,T ;V ) ≤ C ∀ k = 1, 2, . . . .(2.7)

Proof: Conditions (2.2) can be written as

(2.8) (u′k(t), ϕ)α + a(uk(t), ϕ) = d(uk(t), ϕ) + (q, ϕ) ∀ϕ ∈ Xk, t ∈ (0, T ),

where we simply write u′k instead of
∂uk
∂t . Substituting uk(t) for ϕ in (2.8), we

obtain

(2.9)

∫

Ω
αu′k(t)uk(t) dx + a(uk(t), uk(t)) = d(uk(t), uk(t)) +

∫

Ω
quk(t) dx.
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In virtue of Lemma 1, (2.5), the linear growth of the function G, the Cauchy
inequality and Young’s inequality, we find that

1

2

∫

Ω
α(u2k)

′(t) dx +
β0
2
|uk(t)|2H1(Ω) − C0‖uk(t)‖2L2(Ω)

≤ |
∫

Γ1

G(x, uk(t))uk(t) dS −
∫

Γ1

γu2k(t) dS +

∫

Ω
quk(t) dx|

≤ |
∫

Γ1

guk(t) dS|+K

∫

Γ1

u2k(t) dS + ‖q‖L2(Ω)‖uk(t)‖L2(Ω) +

∫

Γ1

|γ|u2k(t) dS

≤ 1
2
‖g‖2L2(Γ1) +

(
1

2
+K

)
‖uk(t)‖2L2(Γ1) + γ1‖uk(t)‖2L2(Γ1)

+ ‖q‖L2(Ω)‖uk(t)‖L2(Ω)

≤
(
1

2
+K + γ1

)
‖uk(t)‖2L2(Γ1) +

1

2
‖uk(t)‖2L2(Ω) +

1

2
‖q‖2L2(Ω) +

1

2
‖g‖2L2(Γ1)

≤ C6‖uk(t)‖L2(Ω)|uk(t)|H1(Ω) +
1

2
‖uk(t)‖2L2(Ω) + C7

≤
(
1

2
+

C26
β0

)
‖uk(t)‖2L2(Ω) +

β0
4
|uk(t)|2H1(Ω) + C7,

where C6 = C5(
1
2 +K + γ1), C7 =

1
2 (‖q‖2L2(Ω) + ‖g‖2

L2(Γ1)
). Hence,

(2.10)
d

dt
‖√αuk(t)‖2L2(Ω)+

β0
2
|uk(t)|2H1(Ω) ≤ 2(

1

2
+C0+

C26
β0
)‖uk(t)‖2L2(Ω)+2C7.

The integration with respect to time yields

α0‖uk(t)‖2L2(Ω) +
β0
2

∫ t

0
|uk(ξ)|2H1(Ω) dξ ≤ 2(1

2
+ C0 +

C26
β0
)

∫ t

0
‖uk(ξ)‖2L2(Ω) dξ

+ 2C7T + α1‖uk(0)‖2L2(Ω),

and, thus,

(2.11) ‖uk(t)‖2L2(Ω) + C10

∫ t

0
|uk(ξ)|2H1(Ω) dξ ≤ C8

∫ t

0
‖uk(ξ)‖2L2(Ω) dξ + C9,

where C8 = 2(
1
2 + C0 +

C26
β0
)/α0, C9 = (2C7T + α1‖uk(0)‖2L2(Ω))/α0 and C10 =

β0/(2α0). Now we use Gronwall’s lemma in the form from [9]:

Let y, w, z, r ∈ C([0, T ]), w, r ≥ 0 and y(t)+w(t) ≤ z(t)+
∫ t
0 r(s)y(s) ds. Then

(2.12) y(t) + w(t) ≤ z(t) +

∫ t

0
r(ϑ)z(ϑ) exp (

∫ t

ϑ
r(s)ds) dϑ.
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Here we set z(t) = C9, r(s) = C8, y(t) = ‖uk(t)‖2L2(Ω),
w(t) = C10

∫ t
0 |uk(ξ)|2H1(Ω) dξ. Then (2.11) implies that

(2.13)

‖uk(t)‖2L2(Ω) + C10

∫ t

0
|uk(ξ)|2H1(Ω) dξ

≤ C9 + C8C9

∫ t

0
exp (

∫ t

ϑ
C8 ds) dϑ = C9 exp (C8t) ≤ C9 exp (C8T ).

