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Pointwise convergence and the Wadge hierarchy

Alessandro Andretta, Alberto Marcone

Abstract. We show that if X is a Σ1
1
separable metrizable space which is not σ-compact

then C∗

p (X), the space of bounded real-valued continuous functions on X with the topo-

logy of pointwise convergence, is Borel-Π1
1
-complete. Assuming projective determinacy

we show that if X is projective not σ-compact and n is least such that X is Σ1n then
Cp(X), the space of real-valued continuous functions on X with the topology of point-
wise convergence, is Borel-Π1n-complete. We also prove a simultaneous improvement
of theorems of Christensen and Kechris regarding the complexity of a subset of the
hyperspace of the closed sets of a Polish space.
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Classification: 03E15, 28A05, 54C35

1. Introduction

In this paper we study, in the framework of descriptive set theory, the space
Cp(X) of real-valued continuous functions on a separable metrizable space X
equipped with the topology of pointwise convergence. Let C∗

p (X) be the space
of all continuous bounded real-valued functions on X with the topology inherited
from Cp(X). In particular we are interested in classifying Cp(X) and C∗

p(X)
within the Wadge hierarchy.
If A ⊆ X and B ⊆ Y are subsets of two Polish (i.e., separable completely

metrizable) spaces then we say that A is Wadge reducible to B, and write
A ≤W B, if there exists a continuous function (called a reduction of A to B)
f : X → Y such that f−1(B) = A. The preordering ≤W obviously induces an
equivalence relation on the class of all subsets of Polish spaces, whose equivalence
classes are called theWadge degrees , and a partial ordering on the Wadge degrees,
which is called the Wadge hierarchy. The Wadge degree of a set is a measure of
its complexity. For background information on the Wadge hierarchy, which has
been first studied in [16], we refer the reader to [8].
Let Γ denote any of the classes of subsets of Polish spaces Σ0α, Π

0
α (where α

is a nonzero countable ordinal), Σ1n and Π
1
n (where n is finite nonzero) — see

[8] for definitions: in particular Σ11 is the class of all continuous images of Polish

spaces. In this case write Γ̌ for the class where Π and Σ are interchanged. If
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Γ ⊇ Π02 we say that a separable metrizable space is in Γ if it is in Γ in one, and
hence by Lavrentev’s theorem ([11, p. 431]) in all, of its completions. A separable
metrizable space is Borel (resp. projective) if it is Borel (resp. projective) in one
(any) of its completions. We say that a set A (or a space X) is Γ-hard if for
every zero-dimensional Polish space Z, and every B ⊆ Z which is in Γ, we have
B ≤W A. If a Γ-hard set is also in Γ then we say that it is Γ-complete. It is
obvious that the collection of all Γ-complete sets is a Wadge degree. A set is true
Γ if it is in Γ but not in Γ̌.
A problem immediately arises in trying to study the Wadge degrees of Cp(X)

and C∗
p (X): when X is uncountable the topologies of Cp(X) and C∗

p (X) are
not first countable and hence not metrizable; therefore these spaces cannot be
viewed as subsets of a Polish space. Thus the study of Cp(X) and C∗

p (X) does
not appear to be amenable to the standard techniques of descriptive set theory.
However in descriptive set theory one is often interested in the Borel structure of
a space and studies measurable spaces (X, S), where S is a σ-algebra of subsets
of X . If τ is a topology on a set X we denote by B(τ) the σ-algebra of the Borel
(with respect to τ) subsets of X . Following the terminology of [8] we say that
a measurable space (X, S) is standard Borel if there is a Polish topology τ on
X such that S = B(τ). The measurable space (X, S) is Σ1n (resp. Π

