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Natural affinors on (JT’S’q(.,Rl’l)o)*

WELODZIMIERZ M. MIKULSKI

Abstract. Let r,s,q,m,n € N be such that s > r < ¢q. Let Y be a fibered manifold with
m-dimensional basis and n-dimensional fibers. All natural affinors on (J™%9(Y,R%1)g)*
are classified. It is deduced that there is no natural generalized connection on
(J759(Y,RY1)g)*. Similar problems with (J™5(Y,R)o)* instead of (J™%9(Y,RL1)g)*
are solved.
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Classification: 58A20, 53A55

0. Let us recall the following definitions (see e.g. [3]).

Let F': FMpn — FM be a functor from the category F.My, p of all fibered
manifolds with m-dimensional bases and n-dimensional fibers and their local
fibered diffeomorphisms into the category FM of fibered manifolds and fibered
maps. Let B : FM — Mf be the base functor from FM into the category M f
of manifolds. Let 7 : FM — M f be the total space functor.

A bundle functor over F My, n is a (covariant) functor F' satisfying Bo F' =
’T|]_— Monn and the localization condition: for every inclusion of an open subset
iy : U =Y, FU is the restriction p;l(U) of py : FY — Y over U and Fiy is
the inclusion p;,l(U) — FY.

An affinor D on a manifold M is a tensor type (1,1), i.e. a linear morphism
D :TM — TM over idy;.

A natural affinor on a bundle functor F is a system of affinors D : TFY —
TFY on FY for every F My, n-object Y satisfying TF foD = DoTF f for every
local F My, p-diffeomorphism f:Y — Y.

A connection on a fibre bundle Z is an affinor I' : TZ — T'Z on Z such that
oI’ =T and im(I") = VZ, the vertical bundle of Z.

A natural connection on a bundle functor F' is a system of connections I' :
TFY — TFY on FY for every F M, p-object Y which is (additionally) a natural
affinor on F.

In [5] it was shown how natural affinors () on some bundle functor F'Y can
be used to study the torsion 7 = [I', Q)] of connections I' on FY. That is why,
natural affinors have been classified in many papers, [1], [2], [7]-[11]. For example,
in [2] natural affinors on the r-th order vector tangent bundle (J"(M,R)g)* over
m-manifolds M € obj(FM,, o) were classified.
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In this paper we fix numbers r, s, g, m,n € N such that s > r < ¢ and consider
the bundle functor F' = T‘(}T_’/S\;tq:Ln, where T(5:9) = (Jrsa( RV ) : FM —
F M is the (introduced in [4]) bundle functor associating to every fibered manifold
Y the vector bundle (J™*4(Y, R%1)g)* over Y. We prove that the set of all natural
affinors on TI(]-T;’XLI?M is a 3-dimensional vector space over R and we construct
explicitly the basis of this vector space.

We also solve the similar problem with T(%) = (J™$(.,R))* : FM — FM
instead of T'(:2).

As an application of the obtained results we deduce that there are no natural
connections on 759 and T3,

The above results extend [2].

Throughout this paper , s,q, m,n € N are numbers with s > r < gq.

The usual fiber coordinates on R the trivial bundle R" x R™ over R™, are
denoted by zt, ... 2™ yl, ... y".

All manifolds and maps are assumed to be of class C°.

1. The concept of classical r-jets can be generalized as follows. Let Y — M and
Z — N be fibered manifolds. We recall that two F M-morphisms f,g:Y — Z
with base maps f,g: M — N determine the same (r, s, q)-jet jg’s’qf = jg’s’qg at
y € Yy, x € M, if jyf =359, 3;(f1Yz) = j,(g|Yz) and jgi = jgg. The space
of all (r,s,q)-jets of Y into Z is denoted by J"*4(Y,Z). The composition of
F M-morphisms induces the composition of (r, s, q)-jets ([3, p. 126]).

The space T"57*Y = J"54(Y, Rl’l)o, 0 € R2, has an induced structure of a
vector bundle over Y. Every FM-morphism f : Y — Z, f(y) = z, induces a
linear map A(jy *7f) : T2 Z — T,7*7"Y by means of the jet composition. If
we denote by T("59)Y the dual vector bundle of T7%%*Y and define T(T’S’q)f :
759y — 7549 7 by using the dual maps to )\(j;’s’qf), we obtain (similarly
as in [3, p.123]) a vector bundle functor 759 on FM, see [4].

