Commentationes Mathematicae Universitatis Carolinae

Peter Gilkey; Raina Ivanova
The Jordan normal form of higher order Osserman algebraic curvature tensors

Commentationes Mathematicae Universitatis Carolinae, Vol. 43 (2002), No. 2, 231--242

Persistent URL: http://dml.cz/dmlcz/119316

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/119316
http://project.dml.cz

Comment.Math.Univ.Carolin. 43,2 (2002)231-242

The Jordan normal form of higher order
Osserman algebraic curvature tensors
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Dedicated to Professor Oldrich Kowalski on the occasion of his 65th birthday

Abstract. We construct new examples of algebraic curvature tensors so that the Jordan
normal form of the higher order Jacobi operator is constant on the Grassmannian of
subspaces of type (7, s) in a vector space of signature (p,q). We then use these examples
to establish some results concerning higher order Osserman and higher order Jordan
Osserman algebraic curvature tensors.
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§1 Introduction

A 4 tensor R is said to be an algebraic curvature tensor if it satisfies the well
known symmetries of the Riemannian curvature tensor, i.e.

R(I,y,Z,U)):—R(y,CC,Z,’(U):R(Z,’U_),I,y), and
R(Ia Y, va) + R(yv Z,CC,’LU) + R(Z,CC,y, w) =0.

It is clear that the Riemann curvature tensor defines an algebraic curvature tensor
at each point of the manifold. Conversely, every algebraic curvature tensor is
geometrically realizable ([10]). We remark that it is often convenient to study
certain geometric problems in a purely algebraic setting.

Let R be an algebraic curvature tensor on a vector space V' of signature (p, q).
The Jacobi operator Jg is the self-adjoint linear map defined by:

Jr(v)y := R(y,v)v.

Here the natural domains of definition are the pseudo-spheres of unit timelike (—)
and spacelike (+) vectors in V:

STW):={veV:(vv)=+1}

t Research partially supported by the NSF (USA) and the MPI (Leipzig).
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Let (M, g) be a pseudo-Riemannian manifold of signature (p,q) and let 9R
be the curvature tensor of the Levi-Civita connection. If (M, g) is Riemannian
(i.e.p = 0), and if it is flat or it is a local rank 1 symmetric space, then the set of
local isometries acts transitively on the unit sphere bundle S(M, g). Consequently,
the eigenvalues of Jgg are constant on S(M,g). Osserman [15] wondered if the
converse holds; later authors called this problem the Osserman conjecture. The
conjecture has been established by Chi [4] for Riemannian manifolds of dimension
m, where m = 4, where m is odd, or where m = 2 mod 4. However, it is known
([8]) that there exist Riemannian Osserman algebraic curvature tensors which are
not flat and which are not the curvature tensors of rank 1 symmetric spaces. We
also refer to [5], [14] for related results.

In any signature, we say that an algebraic curvature tensor is Osserman if
the eigenvalues of Jr are constant on S*(V). Similarly, we say that a pseudo-
Riemannian manifold (M, g) is Osserman if the eigenvalues of Jy g are constant
on the pseudo-sphere bundles Si(M . 9)-

In the Lorentzian setting (p = 1), it is known ([1], [6]) that an Osserman
algebraic curvature tensor has constant sectional curvature. Thus we may draw
the geometric consequence that a Lorentzian Osserman manifold has constant
sectional curvature; the geometry of such manifolds is very special.

In higher signatures, although there are some partial results known, the clas-
sification is far from complete. In particular, it is known that there exist pseudo-
Riemannian Osserman manifolds which are neither flat nor local rank 1 symmetric
spaces ([2], 3], [7]).

In the Riemannian setting, any self-adjoint linear map is diagonalizable; thus
the eigenvalues determine the Jordan normal form (i.e.the conjugacy class). How-
ever, this is not true in higher signature so we have to differentiate between the
eigenvalue structure and the Jordan normal form. We say that an algebraic cur-
vature tensor is Jordan Osserman if the Jordan normal form of Jg is constant on
S*(V). There exist algebraic curvature tensors which are Osserman but which
are not Jordan Osserman. Furthermore, there exist Jordan Osserman algebraic
curvature tensors whose Jordan normal form is arbitrarily complicated ([11]).