1
n) if there

is a Polish space (Y, τ) containing X such that X is Σ1n (resp. Π
1
n) in Y and

S = {B ∩ X | B ∈ B(τ) }.
When we deal with measurable spaces we define the analogue of the Wadge

hierarchy by requiring the reduction to be Borel; in this case if A ⊆ X and B ⊆ Y
are subsets of two measurable spaces we say that A is Borel-Wadge reducible to B
and write A ≤B B. The Borel-Wadge degrees and the Borel-Wadge hierarchy are
defined in the obvious way. For subsets of a measurable space and Γ either Σ1n or
Π1n the notions of Borel-Γ-hard and Borel-Γ-complete set (which we abbreviate
by B-Γ-hard and B-Γ-complete) are also defined in the obvious way, using the
Borel-Wadge hierarchy. (Here the B-Γ-complete sets form a Borel-Wadge degree.)
Any standard Borel space (X, S) admits a zero-dimensional Polish topology

whose Borel structure is S (see [8, Exercise 13.5]). Therefore if a subset A of a
Polish space X is Γ-complete for Γ either Σ1n or Π

1
n, then A is B-Γ-complete

when X is endowed with its Borel structure. It is a remarkable result of Kechris
([9]) that every B-Σ11-complete subset of a Polish space is also Σ

1
1-complete, and

the same holds with Π11 in place of Σ
1
1.

It is also immediate that every (B-) Γ-complete set is true Γ. When Γ is Σ0α
or Π0α the converse holds ([8, Exercise 24.20]). This also holds for Σ

1
n and Π

1
n

assuming projective determinacy (henceforth denoted by PD). As usual this works
level by level, so that for n = 1 only Σ11 determinacy is needed. On the other
hand this cannot be proved in ZFC without additional assumptions: if V = L
then there exists a true Π11 set which is not Π

1
1-complete. The main point of this

paper is to prove within ZFC results which were easily derivable using determinacy
assumptions from known facts: indeed we will show within ZFC that some spaces,
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already known to be true Π11, are in fact B-Π
1
1-complete.

To be more specific, we will study Cp(X) and C∗
p (X) with the σ-algebra of

their Borel subsets (in some sense forgetting the topological structure), as done
by Christensen in [2]. This can be viewed as the study of functors X 7→ Cp(X)
and X 7→ C∗

p (X) from the category of separable metrizable spaces to the cate-
gory of measurable spaces. (Similar functors — with the nicer property that the
range is again the category of separable metrizable spaces — are X 7→ K(X) and
X 7→ P(X), where K(X) is the space of compact subsets of X with the Vietoris
topology and P(X) is the space of probability Borel measures on X with the
topology of weak convergence: these functors have been studied in [10] and [3],
respectively.) It turns out (see Lemma 2.2) that when X is separable metrizable,
Cp(X) with its Borel structure is (isomorphic to) a subset of a standard Borel
space; hence the study of the Borel-Wadge degrees of Cp(X) and C∗

p (X) does
make sense. Therefore what we really study are functors from the category of
separable metrizable spaces to the Borel-Wadge hierarchy, i.e., the class of all
Borel-Wadge degrees.
Recall that a (non-necessarily metrizable) topological space is analytic if it is

empty or the continuous image of the Baire space, and it is σ-compact if it can
be written as a countable union of compact subspaces.
Let X be a separable metrizable space. The following facts are known:

(A) Cp(X) is analytic if and only if X is σ-compact;
(B) C∗

p (X) (or, equivalently, the space of continuous functions with values in the
interval [0, 1]) is analytic if and only if X is σ-compact.

(A) is essentially contained in a result of Christensen ([2, Theorem 3.7]), while
(B) follows from a result of Dobrowolski and Marciszewski ([5, Theorem 6.2]),
combined with the observation contained in our Lemma 2.2.
It is immediate that a metrizable space is analytic iff it is Σ11; similarly if (X, τ)

is a topological space, (X, τ) is analytic iff (X,B(τ)) is Σ11. If X is a Σ11 space

Cp(X) and C∗
p (X) are easily seen to be Π

1
1 spaces and hence the above results

imply that if X is not σ-compact then they are true Π11. We will prove that if X

is a Σ11 space which is not σ-compact then Cp(X) and C∗
p (X) are B-Π

1
1-complete.

Throughout the paper we follow (as above) the notation and terminology of
[8] and refer to this textbook for all standard facts on descriptive set theory.
Here is a short list of complete sets (see [8]) which will be used to establish the

hardness of various spaces (obviously if A is Γ-hard and A ≤W B then B is also
Γ-hard).

Example 1.1.

