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The fixed point property

in Musielak-Orlicz sequence spaces

H. Bevan Thompson, Yunan Cui

Abstract. In this paper, we give necessary and sufficient conditions for a point in a
Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We
give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped
with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property
and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space
equipped with the Orlicz norm has the fixed point property if and only if it is reflexive.

Keywords: nearly uniformly convex, uniform Kadec-Klee property, Kadec-Klee property,
Musielak-Orlicz sequence space, fixed point property

Classification: 46E30, 46B20, 47H10

§1. Introduction

The Kadec-Klee property and the notion of nearly uniform convexity play
important roles in some branches of mathematics. Some well known results involve
these properties. In this paper, we will examine these properties in the Musielak-
Orlicz sequence space equipped with the Orlicz norm.

Let (X, ‖ · ‖) be a real Banach space and X∗ the dual space of X . By B(X)
and S(X) we denote the closed unit ball and the unit sphere of X , respectively.
Let l0 be the set of all real sequences.

Definition 1. A point x ∈ S(X) is said to be an H-point if whenever {xn} ⊂

S(X) satisfies xn
w
−→ x, then xn → x in norm (see [18]).

A Banach space X is said to have the Kadec-Klee property if every point on
S(X) is an H-point (see [18]).

Recall that a sequence {xn} is said to be an ε-separate sequence for some ε > 0
if

sep({xn}) := inf{‖xn − xm‖ : n 6= m} > ε.

Second author supported by NSF of China.
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Definition 2. A Banach spaceX is said to have the uniform Kadec-Klee property
(UKK) if for every ε > 0 there exists δ > 0 such that if x is a weak limit of a
norm one ε-separate sequence, then ‖x‖ < 1− δ.

The notion of nearly uniform convexity of a Banach space was introduced by
Huff in [12]. It is an infinite dimensional counterpart of the classical uniform
convexity.

Definition 3. A Banach space X is said to be nearly uniformly convex (NUC),
if for every ε > 0 there exists δ > 0 such that for every sequence {xn} ⊂ B(X) =
{x ∈ X : ‖x‖ ≤ 1} with sep({xn}) > ε we have

conv({xn}) ∩ (1− δ)B(X) 6= ∅.

It is easy to see that every (NUC) space has the (UKK) property. Huff (see
[12]) proved that X is (NUC) if and only if X is reflexive and has the (UKK)
property.

Definition 4. A Banach space X contains an asymptotically isometric copy of l1
if, for every sequence {εn} decreasing to 0, there exists a sequence {xn} ⊂ S(X)
such that

∞
∑

n=1

(1− εn) |an| ≤

∥

∥

∥

∥

∞
∑

n=1

anxn

∥

∥

∥

∥

≤
∞
∑

n=1

|an| .

Definition 5. A Banach space X is called a Köthe sequence space if for every
x ∈ l0 and y ∈ X satisfying |x(i)| ≤ |y(i)| for all i ∈ N we have x ∈ X and
‖x‖ ≤ ‖y‖.

Definition 6. A Köthe sequence spaceX is said to have an absolutely continuous
norm if

lim
n→∞

‖(0, 0, · · · , 0, x(n+ 1), x(n+ 2), · · · )‖ = 0

for any x ∈ X .

Put

Xa =
{

x ∈ X : lim
n→∞

‖(0, 0, · · · , 0, x(n+ 1), x(n+ 2), · · · )‖ = 0
}

.

Definition 7. A Köthe sequence space X is said to have property (A) if

lim
n→∞

∥

∥

∥

n
∑

i=1
x(i)ei

∥

∥

∥
= ‖x‖ for all x ∈ X , where ei = (0, · · ·0,

i−th
1 , 0, · · · ).

A map Φ : R → [0,∞) is said to be an Orlicz function if Φ is vanishing only
at 0, is even, convex and continuous on [0,∞) and lim

u→∞
Φ(u) = ∞ (see [17]

and [1]). Note that the continuity of Φ on [0, c) follows from the convexity of Φ.
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A sequence Φ = (Φi) of Orlicz functions is called to be a Musielak-Orlicz
function. By Ψ = (Ψi) we denote the complementary function of Φ in the sense
of Young; that is

Ψi(v) = sup {|v|u− Φi(u) : u ≥ 0} , i = 1, 2, · · · .