The Jacobi operator was originally defined on S* (V). However, since we have
Jr(tv) = t2Jr(v), we can also regard Jp as being defined on the projective
spaces of non-degenerate lines in V' by setting

(1.1.a) Jr(span{v}) := (v,0) L Tr(v) if (v,v) #0.

Stanilov has extended Jgr to non-degenerate subspaces of arbitrary dimension.
Let o be a non-degenerate subspace of V. If {v;} is a basis for o, then let
hij = (vg, v;) describe the restriction of the metric on V' to the subspace o. Since
o is non-degenerate, the matrix (h;;) is invertible and we let (h%/) be the inverse.
The higher order Jacobi operator is defined ([16]) by generalizing equation (1.1.a):

Tr(0)y = > B R(y, v;)vj;
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it is independent of the basis chosen. This extends the natural domains of Jp to
the Grassmannians Gry (V') of subspaces of V' which have signature (r,s). Let

{€e1,...,er45} be an orthonormal basis for o € Gry. s(V). Let ¢; := (v;,v;). Then
we can express Jr more simply as:
(1.1.b) JIr(0) = e1Tr(e1) + -~ + exTr(er)-

Now we extend the notions ‘Osserman’ and ‘Jordan Osserman’ to the higher
order context. We say that R is Osserman of type (r,s) if the eigenvalues of
Jr(-) are constant on Gr; s(V'). Furthermore, R is said to be Jordan Osserman
of type (r,s) if the Jordan normal form of Jg(-) is constant on Gry (V). Since
the Jordan normal form determines the eigenvalues, it is immediate that if R is
Jordan Osserman of type (r,s), then R is Osserman of type (r,s); the reverse
implication can fail — see Remark 2.7.

We say that a pair (r,s) is admissible if Gry s(V) is non-empty and does not
consist of a single point. Equivalently, this means that:

0<r<p, 0<s<gq, and 1<r+4+s<dmV —1.

In Section 2, we state the main theorems of this paper concerning the higher
order Jacobi operator, Osserman algebraic curvature tensors, and Jordan Os-
serman algebraic curvature tensors. In Theorem 2.1, we summarize previously
known results for Osserman algebraic curvature tensors. Theorem 2.2 deals with
Jordan Osserman duality. In Theorem 2.3, we present examples due to [13] and
note that previously known results for these examples can be extended from the
Osserman to the Jordan Osserman setting. In Theorem 2.4, we construct new
examples of algebraic curvature tensors which are Jordan Osserman for certain
but not all values of (r,s). We use these examples to draw certain conclusions
about the relationship between the various concepts which we have introduced.
In Section 3, we prove Theorem 2.1. In Section 4, we prove Theorem 2.4.

§2 Statement of results

In the following theorem, we summarize previously known facts concerning
Osserman algebraic curvature tensors (see [13] for details). Assertion (2) is a
duality result. Moreover, assertion (3) shows that when we consider the eigenvalue
structure, only the value of r + s is relevant. Consequently, we shall say that R is
k-Osserman if R is Osserman of type (r, s) for any, and hence for all, admissible
pairs (r,s) for which k = r + s. In particular, if p > 0 and if ¢ > 0, then the
eigenvalues of Jg are constant on ST (V) if and only if they are constant on
ST(V).

2.1 Theorem. Let R be an algebraic curvature tensor on a vector space V' of
signature (p,q). Let R be Osserman of type (r,s), where (r,s) is an admissible
pair. Then we have:

(1) R is Einstein;
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(2) R is Osserman of type (p —r,q — S);
(3) if (7,8) is an admissible pair with r + s = 7 + §, then R is Osserman of
type (7, 8).

Instead of the eigenvalue structure, we can consider the Jordan normal form
and establish a similar duality result.

2.2 Theorem. Let R be an algebraic curvature tensor on a vector space V of
signature (p,q). Let (r,s) be an admissible pair. If R is Jordan Osserman of type
(r,s), then R is Jordan Osserman of type (p —r,q — s).

The only examples given in the literature [13] may be described as follows. Let

Rya(z,y)z = (y, 2)x — (2, 2)y

denote the algebraic curvature tensor of constant sectional curvature. If ¢ is a
skew-adjoint map of V', then we may define:

Ry(z,y)z := (9y, 2)px — (¢, 2)dy — 2(dx, y) Pz

We showed [11] that Ry is an algebraic curvature tensor. We then have

IRy (2)y = (z,2)y — (z,y)r and

2.2.a
(2:2:2) TR, @)y = 3(¢,y)dx.