2. In this section all natural transformations 754 — T(15:4) gyer FMmn
will be classified. This extends [6].

A natural transformation T(r5:9) — 7(5.9) gyer F M n is a system of fibered
maps A : Trsay — 7rsay covering the identity idy for every F M, n-object
Y satisfying T(T”Sv‘Z)f cA=Ao T(T”Sv‘Z)f for every local F My, n-map f:Y — Y.

Example 1. Let Y be an F M, n-object. For a fibered map v = (y',72) : ¥ —

R1! we have fibered maps 1) = (41,0), 72 = (0,42), 73 = (0,4}) : ¥ — RLL,

Clearly, jg’s’qvm, j;’s’q7<2>, jg’s’qvm depend linearly on jg’s’qv for y € Y. Define
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fibered maps pril) , Pr(2) , Pr® .7y — 789y over idy by
(Prit) (), jy> i) = (w, gy W),
(Pri?) (), jy>ty) = (w, 3y ),
(Pr) (), jy*ty) = (w, 3y ),

w € Tér’s’q)Y, yeY,y=(y,y2):Y — R is fibered, v(y) = 0. The families
Pl , Pri2 , Pr3) ; 7(rsa) — 7(r5,9) are natural transformations over FMmn.

Proposition 1. Every natural transformation A : Trsa) — 789 oyer
F M n is a linear combination of Pr<1>, Pri2) and Pr®,

PROOF: The elements j)* (%, 0) and j;*?(0, 2Py9) for multiindices o and (3, §)
from obvious sets form the basis of Jy *¢(R™", RL1).

By the fibered version of the rank theorem, jg’s’q(xl,yl) has dense orbit in
Jg’s’q(Rm’",Rlvl)o. Then (by the naturality) A is uniquely determined by the
contractions <A(w),j6’5’q(x1,y1)> for all w € Tér’s’q)Rm’”. So, it suffices to
deduce that (A("),jo ™ (1, y1)) Tér’s’q)Rmv" — R is a linear combination of

jg’s’q(xl, 0),j6’s’q(0, xl),jg’s’q(O, yh) To(r’s’q)Rm’” — R, i.e. that the vector space
of all A as above has dimension < 3.

By the naturality of A with respect to the homotheties a; = tidgmygn :
R™" — R™" for t # 0 and the homogeneous function theorem (see [3]), we
deduce that (A(-), jg*?(z!, y1)) is a linear combination of j;'*(z*,0), j5*7(0, z%)
and jg’s’q(O, y))fori=1,...,mand j =1,...,n. Next, using the naturality of A
with respect to the fibered maps by = (21,22, ... ta™, y' ty?, ... ty™) : R™" —
R™™ for t # 0 we finish the proof. O

3. In this section all linear natural transformations 7754 — T4 gyer
F M n will be classified.

A natural transformation 7789 — 7849) oyer FMmn is a system of
fibered maps B : Ty — Trs9)y covering the identity idy for every
F M n-object Y satisfying T(Tvsﬂl)foB = BoTT(T’S’q)f for every local F M p-
diffeomorphism f : Y — Y. The linearity of B : TT(549) — T(549) means that
the restriction and corestriction B, : TwT(T’qu)Y — TyY of B : 7Ty —
759y is linear for any w € Tyr’s’q)Y, y €Y and Y € obj(FMpmp).
Example 2. Given an M, n-object Y let BW B2 . sy — 7(rsay
be fibered maps over idy such that

(BY (v), 55y = dyy' (T (v)),
(B® (v), ji*99) = dyy*(T'r(v)),
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€ (TT(T’S’q))yY, yeY,y=(y,72):Y — RbLis fibered, v(y) = 0, where 7 :
759y — Y is the bundle projection, T'x : TT("$9Y — TY is its tangent map
and dyvy1 : TyY — R is the differential of v; at y. Then B B@ . pr(rsa)
T(r5:9) are linear natural transformations over F. Mmon.