From this we get

(2.14) max
t∈[0,T ]

‖uk(t)‖2L2(Ω) + C10

∫ T

0
|uk(ξ)|2H1(Ω) dξ ≤ 2C9 exp (C8T ) = const,

which immediately yields (2.6) and (2.7). �

Let us continue in the proof of the existence of the weak solution. Since
{w1, . . . , wk} is a basis in Xk, there exist functions ζ1(t), . . . , ζk(t) such that

(2.15) uk(t) =
k∑

i=1

ζi(t)wi.

Conditions (2.8) represent a system of ordinary differential equations for unknown
functions ζi(t), i = 1, . . . , k. Its right-hand side satisfies the Carathéodory con-
ditions and is Lipschitz-continuous with respect to ζi, i = 1, . . . , k, which implies
the existence of a unique generalized (i.e. absolutely continuous) solution in some
time interval [0, T ∗]. From the uniform boundedness (2.6) and (2.7), it follows
that there exists a unique approximate solution uk in the whole time interval
[0, T ] (see e.g. [24]).

With the aid of a modification of Theorem 4.11 in [28, p. 290], there exists such
a basis {wi}∞i=1 in V that

((wi, ϕ))V = λi(wi, ϕ)α ∀ϕ ∈ V,(2.16)

(wi, wj)α = δij ∀ i, j ∈ N,(2.17)

((
wi√
λi

,
wj√
λj
))V = δij ∀ i, j ∈ N,(2.18)

0 < C ≤ λ1 ≤ λ2 ≤ . . . and λr → ∞ as r → ∞,(2.19)

{wi/
√

λi}∞i=1 forms an orthonormal basis in V.(2.20)

(The scalar product ((·, ·))V is defined in (1.29).)
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Moreover, for Xk = span{w1, . . . , wk} and

(2.21) Pα
k v =

k∑

i=1

(v, wi)αwi : V → Xk ⊂ V,

we obtain

(2.22) |Pα
k v|H1(Ω) ≤ |v|H1(Ω) ∀ v ∈ V.

Actually, in virtue of (2.16), (2.18)–(2.21), for v ∈ V we have

(2.23)

|Pα
k v|2H1(Ω) =

k∑

i=1

(v, wi)
2
α((wi, wi))V

=

k∑

i=1

1

λi
((v, wi))

2
V =

k∑

i=1

((v,
wi√
λi
))2V ≤ |v|2H1(Ω).

Further, for every ϕ ∈ Xk we have

(2.24) (Pα
k v, ϕ)α =

k∑

i=1

(v, wi)α(wi, ϕ)α = (v, ϕ)α.

Now let us return to the definition (2.2) of the approximate solution uk, rewrit-
ten in the form (2.8). Since Xk ⊂ V ⊂ L2α(Ω) ≡ L2α(Ω)

∗ ⊂ V ∗, the derivative
u′k = ∂uk/∂t can be considered as an element of V ∗. If we denote by 〈·, ·〉 the
duality between V ∗ and V in such a way that

(2.25) 〈ϑ, ϕ〉 = (ϑ, ϕ)α ∀ϕ ∈ V, ∀ϑ ∈ L2α(Ω),

then we have

(2.26) 〈u′k, ϕ〉 = (u′k, ϕ)α ∀ϕ ∈ V.

Let v ∈ V . Then, according to (2.24), (2.26) and (2.8), since u′k ∈ Xk, we find
that

〈u′k(t), v〉 = (u′k(t), v)α = (u′k(t), Pα
k v)α

= −a(uk(t), P
α
k v) + d(uk(t), P

α
k v) + (q, Pα

k v)L2(Ω).

This, Lemma 1 and (2.22) imply that

(2.27) |〈u′k(t), v〉| ≤ C(|uk(t)|H1(Ω) + 1)|v|H1(Ω) ∀ v ∈ V, t ∈ (0, T ),
where the constant C depends on C1, . . . , C4. Hence,

(2.28)
‖u′k(t)‖2L2(0,T ;V ∗) =

∫ T

0
‖u′k(t)‖2V ∗ dt ≤ 2C2

∫ T

0

(
|uk(t)|2H1(Ω) + 1

)
dt

= 2C2T + 2C2‖uk‖2L2(0,T ;V ), k = 1, 2, . . . ,
which is bounded by a constant independent of k, as follows from (2.7).
The obtained results can be summarized in the following way:
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Theorem 2. The sequence {uk}∞k=1 is bounded in L∞(0, T ;L2(Ω)) and in

L2(0, T ;V ). The sequence {u′k}∞k=1 is bounded in L2(0, T ;V ∗).

In what follows, we shall apply the well-known Aubin–Lions lemma (see, e.g.,
[25] or [10]):

Theorem 3. Let X0, X , X1 be Banach spaces with the following properties:

(a) X0 →֒ X →֒ X1 (continuous imbedding),
(b) X0, X1 are reflexive,
(c) X0 →֒→֒ X (compact imbedding).