Let ¢ be a skew-adjoint map with ¢2 = +1Id. Let ¢g and ¢; be real constants.
We set R := coRyq + c1Ry. If o is a non-degenerate subspace, then Jr(o)
is diagonalizable; thus the eigenvalue structure determines the Jordan normal
form. The following result in the Jordan Osserman context then follows from the
corresponding result in the Osserman context ([13]).

2.3 Theorem. Let V be a vector space of signature (p,q). Let ¢ be a skew-
adjoint map of V with ¢? = +1d.

(1) The algebraic curvature tensors Riq and Ry are Jordan Osserman of type
(r, s) for every admissible pair (r, s).

(2) Let co and c1 be non-zero constants. Let R = coRiq + c1Ry. Then
R is Jordan Osserman of types (1,0), (0,1), (p — 1,q), and (p,q — 1).
Furthermore, R is not Osserman of type (r,s) for other values of (r,s).

As noted above, the operators Jg(o) associated to the algebraic curvature ten-
sors discussed in Theorem 2.3 are all diagonalizable. We now construct algebraic
curvature tensors so Jr(c) has non-trivial Jordan normal form. Let p > 2 and
let ¢ > 2. Let {e],..., €p ei", - 7e[l"} be an orthonormal basis for V', where the



The Jordan normal form of higher order Osserman algebraic curvature tensors

vectors {e ,...,e, } are timelike and the vectors {ei"', cee e;]"} are spacelike. Let
a be a positive integer with 2a < min(p, ¢). We define a skew-adjoint linear map
®,, of V by setting:

+(ey; +€3;) if k=2i—1<2a,
(2.3.a) Gatit =1 Tleg_+ed ) if k=2i<2a,
0 if k> 2a.

The map P, is the direct sum of a different 4 x 4 ‘blocks’; the subspaces spanned
by {eg;_1, €5 e;;-_l, e;;-} are invariant under the action of ®, for 1 < ¢ < a.

We can interchange the roles of spacelike and timelike vectors by changing the
sign of the inner product. Thus we may always assume that p < g. The following
result giving new families of examples is in many ways the main result of this
paper.

2.4 Theorem. Let ®, be the skew-adjoint linear map on the vector space V
of signature (p, q) which is defined in equation (2.3.a). Let R, be the associated
curvature tensor. Assume p < q. We have:

(1) Rqy is k Osserman for 1 <k <dimV —1.

(2) Suppose that 2a < p. Then R, is Jordan Osserman of type (p,0) and
(0,q); Ry is not Jordan Osserman of type (r,s) otherwise.

(3) Suppose that 2a = p < q. Then R, is Jordan Osserman of type (r,0) and
of type (r,q) for any 1 < r < p—1; Rq is not Jordan Osserman otherwise.

(4) Suppose that 2a = p = q. Then Rq is Jordan Osserman of type (r,0),
of type (r,q), of type (0,s), and of type (p,s) for 1 < r < p—1 and
1 <s<q-—1; Rgy is not Jordan Osserman otherwise.

2.5 Remark. We may use assertion (1) of Theorem 2.4 to see that assertion (2)
of Theorem 2.1 does not generalize to the Jordan Osserman context; there exist
algebraic curvature tensors which are k Osserman for all k, which are Jordan
Osserman of type (p,0) and (0, ¢), and which are not Jordan Osserman of type
(r,s) for other values of (r,s). Thus we cannot determine whether or not R is
Jordan Osserman of type (r, s) only from k = r + s.

2.6 Remark. We suppose 2 < k < dimV — 2 to ensure that we are truly in
the higher order setting. The k& Osserman algebraic curvature tensors have been
classified in the Riemannian and in the Lorentzian settings ([9], [12]); all these
curvature tensors have constant sectional curvature and hence are 1 Osserman.
Again, we may use assertion (1) of Theorem 2.4 to see that a similar assertion
fails for a Jordan Osserman algebraic curvature tensor in the higher signature
setting.
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2.7 Remark. The algebraic curvature tensors described in Theorem 2.4 show
that Osserman of type (r, s) does not imply Jordan Osserman of type (r, s).