Proposition 2. Every linear natural transformation B : 7789 5 7(rsq)
over F M. n is a linear combination of B and B2,

PROOF: We use the notations from the proof of Proposition 1. Let (ji*(z%,0))*,

(Jo >4 (0, aPy0))* e Tér’s’q)Rm " be the basis dual to the one of JJ'*¢(R™", RL1),.
Let

ry R™ x R™ x Téﬁ&‘])Rm,n % TO(T,qu)Rm,n S R™ x an
pry : Rm % Rn % To(rvsyQ)Rm,TL X Térvsv‘Z)Rm,’n N TéﬁsyQ)Rm,n,

prs : R™ % R™ x TéﬁsyQ)Rm,n X Térvsv‘Z)Rm,’n N TéﬁsyQ)Rm,n

be the projections.

Similarly as in the proof of Proposition 1, B is uniquely determined by the
contractions (B(v), jg’s’q(xl,yl» for all v € (TTTs2)gRMNZR™ x R™ x
Tér’s’q)Rmm X To(r’s’q)Rm’", where = is the standard identification. So, it re-
mains to deduce that

<B( ) ]6 s,q( 17y1)> SR™ x R™ % TéT,qu)Rm,n % TO(TVS,‘I)Rm,n —~ R

is a linear combination of z! o pry and ylo pri.

Using similar arguments as in the proof of Proposition 1 (the naturality of B
with respect to a; and b; and the homogeneous function theorem), we deduce
that (B(-), jg’s’q(:cl,y )) is a linear combination of 21 opry, ylopry, ji*%(zt,0)0
pry, ]6 S’Q(O x ) o pry, 36 S’q(O,y ) o pry, 36 S’q(xl, 0)o pr3, 36 40, :vl) o pr3 and

r’s’q(O yl) o pry. Since B is linear, (B(:),jg"?(z!,y!)) is a linear combination
1 78,4 (.1 :T,8,q 1 :T,8,q 1

of 2! o pry, y' o pry, jo* (!, 0) o pr3, jy*(0,2") o pry and j5*9(0,y") o pr3.

Replacing B by B — A\ B — X\ B2 we can assume that (B (),jg’s’q(xl,y1)> is

a linear combination of j{'™(x1,0) o pr3, j§ ’q(O z!) o pr3 and jy*%(0,y') o pr3.

(Then (B(f'|,), 45" (z",y )> =0 and < (@ 1) 35 (=" y")) = 0 for any w €

TO(T’S’q)Rm", where 01 = 8:01 o1 = ﬂ and () is the flow lift of projectable

vector fields to 7(59).) It remains to show
(1) (B(0,0,&), jg* (=", y1)) =0

for & € {(jo* (=1, 0))*, (590, 21))*, (g *9(0, y1))*}. We consider 3 cases.
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(I) Assume @ = (jg’s’q(:zrl, 0))*. For showing (1), we prove

0 = (A((r + (@")?01)(), g™« yh)
(@h)0n)(), 50" (=" ")
w, o4+ ... ),jg’s’q(xl,y1)>
,0,8), g™ (@t yh)),

where w = (jig™?((21)4,0))* and the dots is the linear combination of the elements
@ from the dual basis of T(T SORMI with © ¢ {( T’S’q(x 0))*, (g0, = by,
(G *(0,91))"}-

The second equality of (2) is clear as <B(8lc‘w),j6’5’q(:1:1,y1)> =0and A is
an affinor. The fourth equality of (2) is clear as (B(-), j5'* (2!, y')) is a linear
combination of jg’s’q(:zrl, 0) o prs, jg’s’q(O, z1) o pry and jg’s’q(O, yb) o prs.

We can prove the first equality of (2) as follows. We consider for a moment
01 and 91 + (21)90; as the vector fields on R. They have the same (¢ — 1)-jets
at 0 € R. Then there exists a diffeomorphism 7 : R — R such that jgz/J =id
and 01 = 91 + (z1)90; near 0 € R, see Lemma 42.4 in [3] (or [12]). Let
¢ = ¢ X idgm-1 X idgn. Then ¢ : R™" — R"™" is an F M, n-morphism such
that jo*%p = id and 401 = O +(x 149, near 0. Clearly, ¢ preserves 3o Y w Loyhy
because of the jet argument. Then, using the naturality of A with respect to ¢,
from (B(0] |w) jo 7 (xt,yt)) = 0 for any w € Tér’s’q)Rmm it follows the first