Let us put

(2.29) W =

{
v ∈ L2(0, T ;X0);

∂v

∂t
∈ L2(0, T ;X1)

}
.

Then

(2.30) W →֒→֒ L2(0, T ;X).

Now we prove the following results:

Theorem 4. The sequence of approximate solutions {uk}∞k=1 is compact in
L2(0, T ;Hµ(Ω)) for µ ∈ (12 , 1). The sequence of traces {uk | ∂Ω×(0,T )}∞k=1 is
compact in L2(0, T ;L2(∂Ω)).

Proof: It is necessary to show that there exists a function u and a subsequence
{uk}∞k=1 (for simplicity we use the same notation) such that

uk → u in L2(0, T ;Hµ(Ω)) for k → ∞,(2.31)

uk | ∂Ω×(0,T ) → u | ∂Ω×(0,T ) in L2(0, T ;L2(∂Ω)) for k → ∞.(2.32)

Let us set X0 = V , X1 = V ∗, X = Hµ(Ω) for µ ∈ (12 , 1). Then, in view of the
results from Paragraph 1.1, the conditions (a), (b), (c) from the previous theorem
are satisfied, because V ⊂ H1(Ω) →֒→֒ Hµ(Ω) →֒ L2(Ω) ≡ L2(Ω)∗ →֒ V ∗.
Moreover, the trace operator θ is defined on Hµ(Ω) and θ : Hµ(Ω) → L2(∂Ω) is
a continuous mapping. By the Aubin–Lions lemma, there exists a subsequence of
approximate solutions {uk}∞k=1 such that

(2.33) uk → u in L2(0, T ;Hµ(Ω)) as k → ∞.

This means that

(2.34) ‖uk − u‖2L2(0,T ;Hµ(Ω)) =

∫ T

0
‖uk(t)− u(t)‖2Hµ(Ω) dt → 0 as k → ∞.
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Further, from the property (1.13) of the trace operator θ : Hµ(Ω) → L2(∂Ω) it
follows that

(2.35)
‖uk(t) | ∂Ω − u(t) | ∂Ω‖L2(∂Ω)

= ‖θuk(t)− θu(t)‖L2(∂Ω) ≤ CTr(µ)‖uk(t)− u(t)‖Hµ(Ω).

Hence,

‖uk − u‖2L2(0,T ;L2(∂Ω)) =
∫ T

0

(∫

∂Ω
|uk − u|2 dS

)
dt

=

∫ T

0
‖uk(t) | ∂Ω − u(t) | ∂Ω‖2L2(∂Ω) dt

≤ C2Tr(µ)

∫ T

0
‖uk(t)− u(t)‖2Hµ(Ω) dt → 0 as k → ∞,

what we wanted to prove. �

Since L2(0, T ;L2(∂Ω)) = L2(∂Ω× (0, T )), we obtain:
Corollary. It is possible to choose a subsequence {uk}∞k=1 of approximate solu-
tions satisfying (2.31), (2.32) and

(2.36) uk → u a.e. in ∂Ω× (0, T ).

Remark. The convergence of the traces of uk(t) for k → ∞ can also be proved
by putting X0 = V , X = L2(Ω), X1 = V ∗ in the Aubin–Lions lemma. This
yields the strong convergence of a subsequence (since W →֒→֒ L2(0, T ;L2(Ω))):

(2.37) uk → u in L2(0, T ;L2(Ω)).

Further we use the multiplicative trace inequality (2.5)

‖w‖2L2(∂Ω) ≤ C5‖w‖L2(Ω)|w|H1(Ω) ∀w ∈ V.

From this we have

‖w‖2L2(0,T ;L2(∂Ω)) =
∫ T

0
‖w(t)‖2L2(∂Ω) dt ≤ C5

∫ T

0
‖w(t)‖L2(Ω)|w(t)|H1(Ω) dt

≤ C5

(∫ T

0
‖w(t)‖2L2(Ω) dt

)1/2(∫ T

0
|w(t)|2H1(Ω) dt

)1/2
(2.38)

= C5‖w‖L2(0,T ;L2(Ω))‖w‖L2(0,T ;V ).
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This, the boundedness (2.7) of the sequence {uk}∞k=1 in L2(0, T ;V ) and (2.37)
imply that

‖uk − u‖2L2(0,T ;L2(∂Ω)) ≤ C5‖uk − u‖L2(0,T ;L2(Ω))‖uk − u‖L2(0,T ;V )

≤ C5(C + ‖u‖L2(0,T ;V ))‖uk − u‖L2(0,T ;L2(Ω)) → 0,
as k → ∞,

what we wanted to prove.