It is useful to give a graphical representation of Theorem 2.4. We may think
of the values of (7, s) as the points with integer coordinates in the rectangle

The two corners (0,0) and (p, q) of R are excluded as inadmissible; R, is always
Jordan Osserman at the other two corners (p,0) and (0,¢). These two corner
points are the only values for which R, is Jordan Osserman if 2a < p < q. If
2a = p < q, then R, is Jordan Osserman on the two edges of R parallel to
the r axis. If 2a = p = ¢, then R, is Jordan Osserman on the boundary of
R. The values for which R, is Jordan Osserman are graphically represented by
the three different pictures given below. Entries with ‘x’ are points where R is
Jordan Osserman, entries with ‘o’ are points where R is not Jordan Osserman,
and entries with ‘—’ are inadmissible points. The r-axis is horizontal and the
s-axis is vertical.

20 <p<q 20 =p<q 2a=p=q
* o ) — ||* * * — ||* * * —
o O o o O o o @] * [e] o *
o o o o o o * o ] *
— — * — *

83 Jordan Osserman duality

Theorem 2.1(2) is a duality result for Osserman algebraic curvature tensors
which was proved in [13]. We generalize that proof to establish the corresponding
duality result for Jordan Osserman algebraic curvature tensors given in Theo-
rem 2.2.

Let R be Jordan Osserman of type (r, s) on a vector space V' of signature (p, q).
We must show that R is Jordan Osserman of type (p—r, ¢—s), i.e. that the Jordan
normal form of Jg(-) is constant on Grp_, q—s(V).

By Theorem 2.1(1), R is Einstein. Let {eq, ..., ept+4} be any orthonormal basis
for V. If €; := (e;,€;), then >, e;R(y, e;,€;,x) = c(y, x), where ¢ is the Einstein
constant. This implies that:

(31&) Zl Ein(ei) =c-1Id.

Let 7 € Grp—pp—s(V). Let o := 7+ € Gry5(V) be the orthogonal comple-
ment of 7. We construct an adapted orthonormal basis for V as follows. Let
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{e1,...,er4s} be an orthonormal basis for ¢ and let {e;4s41,...,€eptq} be an
orthonormal basis for 7. We use equations (1.1.b) and (3.1.a) to see that

Ir(0) + TR(T) = Yi<i<r4sEiTR(€) + 2 fst1<i<prqEiTR(ei) = c-1d.

Thus the Jordan normal form of Jg(7) is determined by the Jordan normal form of
Jr(0). By hypothesis the Jordan normal form of Jg(o) is constant on Gry s(V).
Thus we may conclude that the Jordan normal form of Jg(7) is also constant on
Grp—rp—s(V). O

84 Examples of Jordan Osserman algebraic curvature tensors

Throughout this section, we shall let V' be a vector space of signature (p, q),
we shall let ®, be the skew-adjoint linear map on V' which is defined in equation
(2.3.a), we shall let R, be the associated curvature tensor, and we shall let 7,
be the associated Jacobi operator. We begin the proof of Theorem 2.4 with the
following observation:

4.1 Lemma. We have:

(1) Rq is k Osserman for any k and for any a;

(2) Rq is Jordan Osserman of type (r,s) if and only if rank Rg, is constant
on Gry (V).

PROOF: It is immediate from the definition that ®2 = 0. Thus range ®, is
totally isotropic. We use equation (2.2.a) to see that Ju(x)y = 3(Pqz,y)Pyx.
Consequently

Ja(v1)Ta(v2)y = 9(Pav1,y)(Pav1, Pav2)Pav2 = 0

for any vectors v1 and v in V. Thus Ja(0)2 = 0 for any non-degenerate subspace
o. This implies that 0 is the only eigenvalue of J, (o) and hence Ry, is k Osserman
for any k; this proves assertion (1).