C0 =
{

(xn) ∈ [0, 1]
N | limxn = 0

}

is Π03-complete

C =
{

(xn) ∈ [0, 1]
N | limxn exists

}

is Π03-complete

WF = {T ∈ Tr | T is well-founded } is Π11-complete
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where Tr is the Polish space of all trees T ⊆ N<N with the topology inherited

from 2N
<N

.

With respect to the last example of 1.1 we will use the following notation. The
set of all finite sequences of natural numbers is denoted by N<N. For s ∈ N<N,
length(s) denotes the number of elements of s, and if n < length(s) we write s(n)

for the (n + 1)-th element of s. If also t ∈ N<N we write s ⊆ t to mean that
s is an initial segment of t, i.e., length(t) ≤ length(s) and t(n) = s(n) for every
n < length(t). If i ∈ N, sa 〈i〉 is the sequence t with length(t) = length(s) + 1,
s ⊆ t and t(length(s)) = i. The unique sequence of length 0 is denoted by 〈〉.
If α ∈ NN is an infinite sequence of natural numbers α ↾ n is the finite initial
segment of α with length n. A set T ⊆ N<N is a tree if s ∈ T and t ⊆ s implies
t ∈ T and in this case [T ] =

{

α ∈ NN | ∀n(α ↾ n ∈ T )
}

, so that T ∈ WF if and
only if [T ] = ∅.

We now explain the organization of the paper. In Section 2 we will introduce
our approach to the problem and prove some basic facts. In Section 3 we study the
Borel-Wadge degree of Cp(X) and C∗

p(X) when X is Σ11. In Section 4, using set-
theoretic assumptions beyond ZFC, we study the Borel-Wadge degree of Cp(X)
when X lies arbitrarily high in the projective hierarchy. As a technical tool in
the study of C∗

p (X) we proved a result which is interesting in its own right: it
is a simultaneous improvement of theorems of Christensen and Kechris regarding
the complexity of a subset of the hyperspace of the closed sets of a Polish space.
This result is not needed in the current version of the proofs, but we include it in
Section 5.
The literature on Cp(X) is enormous: some references which touch upon mat-

ters related to our approach are [4], [12] (where Cp(X) is studied as a subset

of RX) and [6], [1], [13] (where for countable X , Cp(X) is studied as a topologi-
cal space per se).

2. Some basic facts and constructions

The following notation will be useful in discussing Cp(X) (and C∗
p (X): see the

remark at the end of the section). First of all let us use C(X) to denote the set
of all real-valued continuous functions on X . If f ∈ C(X), A ⊆ X and ε > 0 let

Uf (A; ε) = { g ∈ C(X) | ∀x ∈ A |f(x)− g(x)| < ε } .

If A = {x1, . . . , xn} is finite we write Uf (x1, . . . , xn; ε). With this notation the
topology of pointwise convergence on C(X) is defined by basic open sets of the
form Uf (x1, . . . , xn; ε); obviously the sets of the form Uf (x; ε) form a sub-basis.

This topology is the one C(X) inherits from RX , and C(X) equipped with this
topology is denoted by Cp(X). Another topology on C(X) that will be sometimes
useful is the compact-open topology, whose basic open sets have the form Uf (K; ε)
where K ⊆ X is compact. If X is locally compact Polish the compact-open
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topology on C(X) is Polish, while if X is not locally compact the compact-open
topology on C(X) is not even first-countable (see [7, Exercise 3.4.E.d]).
A simple but useful observation is that if τ and τ ′ are topologies on the same

set X and τ ′ ⊆ B(τ) then B(τ ′) ⊆ B(τ). Thus to show that the Borel sets of two
topologies coincide it suffices to show that every open set in one topology is Borel
with respect to the other topology. If the topologies are hereditarily Lindelöf this
needs only to be checked for members of a sub-basis for each topology.
The topology of Cp(X) is coarser than the compact-open topology on C(X).

On the other hand every basic open set of the compact-open topology is Σ02 in
Cp(X):

g ∈ Uf (K; ε) ⇐⇒ ∃n ∀x ∈ K |f(x)− g(x)| ≤ ε − 2−n.