Now it is possible to pass to the limit in equation (2.8), rewritten in the form

(2.39)

−
∫ T

0
(uk(t), wi)αϑ′(t) dt+

∫ T

0
a(uk(t), wi)ϑ(t) dt

=

∫ T

0
d(uk(t), wi)ϑ(t) dt +

∫ T

0
(q, wi)ϑ(t) dt ∀ϑ ∈ C∞

0 (0, T ),

i = 1, . . . , k.

The sequence uk satisfies

uk ⇀ u *-weakly in L∞(0, T ;L2(Ω)),(2.40)

uk ⇀ u weakly in L2(0, T ;V ),(2.41)

uk → u strongly in L2(0, T ;Hµ(Ω)), µ ∈ (1
2
, 1),(2.42)

uk → u strongly in L2(QT ),(2.43)

uk | ∂Ω×(0,T ) → u | ∂Ω×(0,T ) strongly in L2(0, T ;L2(∂Ω)),(2.44)

uk → u a.e. in ∂Ω× (0, T ).(2.45)

Let ϑ ∈ C∞
0 (0, T ). It is obvious that the mappings

φ ∈ L2(0, T ;V ) 7→
∫ T

0
(φ(t), wi)αϑ′(t) dt ∈ R,(2.46)

φ ∈ L2(0, T ;V ) 7→
∫ T

0
a(φ(t), wi)ϑ(t) dt ∈ R,(2.47)

are continuous linear functionals on L2(0, T ;V ). On the basis of the definition of
the weak convergence in L2(0, T ;V ) we can immediately pass to the limit in the
first two terms in (2.39). Further, we split the third term in two parts:

(2.48)

∫ T

0
d(uk(t), wi)ϑ(t) dt =

∫ T

0
{d0(uk(t), wi) + d1(uk(t), wi)}ϑ(t) dt.
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The part with d1 is again linear in uk(t) and we proceed as above. Concerning
the part with d0 we have to prove that

(2.49)
∣∣∣
∫ T

0
{d0(uk(t), wi)− d0(u(t), wi)}ϑ(t) dt

∣∣∣→ 0 as k → ∞.

This is a consequence of the Lipschitz continuity of the function G, the Cauchy
inequality and (2.44):

(2.50)

∣∣∣
∫ T

0
{d0(uk(t), wi)− d0(u(t), wi)}ϑ(t) dt

∣∣∣

=
∣∣∣
∫ T

0

{∫

Γ1

(G(x, uk(t))− G(x, u(t)))wiϑ(t) dS

}
dt
∣∣∣

≤
∫ T

0

{∫

Γ1

LG|uk(t)− u(t)| |wi| dS

}
|ϑ(t)| dt

≤ C

(∫

Γ1

|wi|2 dS

)1/2(∫ T

0

∫

Γ1

|uk(t)− u(t)|2 dS dt

)1/2
→ 0,

where C = LG‖ϑ‖L2(0,T ).

Summarizing the above results, we see that the limit function u satisfies con-
ditions u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)) and (1.50) with ϕ := wi, i = 1, 2, . . . .
This and (2.1) imply that (1.50) holds for all ϕ ∈ V . It remains to verify condi-
tion (1.51). For each v ∈ L2(Ω),

(2.51) (Pkv, ϕ)→ (v, ϕ), ∀ϕ ∈ V as k → ∞.

Actually, for ϕ ∈ V there exists {ϕk}∞k=1, ϕk ∈ Xk such that ϕk → ϕ in V
(cf. (2.1)) and

(2.52)

|(Pkv − v, ϕ)| = |(Pkv − v, ϕ − ϕk)|
≤ CF(‖Pkv‖L2(Ω) + ‖v‖L2(Ω))‖ϕ − ϕk‖V

≤ 2CF‖v‖L2(Ω)‖ϕ − ϕk‖V → 0 as k → ∞.

Further, in view of (2.28), we can assume that the sequence uk is chosen in such
a way that

(2.53) u′k =
∂uk

∂t
⇀ ũ in L2(0, T ;V ∗).

Then for all ϕ ∈ V and all ϑ ∈ C∞
0 (0, T )

∫ T

0
(ϕ, u(t))ϑ′(t) dt = lim

k→∞

∫ T

0
(ϕ, uk(t))ϑ

′(t) dt

= − lim
k→∞

∫ T

0
(u′k(t), ϕ)ϑ(t) dt = −

∫ T

0
(ũ(t), ϕ)ϑ(t) dt,(2.54)
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which means that u′ = ∂u/∂t = ũ, and hence,

(2.55) u′k ⇀ u′ in L2(0, T ;V ∗).