For a givenMusielak-Orlicz function Φ, we define a convex modular by IΦ(x) =
∞
∑

i=1
Φi(x(i)) for any x ∈ l0. A linear space lΦ defined by

lΦ =
{

x ∈ l0 : IΦ(kx) <∞ for some k > 0
}

is called the Musielak-Orlicz sequence space generated by Φ. We consider lΦ
equipped with the Luxemburg norm

‖x‖ = inf
{

k > 0 : IΦ

(x

k

)

≤ 1
}

or equipped with the equivalent so called Orlicz norm

‖x‖0 = inf

{

1

k
(1 + IΦ(kx)) : k > 0

}

.

To simplify notations, we put lΦ = (lΦ, ‖ · ‖) and l0Φ = (lΦ, ‖ · ‖0). Both lΦ and

l0Φ are Banach spaces (see [17] and [1]).
The set of all k’s at which the infimum in the Orlicz norm is attained for

x ∈ l0Φ (x 6= 0) will be denoted by K(x).
We say that an Orlicz function Φ satisfies the δ2-condition (Φ ∈ δ2 for short)

if there exist constants k ≥ 2 and u0 > 0 and a sequence (ci) of positive numbers

such that
∞
∑

i=1
ci <∞ and the inequality

Φi(2u) ≤ kΦi(u) + ci

holds for every i ∈ N and |u| ≤ u0.
For more details on Musielak-Orlicz sequence spaces, we refer to [17], [1],

and [15].

§2. Results

In order to get our main results, we need to recall some known facts.

Lemma 1. If Φ ∈ δ2, then ‖xn‖0 → 0 if and only if IΦ(xn)→ 0 (see [14]).
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Lemma 2. Let x ∈ l0Φ be given. If K(x) = ∅, then ‖x‖0 =
∞
∑

i=1
ai|x(i)|, where

ai = lim
u→∞

Φi(u)
u .

Proof: Put f(k) = 1
k
(1 + IΦ(kx)). Then lim

k→0+
f(k) = +∞. Since f(k) is

continuous and K(x) = ∅, we have ‖x‖0 = lim
k→∞

f(k) = lim
k→∞

IΦ(kx)
k
. Set

N(x) = {i ∈ N : x(i) 6= 0}. Then ai = lim
u→∞

Φi(u)
u is finite for all i ∈ N(x).

If lim
u→∞

Φi0
(u)

u = ∞ for some i0 ∈ N(x), then ‖x‖0 = lim
k→∞

IΦ(kx)
k

≥

lim
k→∞

Φi0
(kx(i0))

k
=∞. Hence ‖x‖0 = lim

k→∞

IΦ(kx)
k
=

∞
∑

i=1
ai|x(i)|. �

Lemma 3. Let X be a Köthe sequence space with property (A). If x ∈ S(X) is
an H-point, then x ∈ Xa.

Proof: Assume x does not have an absolutely continuous norm, thus there exists
ε0 > 0 such that

∥

∥

∥

∥

∞
∑

i=n+1

x0(i)ei

∥

∥

∥

∥

≥ ε0

for any n ∈ N.
Take n = 0. Since X has property (A), there is n1 ∈ N such that

∥

∥

∥

∥

n1
∑

i=1

x0(i)ei

∥

∥

∥

∥

≥
ε0
2

.

Notice that

lim
m→∞

∥

∥

∥

∥

m
∑

i=n1+1

x0(i)ei

∥

∥

∥

∥

=

∥

∥

∥

∥

∞
∑

i=n1+1

x0(i)ei

∥

∥

∥

∥

≥ ε0,

and thus there exists n2 > n1 such that

∥

∥

∥

∥

n2
∑

i=n1+1

x0(i)ei

∥

∥

∥

∥

≥
ε0
2

.

In this way, we get a sequence {ni} of natural numbers such that

∥

∥

∥

∥

ni+1
∑

i=ni+1

x0(i)ei

∥

∥

∥

∥

≥
ε0
2

, i = 1, 2, · · · .
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Put xi =
ni+1
∑

i=ni+1
x0(i)ei. Then

(1) ‖xi‖ ≥
ε0
2 for all i ∈ N;

(2) xi
w
−→ 0 as i→∞. It is well known that for any Köthe space X we have

X∗ = X ′ ⊕ S,

where S is the space of all singular functionals over X , i.e., functionals which
vanish on the subspace Xa = {x ∈ X : x has absolutely continuous norm} and

X ′ = {y ∈ l0 :
∞
∑

i=1
x(i)y(i) <∞ for any x ∈ X} (see [16]). This means that every

f ∈ X∗ is uniquely represented in the form

f = Ty + ϕ,

where ϕ ∈ S and Ty is the functional generated by an element y ∈ X ′ by the
following formula

Ty(x) =

∞
∑

i=1

x(i)y(i)

for any x ∈ X .
Let y ∈ X ′. We have

lim
i→∞

∞
∑

j=1

xi(j)y(j) = lim
i→∞

ni+1
∑

j=ni+1

xi(j)y(j) = 0.