To(rvqu)Rm,n‘

(
@) <
(
(

equality for any w €
It remains to show the third equality of (2). Let ¢; be the flow of (21)99;.
Then

d

{(@)100), jo ™ (=", 0)) = (—

(Tvsﬂ) -7,8,q 1
P COICOR R G

d
= @351 @ 0) 0 00)

= (w,jo((zh),0))
=1

because of the definition of w. Similarly (((z )qal)‘w,]g’s’q(o,xl» = 0 and
(90005 04N) = 0. Then (@900, = G5 " 0) + ... un-

der the isomorphism VwT(T’S’q)Rm’"iTér’s’q)Rm", where the dots stand for a

linear combination of the elements @w from the dual basis of Tér’s’q)Rm’” with
w ¢ {(Gp* (=1, 0))%, (g (0, 21))*, (5*9(0,y1))*}. It implies the third equality
of (2).
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(IT) Assume & = (jg’s’q(o,:zrl))*. For showing (1), we prove (2), where w =
(G090, (z1)9))* and the dots stand for a linear combination of the elements

w from the dual basis of T(T SORMI with © ¢ {(j T’s’q(x 0))*, (' *?(0, = Iy,
(™ (0, M)}

The proof of the third equality of (2) is almost the same as in case (I)
(we have (((2)000)0. 75" (1,0)) = 0, {(@)900)C, 5 (0.41) = 1 and

(((x )qal)‘w,gg’qu(o,y )) = 0). The proofs of the other equalities of (2) are

the same as in case (I).

(IIT) Assume & = (j;*(0,y1))*. For showing (1), it suffices to prove

= (A(O1 + (")) do ™t yh))
@) = (A" G (=" y")

= (A0.w, & +...),jg™ (g

= (A(0,0,3), jg™ (", y1),

where w = (j;*9(0, (y1)®))* and the dots stand for a linear combination of
the elements @ from the dual basis of TéT’S’Q)Rm’" with @ ¢ {(jy*(zt,0))",
(jg’s’q(o,xl))*,(jg’s’q(o,yl))*}. The proof of (2)’ is similar to that of (2) in
case (II). We leave the details to the reader. O

4. In this section we classify all natural transformation TT™%9) — T over

FMinn. (The definition is similar to the one from Section 2.)

Example 3. Given an F M, p-object Y, let T'w : TT(59Y — TY be as in
Section 3. Then Tw : TT("$49) — T is a linear natural transformation over
FMmn.

Proposition 3. Every linear natural transformation C : TT(%49) _ T over
F M is a constant multiple of T'm.

ProOOF: Using C, we construct a linear natural transformation C . TTrs9)
T(4) gver FMpn as follows. For any Y € obj(F M., ) we define a fibered
map C : TT("50y — 759y over idy by

(C(v),4y*Py) = dy (C(v)),

€ (TTr9), Y,y €Y, v = (71,72) : Y — RV is fibered, 7(y) = 0.
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Now, by Proposition 2, there exist numbers A1, A9 € R such that
<C’( )s 3y 5 0y) = A1 - dy 1 (T (v)) + Az - dyy2 (T (v))

for any v € (TT(T’S’q))yY, y€Y,Y € obj(FMp) and any fibered map v =
(71,72) : Y — RLL with y(y) = 0. Then Ay = 0 and C = Ay - T'r. O

5. In this section we prove the main result of this paper.

Example 4. For every F M, n-object Y let Id : 1759y — TT59Y be the
identity map and let B B@ . 7789y — 7789y be affinors on 759y
such that

B () = (w, BV (v)) e Ty xy T8y 2y 189y ¢ TT59)y,
B® (v) = (w, BR(v)) € TT"59Y, v € T, Ty, w e T2y,

where B<1>,B<2> . 7759y — T(h59)Y are as in Section 3. Then Id, BM) and

B(2) (r,5,9)
B4 are natural affinors on T\me,n'

(7,5,9)

Theorem 1. Every natural affinor D on T‘ F

B and B®.