Obviously for all ϕ ∈ V and ϑ ∈ C∞
0 [0, T ) with ϑ(T ) = 0, ϑ(0) 6= 0, we have

ϕϑ(t), ϕϑ′(t) ∈ L2(0, T ;V ), and, hence,

(2.56)

∫ T

0

(
u′k(t)− u′(t), ϕ

)
ϑ(t) dt

= −(uk(0)− u(0), ϕ)ϑ(0)−
∫ T

0
(uk(t)− u(t), ϕ)ϑ′(t) dt.

In virtue of (2.55) and (2.41), the integrals in the first expression as well as the
first integral in the last expression have zero limit as k → ∞. Hence, using
uk(0) = Pku0 and (2.51), we find that (u0 − u(0), ϕ) = 0 for all ϕ ∈ V , which
means that

(2.57) u(0) = u0.

Thus, we have proven that u is a weak solution of problem (1.14)–(1.18).

2.2 Proof of uniqueness.

Let us assume that there exist two weak solutions u1, u2 of problem (1.14)–
(1.18). This means that the following equations are satisfied:

(2.58)
d

dt
(ui(t), ϕ)α + a(ui(t), ϕ) = d(ui(t), ϕ) + (q, ϕ) ∀ϕ ∈ V, i = 1, 2,

in the sense of distribution on (0, T ).
On the basis of results from [32, Chapter III, Lemma 1.2], or [21],

(2.59)
d

dt
(ui(t), ϕ)α = 〈∂ui

∂t
(t), ϕ〉, ϕ ∈ V, i = 1, 2, for a.e. t ∈ (0, T ).

(See (2.25).) From (2.58) and (2.59), writing w = u1 − u2, we obtain

(2.60) 〈∂w

∂t
(t), ϕ〉+ a(w(t), ϕ) = d(u1(t), ϕ)− d(u2(t), ϕ),

∀ϕ ∈ V, for a.e. t ∈ (0, T ).

Now, we substitute ϕ := w(t) and find from (2.60) that

(2.61) 〈∂w

∂t
(t), w(t)〉 + a(w(t), w(t)) = d(u1(t), w(t)) − d(u2(t), w(t)),

for a.e. t ∈ (0, T ).
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From the above references it follows that w ∈ C([0, T ];L2α(Ω)) and

(2.62)
d

dt

∫

Ω
α|w(t)|2 dx =

d

dt
(w(t), w(t))α

= 2〈∂w

∂t
(t), w(t)〉 for a.e. t ∈ (0, T ).

This and (2.61) imply that

(2.63)
1

2

d

dt

∫

Ω
α|w(t)|2 dx+ a(w(t), w(t)) dx

=

∫

Γ1

[G(x, u2(t))− G(x, u1(t))]w(t) dS −
∫

Γ1

γ|w(t)|2 dS for a.e. t ∈ (0, T ).

The individual terms will be estimated with the aid of Young’s inequality (1.48),
inequality (2.5), Lemma 1 and assumptions (1.19)–(1.23) and (1.26). Thus, for
a.e. t ∈ (0, T ),

d

dt

∫

Ω
α|w(t)|2 dx+ β0|w(t)|2H1(Ω)

≤ 2(γ1 + LG)C5‖w(t)‖L2(Ω)|w(t)|H1(Ω) + 2C0‖w(t)‖2L2(Ω)(2.64)

≤ β0
2
|w(t)|2H1(Ω) + C11‖w(t)‖2L2(Ω),

where C11 = 2C0 + 2(LG + γ1)
2C25/β0. Thus

d

dt

∫

Ω
α|w(t)|2 dx+

β0
2
|w(t)|2H1(Ω) ≤ C11

∫

Ω
|w(t)|2 dx.

The integration with respect to time is possible and yields

(2.65)

α0

∫

Ω
|w(t)|2 dx+

β0
2

∫ t

0
|w(ξ)|2H1(Ω) dξ ≤ C11

∫ t

0

∫

Ω
|w(ξ)|2 dx dξ,

∫

Ω
|w(t)|2dx ≤ C11

α0

∫ t

0

∫

Ω
|w(ξ)|2 dx dξ,

because |w(0)|2 = 0.
From the last inequality, using Gronwall’s lemma (2.12), we find that

(2.66)

∫

Ω
|w(t)|2 dx ≤ 0, t ∈ (0, T ).