Put zi = x − xi for any i ∈ N. Then zi
w
−→ x, lim

i→∞
‖zi‖ = ‖x‖ = 1 and

‖zi − x‖ = ‖xi‖ ≥
ε0
2 .

This contradiction shows that x has an absolutely continuous norm. �

Theorem 1. x ∈ S(l0Φ) is an H-point if and only if Φ ∈ δ2 or K(x) = ∅.

Proof: Proof of necessity. Suppose that x ∈ S(l0Φ) is an H-point, Φ /∈ δ2 and
K(x) 6= ∅. Since Φ /∈ δ2, there exists x0 ∈ S(lΦ) such that IΦ(x0) ≤ 1 and
IΦ(kx0) = ∞ for any k > 1 (see [11]). Take a sequence of natural numbers

mn ↑ ∞ such that
∥

∥

mn+1
∑

i=mn+1
x0(i)ei

∥

∥ > 1
2 . Put

xn = (x(1), · · · , x(mn),
x0(mn + 1)

k
, · · · ,

x0(mn+1)

k
, x(mn+1 + 1), · · · )

for all n ∈ N, where k ∈ K(x).
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Arguing as in Lemma 3, we can show that xn
w
−→ x. From

‖xn‖
0 ≤
1

k

(

1 + IΦ(kx) +

mn+1
∑

i=mn+1

Φi(x0(i))

)

= 1 +
1

k

mn+1
∑

i=mn+1

Φi(x0(i))→ 1

and

1←

∥

∥

∥

∥

mn
∑

i=1

x(i)ei

∥

∥

∥

∥

0

≤ ‖xn‖
0 ,

we have lim
n→∞

‖xn‖0 = 1.

Since x is an H-point, by Lemma 2 there exists n0 ∈ N such that
∥

∥

∥

mn+1
∑

i=mn+1
x(i)ei

∥

∥

∥

0
≤ 1
4k when n > n0. Hence

‖xn − x‖0 =

∥

∥

∥

∥

mn+1
∑

i=mn+1

(

1

k
x0(i)− x(i)

)

ei

∥

∥

∥

∥

0

≥
1

k

∥

∥

∥

∥

mn+1
∑

i=mn+1

x0(i)ei

∥

∥

∥

∥

0

−

∥

∥

∥

∥

mn+1
∑

i=mn+1

x(i)ei

∥

∥

∥

∥

0

≥
1

k

∥

∥

∥

∥

mn+1
∑

i=mn+1

x0(i)ei

∥

∥

∥

∥

−

∥

∥

∥

∥

mn+1
∑

i=mn+1

x(i)ei

∥

∥

∥

∥

0

≥
1

2k
−
1

4k
=
1

4k

when n > n0, a contradiction, since x is an H-point. Thus either Φ ∈ δ2 or
K(x) = ∅.

Sufficiency. Suppose that {xn} ⊂ S(l0Φ) is such that xn
w
−→ x.

First, we consider the case K(x) = ∅. There are two subcases to consider.

Subcase I. K(xn) = ∅, n = 1, 2, · · · . In this case, we have

‖xn‖
0 =

∑

i∈N(xn)

ai |xn(i)| and ‖x‖
0 =

∑

i∈N(x)

ai |x(i)| .

Using xn
w
−→ x, we get xn(i)→ x(i) for all i ∈ N as n→∞. Since xn(i)→ x(i)

for all i ∈ N as n→∞, it follows easily that lim
n→∞

‖xn − x‖0 = 0.

Using xn
w
−→ x, we get xn(i) → x(i) for all i ∈ N as n → ∞. Now it is

well known that the weighted space l1({ai}) has the Schur property. Therefore,
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‖xn − x‖l1({ai}) → 0. Moreover, for any n ∈ N,

‖xn − x‖0 ≤
∞
∑

i=1

ai|xn(i)− x(i)| = ‖xn − x‖l1({ai})
.

Therefore lim
n→∞

‖xn − x‖0 = 0 as n→∞.

Subcase II. K(xn) 6= ∅, n = 1, 2, · · · . We will show that K(xn) 6= ∅ is
impossible. Take kn ≥ 1 such that ‖xn‖

0 = 1
kn
(1 + IΦ(knxn)). We will prove

lim
n→∞

kn =∞. Assume there exists a subsequence {knj} ⊂ {kn} and k <∞ such

that lim
j→∞

knj = k. Since K(x) = ∅, we have ‖x‖0 < 1
k
(1 + IΦ(kx)). Hence there

is i0 ∈ N such that

‖x‖0 <
1

k

(

1 +

i0
∑

i=1

Φi(kx(i))

)

.