Since Ju(0)? = 0, the Jordan normal form of 7, (o) is determined by the rank
of Ju(0); assertion (2) now follows directly. O

We will use the following lemma to study the rank of J, (o).
4.2 Lemma. Let vy, ... v} be linearly independent vectors in V. Then:

(1) there exist vectors wy, ... ,wy, in V so that (v;, w;) = 05;;

(2) let Ty := c1(v1,y)v1 + - - + cx(vg, y)vs, define a linear transformation of
V', where ¢y, ... ,cj. are non-zero constants. Then the rank of T is k.
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PrOOF: Let V* be the associated dual vector space of linear maps from V to
R. We define a linear map ¢ : V. — V* by setting ¢(w)v = (v,w). Since the
inner product on V is non-degenerate, v is injective. Since dimV = dim V*,
1 is bijective. We can extend the collection {v1,...,v;} to a basis for V; thus
without loss of generality, we may assume k = dim V. Let {v!,...,v*} be the
corresponding dual basis for V*. Set w; := 1)~ lv;. Assertion (1) follows as

(vi,w;) = P(wj)v; = o7 - v; = &5

Let T be the transformation of assertion (2). It is clear from the definition
that range T C span{vy,...,v}. Since (v;, w;) = &;5, we have Tw; = c;jv;. Since
c; # 0, v; € rangeT. It now follows that span{vy,...,v,} = rangeT. Thus the
rank of T is k. O

We conclude our preparation for the proof of Theorem 2.4 with the following
lemma.

4.3 Lemma. We have:
(1) If 2a < pand if 1 <r <p—1, then R, is not Jordan Osserman of type
(r,s) for any 0 < s < q.
(2) If 2a=p,if1<r<p-—1,and if 1 <s < q—1, then R, is not Jordan
Osserman of type (r, s).
(3) Ry is Jordan Osserman of type (p,0).
(4) If 2a=p and if 1 <r < p-—1, then R, is Jordan Osserman of type (r,0).

PrROOF: Let {ey,...,e, ,ei’_, . .,e[]"} be the orthonormal basis for V used in

equation (2.3.a) to define ®,. We have Ju(e;") = Ja(e; ); this vanishes if i > 2a.
Let

span{e2_,...,er_,e;,...,e;"} ifr>2, s>2,

span{e, ,...,e; } ifr>2, s<1,
T =

span{e;,...,e;" ifr<1, s>2,

ifr<1, s<1.

{0}

To prove assertion (1), we will exhibit two subspaces o1 and o9 of type (r, s)
so that rank{J,(c1)} # rank{J,(o2)}. Let

T span{el_,ef} if s >1,
o1 = .

T @ spanfe; } if s =0,

T@Span{elj,ef} if s >1,
o9 1=

7 @ span{e,, } if s =0.
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The index ‘1’ does not appear among the indices comprising the basis for 7 so
there is no ‘interaction’. Furthermore, since 2a < p, Ja(e, ) = 0. We have the
cancellation (e], e )Ja(e]) + (], ef)Ta(e]) = 0. We may now use Lemma 4.2
to compute:

[ rank{Ju(7)} if s > 1,
rank{Ju(01)} = { rank{7,(7)} +1 if s =0,
B rank{7,(7)} +1 ifs>1,
rank{J,(02)} = { rank{J,(7)} if s =0.

This shows that J,(o1) and Jg(0o2) have different ranks and thereby completes
the proof of assertion (1).

Let 2a = p,let 1 <r <p-1,and let 1 < s < ¢—1. As in the proof of
assertion (1), we will construct two subspaces o1 and oy of type (r,s) so that
Ja(01) and J,(02) have different ranks. We define

T @ span{e;, ei"}, and

o1
T @ span{e, 1, ef} ifr>s,

o9 1= -4 )
T ®spanfey e} ifr <s.

Again, note that the index ‘1’ does not appear among the indices comprising the

basis for 7. If » > s (resp.r < s), then the index r+1 (resp.s+ 1) does not appear

among these indices either. If s + 1 < p, then Ja(e;_l) # 0; if s+ 1 > p, then

Jalegyq) = 0. Since 7 +1 < p = 2a, Ja(e,, 1) # 0. Thus:

rank{7,(c1)} = rank{7,(7)},

rank{Ja(T)} +2 ifr > s,
rank{Jg(02)} = ¢ rank{Ja(7)} +2 ifr <s <p,
rank{J(m)} +1 ifr<p<s.

Since Jy(01) and J,(02) have different ranks, R, is not Jordan Osserman of type
(r,s). This establishes assertion (2).