This already implies that w ≡ 0 and, hence, u1 = u2, which proves the uniqueness
of the weak solution.
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3. Finite element approximation

Let us assume that the domain Ω is polygonal. By {Th}h∈(0,h0), h0 > 0, we

denote a system of triangulations of Ω with standard properties from the finite
element theory (see, e.g., [5]): Th is formed by a finite number of closed triangles
K and

(a) Ω =
⋃

K∈Th

K,(3.1)

(b) if K1, K2 ∈ Th, K1 6= K2, then either K1 ∩ K2 = ∅
or K1 ∩ K2 is a common vertex or K1 ∩ K2 is a common side

of K1 and K2.

Let the end points of Γ1, Γ2, Γ3 be vertices of the triangulations Th.
By hK and ϑK we denote the length of the maximal side and the magnitude

of the minimal angle of K ∈ Th, respectively, and set

(3.2) h = max
K∈Th

hK , ϑh = min
K∈Th

ϑK .

Let us assume that the system {Th}h∈(0,h0) is regular . This means that there

exists a constant ϑ0 > 0 such that

(3.3) ϑh ≥ ϑ0 ∀h ∈ (0, h0).

We define the following finite dimensional spaces:

(3.4)
Xh = {vh ∈ C(Ω); vh |K ∈ P1(K) ∀K ∈ Th},
Vh = Xh ∩ V = {vh ∈ Xh; vh|Γ2 = 0},

where P1(K) is the space of all linear polynomials on K.
The approximate solution is defined as a function uh with the following prop-

erties:

(a) uh ∈ C1([0, T ];Vh),(3.5)

(b)
d

dt
(uh(t), ϕh)α + a(uh(t), ϕh) = d(uh(t), ϕh) + (q, ϕh) ∀ϕh ∈ Vh,

(c) uh(0) = u0h = πhu0,

where πh is a suitable interpolation operator from V into Vh.
Similarly as in the case of the Galerkin approximation we can prove the exis-

tence of a unique solution of the discrete problem (3.5).
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If we denote by {v1, v2, . . . , vN} a basis of the space Vh, then there exist func-
tions ξj(t), j = 1, . . . , N , such that

(3.6) uh(t) =

N∑

j=1

ξj(t)vj

and condition (3.5), (b) can be rewritten in the form

(3.7)
d

dt
(

N∑

j=1

ξj(t)vj , vi)α + a(

N∑

j=1

ξj(t)vj , vi) = d(

N∑

j=1

ξj(t)vj , vi) + (q, vi),

i = 1, . . . , N,

or

(3.8)

N∑

j=1

(vj , vi)α
dξj(t)

dt
= −

N∑

j=1

a(vj , vi)ξj(t) + d(

N∑

j=1

ξj(t)vj , vi) + (q, vi),

i = 1, . . . , N.

This is a system of nonlinear ordinary differential equations which can be solved
by a suitable discrete method for the solution of ODE’s. Let us mention several
simple numerical schemes. To this end, we construct a partition {tk}M

k=0 of the
time interval [0, T ], where tk = kτ and τ = T/M .
We have several possibilities of the time discretization:

(1) We use the approximation ξk
j ≈ ξj(tk) and

(3.9)
dξj(tk)

dt
≈

ξk+1
j − ξk

j

τ

and all other terms with ξj are considered on the time level tk. In this way we
obtain a simple explicit forward Euler scheme whose stability is conditioned by a
rather restrictive limitation of the time step τ .

(2) The use of the backward time difference

(3.10)
dξj(tk+1)

dt
≈

ξk+1
j − ξk

j

τ

on the time level tk+1 leads to fully implicit unconditionally stable scheme. This
requires to solve a nonlinear algebraic system on each time level tk+1 for unknowns

ξk+1
1 , . . . , ξk+1

N .
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(3) If we use the approximation

(3.11)
dξj(tk+1)

dt
≈

ξk+1
j − ξk

j

τ
,

and consider the linear terms
∑N

j=1 a(vj , vi)ξj(t) on the (k + 1)-st time level,

whereas the nonlinear terms d(
∑N

j=1 ξj(t)vj , vi) are linearized with respect to

ξk+1
1 , . . . , ξk+1

N , as e.g.,

d(

N∑

j=1

ξj(tk+1)vj , vi) ≈ −
∫

Γ1

γ

N∑

j=1

ξk+1
j vjvi dS +

∫

Γ1

G(x,

N∑

j=1

ξk
j vj)vi dS

=

N∑

j=1

d1(vj , vi)ξ
k+1
j +

∫

Γ1

G(x,

N∑

j=1

ξk
j vj)vi dS(3.12)

we obtain a semiimplicite conditionally stable scheme, requiring the solution of a

linear system with respect to unknowns ξk+1
1 , . . . , ξk+1

N on each time level.
In what follows we shall be concerned with the investigation of the convergence

and error estimates for the space semidiscretization (3.5). We shall assume that
the continuous problem (1.14)–(1.18) possesses a unique strong solution u with
the following regularity properties:

(3.13) u ∈ L2(0, T ;H2(Ω)),
∂u

∂t
∈ L2(0, T ;H1(Ω)).