PrOOF: The family 77 o D : TT"$90Y — TY for Y € obj(FMmp) is a
linear natural transformation 7759 — T over FMpmn. Then, by Propo-
sition 3, there exists the real number A\ such that Tmo D = A . Tn. Then
D—X-1d : TT59y — VTS9Y for any FM,y, p-object Y. Let pr :
vTrsy =7rsay xYT(Tvs"I)Y — T(:5:9)Y be the projection onto second fac-
tor for any Y as above. Then the family pro(D — X-1d) : 7Ty — 759y
for any Y as above is a linear natural transformation over M, . Now, by
Proposition 2, there exist the numbers p1, uo € R such that pr O(D A-Id) =

[i1 - B<>+u2 B®@_ Then D = X-Id+u; - BY + g - B2, 0

is a linear combination of 1d,

6. We have the following corollary of Theorem 1.

T( qu)

Corollary 1. There is no natural generalized connection on FAM

PROOF: Suppose that I is such a connection. By Theorem 1, there are numbers
A1, A2, A3 € R such that T' = Ay -Id+)g - B + A3 B, Let Y be an F M,y -
object. Since im(T') = VT ("*9Y and im(BM) ¢ vT(9y and im(B?)
VT($9Y | we get A\; = 0. It is easy to see that VT ("59Y C ker(BD) and
VT(rs9Y C ker(B?)). Then Tol = 0 # I, a contradiction. O
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7. We can solve similar problems with 7% = (J"5(. R)o)* : FM — FM
instead of T("%9) as follows.

(i) Let Y — M be a fibered manifold and @ be a manifold. Two maps f,g :
Y — @ determine the same (r, s)-jet j;’sf = jg’sg aty € Yo, x € M, if jy f = jyg,
and jy(f|Yz) = j;(g|Yz). The space of all (r,s)-jets of Y into @ is denoted by
JH3(Y,Q), see [3, p.126].

The space T"*Y = J"5(Y,R)g has an induced structure of a vector bundle
over Y. Every FM-morphism h : Z — Y, h(z) = y, induces a linear map
ANh)y, 2 Tp™*Y — TD%Z, ji° f — §2°(f o h). If we denote by T("®)Y the dual
vector bundle of T"5*Y and define T"5)p : T 7 — Ts)y by using the
dual maps to A(h)y,~, we obtain a vector bundle functor T("5) on FM.

(ii) The family id : Ty — 7)Y for any FMmn-object Y is a natural
transformation T(%) — T(5) over FMmmn.

Proposition 1’. Every natural transformation A : T7(s) — 7(s) over FMmn
is a constant multiple of the identity natural transformation.

PROOF: The proof is quite similar to the proof of Proposition 1. O

(iii) For every F M n-object Y let BU : TT(9)y — T(5)Y be a fibered
map over idy such that (B0 (0), jy*v) = dyy(Tm(v)), v € (TT(T’S))yY, yey,
7:Y — R, v(y) = 0, where 7 : T"9)Y — Y is the bundle projection and
Tr:TTTS)Y — TY is its tangent map. Then BO . 717(ms) — 7(15) ig g linear
natural transformation over F My, p.

Proposition 2/. Every linear natural transformation B : TT5) — T(3) over
FMm.n is a constant multiple of BO.

PRrROOF: The proof is quite similar to the proof of Proposition 2. O

(iv) Given an F My n-object Y let T : TT(™*)Y — TY be as in (iii). Then
Tr : TT(™5) — T is a linear natural transformation over F Mmn-

Proposition 3'. Every linear natural transformation C : TT) — T over
F M is a constant multiple of T'.

PRrROOF: The proof is quite similar to the proof of Proposition 3. ([

(v) For every FMp p-object Y, let Id : TT("*)Y — TT("5)Y be the identity
map and let BO . 717(ms)y — TT(9)Y be an affinor on T(5)Y such that
BO(v) = (w, BU(v)) e Tr®)Y xy T8y =y T(8)y c TTM9)Y |0 € T,T9)Y,
w € T3y where BO : TT(m9)y — T("8)Y is as in Proposition 1. Then Id

and BY are natural affinors on T\(}T:/S\zlmn
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Theorem 1'. Every natural affinor D on Y]gﬁ is a linear combination of 1d
and BU.
PRrROOF: The proof is quite similar to the proof of Theorem 1. (Il

(vi) We have the following corollary of Theorem 1’.

T(T’vs)

Corollary 1’. There is no natural generalized connection on F Mo
m,n
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