Using xn(i)→ x(i) for all i ∈ N, we obtain

lim inf
n→∞

‖xn‖
0 ≥
1

k

(

1 +

i0
∑

i=1

Φi(kx(i))

)

> 1.

This contradiction shows that lim
n→∞

kn = ∞. Take i1 ∈ N such that |x(i1)| > 0.

Thus there exists n1 ∈ N such that |xn(i1)| ≥
|x(i1)|
2 when n > n1. Hence

1 = ‖xn‖
0 =

1

kn

(

1 +

∞
∑

i=1

Φi(knxn(i))

)

≥
1

kn
Φi0(knxn(i1)) ≥

Φi0(
kn
2 x(i1))

kn
→∞,

a contradiction. Thus K(xn) 6= ∅ is impossible.
Lastly we consider the case K(x) 6= ∅ and Φ ∈ δ2. It suffices to prove that

{xn} has equi-absolutely continuous norm. Let ε > 0 be given. Again we consider
the following two subcases:

Subcase I. K(xn) = ∅, n = 1, 2, · · · . Take i2 ∈ N such that
∥

∥

∥

i2
∑

i=1
x(i)ei

∥

∥

∥

0
> 1−

ε. Using xn(i)→ x(i) for all i ∈ N, there exists n2 ∈ N such that
∥

∥

∥

i2
∑

i=1
xn(i)ei

∥

∥

∥

0
>

1− ε when n > n2. Hence

1 = ‖xn‖
0 =

∥

∥

∥

∥

i2
∑

i=1

xn(i)ei

∥

∥

∥

∥

0

+

∥

∥

∥

∥

∞
∑

i=i2+1

xn(i)ei

∥

∥

∥

∥

0

> 1− ε+

∥

∥

∥

∥

∞
∑

i=i2+1

xn(i)ei

∥

∥

∥

∥

0

,
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where the second equality holds since K(xn) = ∅. Thus
∥

∥

∥

∞
∑

i=i2+1
xn(i)ei

∥

∥

∥

0
< ε

when n > n2.

Subcase II. K(xn) 6= ∅ for n = 1, 2, · · · . Since Φ ∈ δ2, there exists δ > 0 such
that ‖z‖0 < ε whenever IΦ(z) < δ.

Take i3 ∈ N such that
∥

∥

∥

i3
∑

i=1
x(i)ei

∥

∥

∥

0
> 1− δ. Using xn(i)→ x(i) for all i ∈ N,

there exists n3 ∈ N such that
∥

∥

∥

i3
∑

i=1
xn(i)ei

∥

∥

∥

0
> 1− δ when n > n3. Hence

1 = ‖xn‖
0 =

1

kn

(

1 +

i3
∑

i=1

Φ(knxn(i)) +

∞
∑

i=i3+1

Φ(knxn(i))

)

=
1

kn

(

1 +

i3
∑

i=1

Φ(knxn(i))

)

+
1

kn

∞
∑

i=i3+1

Φ(knxn(i))

≥

∥

∥

∥

∥

i3
∑

i=1

xn(i)ei

∥

∥

∥

∥

0

+
∞
∑

i=i3+1

Φ(xn(i)) > 1− δ +
∞
∑

i=i3+1

Φ(xn(i))

when n > n3. Thus
∞
∑

i=i2+1
Φ(xn(i)) < δ and

∥

∥

∥

∞
∑

i=i2+1
xn(i)ei

∥

∥

∥

0
< ε, as required.

�

Corollary 1. A Musielak-Orlicz sequence space equipped with the Orlicz norm

has the Kadec-Klee property if and only if Φ ∈ δ2.

Theorem 2. A Musielak-Orlicz sequence space equipped with the Orlicz norm

has the uniform Kadec-Klee property if and only if Φ ∈ δ2.

Proof: We only need to prove the sufficiency of the theorem. Let ε > 0 and

{xn} ⊂ B(l0Φ) with sep({xn}) > ε and xn
w
−→ x ∈ l0Φ. Now for any m ∈ N

there is nm such that sep({
∞
∑

i=m

xn(i)ei}) > ε for any n ≥ nm. This follows

since xn
w
−→ x implies xn → x coordinatewise and so we can make the coordi-

nates xn(1), . . . , xn(m− 1), differ by as little as we please for n sufficiently large.

Thus sep({
∞
∑

i=m

xnk
(i)ei}) > ε for a subsequence {xnk

} of {xn}. Relabelling the

subsequence we may assume that it holds for all n.