Therefore the Borel subsets of Cp(X) coincide with the Borel subsets in the
compact-open topology and if X is locally compact Cp(X) is standard Borel.
A useful approach (already used e.g. in [15] and [5]) to the study of Cp(X) is to

generalize the case of countable X to a generic separable X by fixing a countable
dense set D ⊆ X and considering the space

C̃p(X ;D) =
{

(ra)a∈D ∈ RD | ∃f ∈ C(X) ∀ a ∈ D f(a) = ra

}

,

with the topology induced by RD. The space C̃p(X ;D) is clearly homeomorphic
to the space C(X) with the topology induced by the restriction function C(X)→
RD, f 7→ f ↾ D. We denote C(X) with this topology by Cp(X ;D). A sub-basis
for Cp(X ;D) consists of all sets of the form Uf (a; ε) with a ∈ D.
As far as the Borel structure is concerned the choice of D is immaterial:

Lemma 2.1. If X is separable metrizable and D, D′ ⊆ X are countable dense
then Cp(X ;D) and Cp(X ;D

′) have the same Borel sets.

Proof: It suffices to show that any sub-basic open set of Cp(X ;D
′) is Borel in

Cp(X ;D). Let d be a compatible metric. If a′ ∈ D′ and ε > 0 then for g ∈ C(X)
we have

g ∈ Uf (a
′; ε) ⇐⇒ ∃m ∀n ∃a ∈ D (d(a, a′) < 2−n & g ∈ Uf (a; ε − 2

−m)),

so that Uf (a
′; ε) is Σ03 in Cp(X ;D). �

The two approaches to the classification of Cp(X) we just described (consider-
ing only the Borel structure or using a countable dense set) are strictly related,
as the next lemma shows:

Lemma 2.2. If X is separable metrizable and D ⊆ X is countable dense then
Cp(X ;D) and Cp(X) have the same Borel sets.

Proof: The topology of Cp(X ;D) is coarser than the topology of Cp(X), for
any D. Vice versa, since Cp(X) is hereditarily Lindelöf (because X is second
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countable, see [7, Exercise 3.8.D]), any open set U of Cp(X) is countable union of
basic open sets: let U =

⋃

n Ufn
(xn
0 , . . . , x

n
kn
; εn). Let D

′ ⊆ X be countable dense

with xn
i ∈ D′ for all n and i ≤ kn. It is immediate that U is open in Cp(X ;D

′):
by Lemma 2.1 U is Borel in Cp(X ;D) for any countable dense D ⊆ X . �

Since Cp(X ;D) and C̃p(X ;D) are homeomorphic, we have that if C̃p(X ;D) is

Borel (resp. Π1n-complete, Σ
1
n-complete) as a subset of the Polish space RD for

some (any) countable dense D ⊆ X , then Cp(X) is standard Borel (resp. B-Π
1
n-

complete, B-Σ1n-complete). Thus our goal will be to establish the Wadge degree

of C̃p(X ;D).

If X is projective an upper bound for the complexity of C̃p(X ;D) (and hence
of Cp(X) as a Borel space) is easily obtained:

Lemma 2.3. Let X be separable metrizable and D ⊆ X be countable dense. If
X is Σ1n then C̃p(X ;D) is Π

1
n in RD.

Proof: Let d be a compatible metric for X . It is immediate that (ra)a∈D ∈ RD

belongs to C̃p(X ;D) if and only if

∀x ∈ X ∀m ∃k ∀ a, b ∈ D (max(d(a, x), d(b, x)) < 2−k =⇒ |ra − rb| ≤ 2
−m)

which is easily seen to be Π1n. �

For D ⊆ X countable dense, define C∗
p(X ;D) and C̃∗

p (X ;D) in the obvious
way, considering only continuous bounded real-valued functions on X . Lemmas
2.1, 2.2, and 2.3 hold also in the case of bounded functions (with the same proofs).
Dobrowolski and Marciszewski proved ([5, Theorem 6.2]) that if X is a Σ11 space

which is not σ-compact then C̃∗
p (X ;D) (or even C̃p(X ;D) ∩ [0, 1]D) is true Π11:

the forward direction of (B) of Section 1 follows from this and the bounded version
of Lemma 2.2.