If we can show that rank{J,(c)} = 2a for every maximal timelike subspace o
of V, we may then use Lemma 4.1 to show that R, is Jordan Osserman of type
(p, 0) which will prove assertion (3). Since

range{Ja(0)} C {®ae] ..., Paey,}, rank{J, (o)} < 2a.
We suppose that rank{J,(c)} < 2a and argue for a contradiction. Let

W :=span{e],... ey, }.
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As dim W = 2a and as rank{7,(0)} < 2a, we have ker{J,(0)} N W # {0}. Thus
we may choose 0 # w € W with J,(0)w = 0. Let {v1,...,vp} be an orthonormal
basis for 0. We use equations (1.1.b) and (2.2.a) to compute:

0= (Ju(o)w,w) = =3(Pqv1, w)(Pav1, w) — -+ - — 3(Lqvp, w)(Pevp, w).
This implies that
0= (Pqv;,w) = — (v, Pqw) for 1 <i<p.

Consequently, ®,w 1 . Since ¢ is a maximal timelike subspace, ®5w either
vanishes or is spacelike. Since range ®, is totally isotropic, 5w is a null vector,
not a spacelike vector. Thus we must have that ®,w = 0. This is false as @ is
injective on W. This contradiction shows that rank{7,(c)} = 2a and hence R,
is Jordan Osserman of type (p,0); assertion (3) is established.

Finally, suppose that 2a = p. Let o € Gr;. (V). If we can show that the rank
of Ju(o) is r, then it would follow by Lemma 4.1 that R, is Jordan Osserman
of type (r,0). Let {v1,...,v} be an orthonormal basis for . We use equations
(1.1.b) and (2.2.a) to see that

Ja(0)y = =3{(y, @a(v1))Pa(v1) + - + (¥, Pa(vr)) Pa(vr)}.

Thus by Lemma 4.2, if {®q(v1),...,Pq(vr)} is a linearly independent set, then
rank J, (o) = r. We suppose the contrary, i.e. that the set {®q(v1),...,Pq(vr)}
is linearly dependent, and argue for a contradiction. Choose 0 # v € ¢ so that
D, (v) =0. We expand:

v:cl_el_—l—---—i—c;el_ —i—ci"ei"—i—---—i—c;e;"
dv = (ci" - cl_)q)a(ef') 4ot (c;' - c;)q)a(e;').

Since ®,v = 0, we have c;' =c; for 1 <i <p. Thus

(0,0) = ()2 = (@) 4+ + () = ()P + (g )P+ + ()
0

= () + 4 () >
Since v # 0 and since o is timelike, (v,v) < 0. This contradiction shows that
{®qv1,...,Pqvr} is a linearly independent set. Thus rank{ 7, (o)} = r and hence

Ry, is Jordan Osserman of type (r,0). This completes the proof of the last assertion
of Lemma 4.3. O
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4.4 Remark. We note that we can interchange the roles of spacelike and timelike
vectors in Lemma 4.3 by changing the sign of the inner product.

PROOF OF THEOREM 2.4: Suppose that 2a < p < ¢q. We use Lemma 4.3(3)
to see that R, is Jordan Osserman of type (p,0). Then dually by Theorem 2.2,
we have that R, is Jordan Osserman of type (0,¢). By Lemma 4.3 (1), since
2a < p, R, is not Jordan Osserman of type (r,s) for 1 < r < p — 1. Similarly, by
Lemma 4.3(1) and Remark 4.4, since 2a < ¢, R, is not Jordan Osserman of type
(r,s) for 1 < s < g—1. Assertion (1) now follows.

Suppose that 2a = p < q. We use Lemma 4.3(4) to see that R, is Jordan
Osserman of type (r,0) if 1 < r < p — 1. Dually, by Theorem 2.2, R, is also
Jordan Osserman of type (p — r,q). By Lemma 4.3(1) and Remark 4.4, since
2a < ¢, Rq is not Jordan Osserman of type (r, s) if 1 < s < ¢—1. This establishes
assertion (2).

Suppose finally that 2a = p = ¢. Since 2a = p, we use Lemma 4.3(4) to
see that R, is Jordan Osserman of type (r,0) if 1 < r < p— 1. Since 2a = g,
similarly we have, by Remark 4.4, that R, is Jordan Osserman of type (0, s) if
1 < s < g—1. The remaining values (p —, ¢) and (p, ¢ — s) then follow dually by
Theorem 2.2. If 1 <r <p—1land 1< s <g—1, then R, is not Jordan Osserman
by Lemma 4.3(2). All the assertions of Theorem 2.4 are now proved. (]
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