Hence form ∈ N there exists nm ∈ N such that
∥

∥

∥

∞
∑

i=m

xnm(i)ei

∥

∥

∥

0
≥ ε
2 . Without

loss of generality, we may assume that
∥

∥

∥

∞
∑

i=m

xn(i)ei

∥

∥

∥

0
≥ ε
2 for all m, n ∈ N.
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Secondly, we assume that Φ ∈ δ2. Then there exists ε1 ∈ (0, ε) such that

IΦ

( ∞
∑

i=m

xn(i)ei

)

> ε1 for all m ∈ N.

Take m large enough such that
∥

∥

∥

m
∑

i=1
x(i)ei

∥

∥

∥

0
> ‖x‖0− ε1

4 . Using xn(i)→ x(i)

for i = 1, 2, · · · , there exists m0 ∈ N such that
∥

∥

∥

m
∑

i=1
xn(i)ei

∥

∥

∥

0
> ‖x‖0 − ε1

4 when

n > m0.
We divide our proof into the following parts:

Part I. K(xn) 6= ∅ for n = 1, 2, · · · . Hence

1 ≥ ‖xn‖
0 =

1

kn

(

1 +

m
∑

i=1

Φ(knxn(i)) +

∞
∑

i=m+1

Φ(knxn(i))

)

=
1

kn

(

1 +

m
∑

i=1

Φ(knxn(i))

)

+
1

kn

∞
∑

i=m+1

Φ(knxn(i))

≥

∥

∥

∥

∥

m
∑

i=1

xn(i)ei

∥

∥

∥

∥

0

+

∞
∑

i=m+1

Φ(xn(i)) > ‖x‖0 −
ε1
4
+ ε1

when n > m0. Thus ‖x‖
0 < 1− 3ε14 .

Part II. K(xn) = ∅ (n = 1, 2, · · · ). Hence

1 ≥ ‖xn‖
0 =

∥

∥

∥

∥

m
∑

i=1

xn(i)ei

∥

∥

∥

∥

0

+

∥

∥

∥

∥

∞
∑

i=m+1

xn(i)ei

∥

∥

∥

∥

0

≥ ‖x‖0 −
ε1
4
+

ε1
2

when n > m. Thus ‖x‖0 < 1− ε1
4 . �

Corollary 2. A Musielak-Orlicz sequence space equipped with the Orlicz norm

is nearly uniformly convex if and only if it is reflexive.

Theorem 3. A Musielak-Orlicz sequence space equipped with the Orlicz norm

has the fixed point property if and only if it is reflexive.

Proof: Since a reflexive Banach space with the UKK property has the fixed
point property (see [7]), we only need to prove the necessity.
Suppose Φ fails to satisfy the δ2-condition. Then lΦ contains an isometric copy

of l∞ (see [15]). Hence l0Φ does not have the fixed point property (see [6]).

Suppose Φ fails to satisfy the δ2-condition. Then Ψ fails to satisfy the δ2-
condition. Hence there exists x ∈ S(lΨ) such that IΨ(λx) = ∞ for any l > 1
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(see [11]). For every sequence (εn) decreasing to 0, there exist 0 = I1 < I2 < I3 <
· · · such that

∥

∥

∥

∥

In+1
∑

i=In+1

x(i)ei

∥

∥

∥

∥

> 1− εn, for all n ∈ N.

Put xn =
In+1
∑

i=In+1
x(i)ei for all n ∈ N. Then there exist zn ∈ S(l0Φ) such that

〈zn, xn〉 = ‖xn‖ for all n ∈ N. Hence for any α = (α(n)) ∈ l1 and supp zn ⊆
suppx, we have

∥

∥

∥

∥

∞
∑

n=1

α(n)zn

∥

∥

∥

∥

0

=

∥

∥

∥

∥

∞
∑

n=1

α(n)zn

∥

∥

∥

∥

0

≥

〈 ∞
∑

n=1

α(n)zn,

∞
∑

n=1

sign(α(n))xn

〉

=

∞
∑

n=1

|α(n)| 〈zn, xn〉 ≥ (1− εn)

∞
∑

n=1

|α(n)| ,

and
∥

∥

∥

∥

∞
∑

n=1

α(n)zn

∥

∥

∥

∥

0

≤
∞
∑

n=1

|α(n)| ‖zn‖
0 =

∞
∑

n=1

|α(n)| .

Thus l0Φ contains an asymptotically isometric copy of l1. By Theorem 2 (see [6]),

l0Φ does not have the fixed point property. �
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