The main result of this section can be formulated in the following way:

Theorem 6. Let the exact solution satisfy the regularity conditions (3.13) and
let uh ∈ C1([0, T ];Vh) be the approximate solution obtained with the aid of the
method defined in (3.5), (a)–(c). Then there exists a constant C independent of
h such that

max
t∈[0,T ]

‖u(t)− uh(t)‖L2(Ω) ≤ Ch,(3.14)

‖u − uh‖L2(0,T ;H1(Ω)) ≤ Ch.(3.15)

Proof: The exact solution and the approximate solution satisfy the relations

(3.16)

(
∂u

∂t
, ϕ

)

α
+ a(u, ϕ) = d(u, ϕ) + (q, ϕ) ∀ϕ ∈ V,

and

(3.17)

(
∂uh

∂t
, ϕh

)

α
+ a(uh, ϕh) = d(uh, ϕh) + (q, ϕh) ∀ϕh ∈ Vh ⊂ V,
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respectively. Subtracting these equations from each other and putting ϕ = ϕh :=
ξ = πhu − uh ∈ Vh, where πh : V → Vh is Clément’s interpolation (see [5,
Paragraph 3.2.3]), we obtain

(
∂(u − uh)

∂t
, ξ

)

α
+ a(u − uh, ξ) = d(u, ξ)− d(uh, ξ),(3.18)

(
∂ξ

∂t
, ξ

)

α
+

(
∂η

∂t
, ξ

)

α
+ a(ξ, ξ) + a(η, ξ) = d(u, ξ)− d(uh, ξ)

= d(u, ξ)− d(πhu, ξ) + d(πhu, ξ)− d(uh, ξ),(3.19)

(
∂ξ

∂t
, ξ

)

α
+ a(ξ, ξ)(3.20)

= d(u, ξ)− d(πhu, ξ) + d(πhu, ξ)− d(uh, ξ)− a(η, ξ)−
(

∂η

∂t
, ξ

)

α
,

where we denote η = u − πhu and thus u − uh = η + ξ.
We estimate individual terms in (3.20) with the use of Lemma 1, Young’s in-

equality (1.48), the Friedrichs inequality (1.28) (with constant CF), inequality
(2.5) (with constant C5), theorem on traces (1.13) (with constant CTr) and as-
sumptions (1.19)–(1.26). If we set C12 = C1 + C2, C13 = 2((LG + γ1)C

2
TrC

2
F +

C12)
2/β0, C14 = 2(LG + γ1)

2C25C
2
F/β0, then

d

dt
‖√αξ(t)‖2L2(Ω) +

β0
2
|ξ|2H1(Ω) − C0‖ξ‖2L2(Ω)

≤ (LG + γ1)‖η‖L2(∂Ω)‖ξ‖L2(∂Ω)

+ (LG + γ1)‖ξ‖2L2(∂Ω) + C12|η|H1(Ω)|ξ|H1(Ω) + α1‖
∂η

∂t
‖L2(Ω)‖ξ‖L2(Ω)

≤ (LG + γ1)C
2
TrC

2
F|η|H1(Ω)|ξ|H1(Ω) + (LG + γ1)C5CF‖ξ‖L2(Ω)|ξ|H1(Ω)

+ C12|η|H1(Ω)|ξ|H1(Ω) + α1‖
∂η

∂t
‖L2(Ω)‖ξ‖L2(Ω)

= |ξ|H1(Ω)|η|H1(Ω)((LG + γ1)C
2
TrC

2
F + C12)

+ (LG + γ1)C5CF‖ξ‖L2(Ω)|ξ|H1(Ω) + α1‖
∂η

∂t
‖L2(Ω)‖ξ‖L2(Ω)

≤ β0
4
|ξ|2H1(Ω) + C13|η|2H1(Ω) + C14‖ξ‖2L2(Ω) +

α1
2
‖∂η

∂t
‖2L2(Ω) +

α1
2
‖ξ‖2L2(Ω).