3. Cp(X) when X is Σ11

We begin our investigation of Cp(X) for a Σ
1
1 space X from the case where X

is “small”, i.e., σ-compact. In this case C̃p(X ;D) is actually Borel (this is the
same as [5, Lemma 6.1] and (i) =⇒ (ii) of [15, Theorem 2.1], but we include a
proof here for the sake of completeness):

Lemma 3.1. If X is metrizable σ-compact and D ⊆ X is countable dense then
C̃p(X ;D) and C̃∗

p (X ;D) are Π
0
3 in RD.

Proof: Since C̃∗
p(X ;D) = C̃p(X ;D) ∩

⋃

k[−k, k]D and
⋃

k[−k, k]D is Σ02 it

suffices to prove the result for C̃p(X ;D).
Let X =

⋃

n Kn where every Kn is compact and let d be a compatible metric

on X . Let (ra)a∈D ∈ RD. We will show that (ra)a∈D ∈ C̃p(X ;D) if and only if

∀n ∀m ∃k ∀x ∈ Kn ∀a, b ∈ D (max(d(a, x), d(b, x)) < 2−k =⇒ |ra − rb| ≤ 2
−m).
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This completes the proof for C̃p(X ;D) because for every n, m and k
{

(ra) | ∀x ∈ Kn ∀ a, b ∈ D (max(d(a, x), d(b, x)) < 2−k =⇒ |ra − rb| ≤ 2
−m)

}

is closed.
To prove the forward direction of the equivalence suppose (ra)a∈D ∈ C̃p(X ;D)

and let f ∈ C(X) be such that f(a) = ra for every a ∈ D. Fix n and m: for every
x ∈ X let k(x) be the least k such that |f(x)− f(x′)| ≤ 2−m−1 for every x′ ∈ X
with d(x, x′) < 2−k. We claim that for every n the set { k(x) | x ∈ Kn } ⊆ N is
bounded. If this was not the case then for some n and every k there exist xk ∈ Kn

and x′k ∈ X with d(xk, x′k) < 2−k and |f(xk)−f(x′k)| > 2−m−1. SinceKn is com-
pact we may suppose that limxk = x for some x ∈ Kn. Thus we have also lim x′k =
x and, by continuity of f , we would have lim |f(xk)−f(x′k)| = 0, which is not the
case. This proves the claim and for every n there exists k = max { k(x) | x ∈ Kn }.
Then for all x ∈ Kn and a, b ∈ D with max(d(a, x), d(b, x)) < 2−k we have
|ra − rb| ≤ |f(a)− f(x)|+ |f(x)− f(b)| ≤ 2−m−1 + 2−m−1 = 2−m.
For the backward direction we need to define f ∈ C(X) such that f(a) = ra

for every a ∈ D. Given x ∈ X , fix n such that x ∈ Kn: for every m there exist
k and a closed interval Ix

m ⊂ R of length ≤ 2−m such that for all a ∈ D with
d(a, x) < 2−k we have ra ∈ Ix

m. We may assume that Ix
m+1 ⊆ Ix

m, so that
⋂

m Ix
m

is a singleton, whose only element we define to be f(x). Given x and m let k be

as above: if d(x, x′) < 2−k then f(x′) ∈ Ix
m and |f(x)− f(x′)| ≤ 2−m. Therefore

f is continuous at x. Clearly if x = a ∈ D we have f(x) = ra. �

Barring trivial cases the complexity of C̃p(X ;D) cannot be lower than the one
obtained in Lemma 3.1 (see [4, Theorem 6] for a similar result concerning Cp(X)):

Lemma 3.2. If X is separable metrizable not discrete and D ⊆ X is countable
dense then C̃p(X ;D) and C̃∗

p(X ;D) are Π
0
3-hard in RD.

Proof: Let w ∈ X be a point which is not isolated. We will assume that w /∈ D
and show that C ≤W C̃p(X ;D) and C ≤W C̃∗

p (X ;D). If w ∈ D it is easy to

modify our proof so that it shows that C0 ≤W C̃p(X ;D) and C0 ≤W C̃∗
p(X ;D).

(Both C and C0 are defined in 1.1.)
Since w is not isolated let (an) ⊆ D be a sequence converging to w. Let

sn = d(w, an) > 0; we may assume that sn > sn+1 for every n.