Hence,

d

dt
‖√αξ(t)‖2L2(Ω) +

β0
4
|ξ|2H1(Ω)

≤ C13|η|2H1(Ω) + (C14 + C0 +
α1
2
)‖ξ‖2L2(Ω) +

α1
2
‖∂η

∂t
‖2L2(Ω).
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Under the assumptions that the system {Th}h∈(0,h0) is regular, Clément’s in-

terpolation has the following interpolation properties:

‖v − πhv‖L2(Ω) ≤ CCh|v|H1(Ω), v ∈ H1(Ω),(3.21)

|v − πhv|H1(Ω) ≤ CCh|v|H2(Ω), v ∈ H2(Ω),

‖v − πhv‖L2(Ω) ≤ CCh2|v|H2(Ω), v ∈ H2(Ω).(3.22)

(See [5, Paragraph 3.2.3].) This and (3.13) imply that

‖∂η

∂t
‖L2(Ω) ≤ CCh|∂u

∂t
|H1(Ω),(3.23)

|η|H1(Ω) ≤ CCh|u|H2(Ω),(3.24)

‖η‖L2(Ω) ≤ CCh2|u|H2(Ω).(3.25)

Let us set C15 =
1
α0
max(C13C

2
C, α1
2 C2C, α1

2 + C14 + C0). Then we have

d

dt
‖√αξ(t)‖2L2(Ω) +

β0
4
|ξ(t)|2H1(Ω)

≤ α0C15‖ξ(t)‖2L2(Ω) + α0C15h
2
(
|∂u(t)

∂t
|2H1(Ω) + |u(t)|2H2(Ω)

)
,

‖√αξ(t)‖2L2(Ω) − ‖√αξ(0)‖2L2(Ω) +
β0
4

∫ t

0
|ξ(ϑ)|2H1(Ω) dϑ

≤ α0C15

∫ t

0
‖ξ(ϑ)‖2L2(Ω) dϑ+ α0C15h

2
∫ t

0

(
|∂u(ϑ)

∂t
|2H1(Ω) + |u(ϑ)|2H2(Ω)

)
dϑ,

(3.26) ‖ξ(t)‖2L2(Ω) +
β0
4α0

∫ t

0
|ξ(ϑ)|2H1(Ω) dϑ

≤ C15

∫ t

0
‖ξ(ϑ)‖2L2(Ω) dϑ+ C15h

2Cu +
α1
α0

‖ξ(0)‖2L2(Ω),

where

(3.27) Cu = ‖∂u

∂t
‖2L2(0,T ;H1(Ω)) + ‖u‖2L2(0,T ;H2(Ω)).

The last term in (3.26) vanishes in virtue of the relation u0h = πhu0 = πhu(0).
Now Gronwall’s lemma (2.12), where we set

y(t) = ‖ξ(t)‖2L2(Ω), w(t) =
β0
4α0

∫ t

0
|ξ(ϑ)|2H1(Ω) dϑ, z(t) = C15Cuh2, r(t) = C15,
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yields the estimate

(3.28)

‖ξ(t)‖2L2(Ω) +
β0
4α0

∫ t

0
|ξ(ϑ)|2H1(Ω) dϑ

≤ C15Cuh2 + C215Cuh2
∫ t

0
exp (C15(t − ϑ)) dϑ

= C15Cuh2 exp (C15t).

From this it follows that

max
t∈[0,T ]

‖uh(t)− πhu(t)‖L2(Ω) ≤ Cuh,(3.29)

‖uh − πhu‖L2(0,T ;H1(Ω)) ≤ Cuh.(3.30)

Finally, with the aid of (3.23)–(3.25) and triangular inequality we arrive at the
error estimates

max
t∈[0,T ]

‖u(t)− uh(t)‖L2(Ω) ≤ Ĉuh,(3.31)

‖u − uh‖L2(0,T ;H1(Ω)) ≤ Ĉuh,(3.32)

where the constants Cu, Ĉu depend on u, but are independent of h. This concludes
the proof. �

4. Conclusion

In this paper, a nonstationary convection-diffusion problem equipped with
mixed Dirichlet - nonlinear Newton boundary conditions have been analyzed.
The main result is the proof of the existence and uniqueness of a weak solution
and the finite element analysis, carried out in the case of the Lipschitz-continuous
boundary nonlinearity. There are several further questions and open problems of
the practical importance:

• analysis of the problem with a boundary nonlinearity of more general
behaviour (polynomial growth, local Lipschitz-continuity),

• finite element solution using numerical integration for the evaluation of
integrals,

• investigation of the effect of the approximation of a curved boundary of
the domain Ω,

• extension of the results to higher degree elements,
• analysis of the full space-time discretization.
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Dunod, Paris, 1969.
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