Given (zk) ∈ [0, 1]
N for every a ∈ D set

r
(zk)
a =











z0 if d(a, w) ≥ s0;

tzn + (1− t)zn+1 if sn+1 ≤ d(a, w) ≤ sn

and d(a, w) = sn+1 + t(sn − sn+1).

The map (zk) 7→ (r
(zk)
a ) from [0, 1]N to [0, 1]D is continuous because the value of

each r
(zk)
a depends continuously on at most two zk’s. Moreover (r

(zk)
a ) ∈ C̃p(X ;D)
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if and only if (r
(zk)
a ) ∈ C̃∗

p (X ;D) if and only if (zk) ∈ c. To see this notice that

we can define f = f (zk) ∈ C(X \ {w}) such that f(a) = r
(zk)
a for every a ∈ D by

setting

f(x) =











z0 if d(x, w) ≥ s0;

tzn + (1− t)zn+1 if sn+1 ≤ d(x, w) ≤ sn

and d(x, w) = sn+1 + t(sn − sn+1).

That the sequence (r
(zk)
a ) belongs to C̃p(X ;D) is equivalent to the fact that f

can be extended to w: clearly this can be done if and only if lim zk exists (notice

that f(an) = r
(zk)
an = zn), and in this case (r

(zk)
a ) ∈ C̃∗

p(X ;D). �

We will now consider the case where X is “large”, i.e., not σ-compact. Okunev
([15]) proved that in this case C̃p(X ;D) is true Π

1
1 and Dobrowolski and Mar-

ciszewski ([5]) extended the same result to C̃∗
p(X ;D): we improve both results

proving Π11-completeness.

Theorem 3.3. Let X be a Σ11 space which is not σ-compact. Then for any

D ⊆ X countable dense C̃p(X ;D) ∩ [−1, 1]D is Π11-complete.

Proof: By Lemma 2.3 C̃p(X ;D) is Π
1
1, and therefore C̃p(X ;D) ∩ [−1, 1]D is

also Π11. Thus we need to prove that C̃p(X ;D)∩ [−1, 1]
D is Π11-hard in [−1, 1]

D.

Let Z be a metric compactification of X . Since X is Σ11 and not σ-compact,

X \D is Σ11 and there is no Σ
0
2 subset of Z separating X \D from Z \X . By the

strengthening of Hurewicz’s theorem due to Kechris, Louveau and Woodin ([10,
Theorem 4] or [8, Theorem 21.22]) there exists a set F ⊆ X \ D which is closed
in X and homeomorphic to NN.
Define a complete compatible metric on F and extend it to a compatible metric

d on the whole of X : this can be done because F is closed in X (see e.g. [7,
Exercise 4.5.21.c]). When we speak of the diameter of a subset of X we will use
the metric d.
Our goal is to show WF ≤W C̃p(X ;D)∩ [−1, 1]D. To this end we will define a

continuous map Tr → [−1, 1]D, T 7→ (rT
a )a∈D . The rT

a ’s are defined via a Lusin
scheme (Fs)s∈N<N in X with the Fs closed with non-empty interior. The Lusin

scheme will be such that the set
{

x ∈ X | ∃α ∈ NN x ∈
⋂

n Fα↾n

}

is contained in

F , is closed in X , and is homeomorphic to NN.
To be precise, we will define a sequence (Fs)s∈N<N of closed subsets of X and

a sequence (as)s∈N<N of elements of D with the following properties:

(i) F〈〉 = X ;

(ii) diam(Fs) < 2
− length(s) for every s ∈ N<N with length(s) > 0;

(iii) Int(Fs) ∩ F 6= ∅ and hence Int(Fs) 6= ∅ for every s ∈ N<N (where Int(A)
is the interior of A);
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(iv)
⋃

i∈N
Fsa 〈i〉 ⊆ Int(Fs) and hence ∂Fs∩

⋃

i∈N
Fsa〈i〉 = ∅ for every s ∈ N<N

(where ∂A is the boundary of A);
(v) as ∈ Fs \

⋃

i∈N
Fsa〈i〉 for every s ∈ N<N;

(vi) for every k and x ∈ X there exists an open neighborhood U of x such that
U ∩ Fs 6= ∅ for at most one s ∈ N<N with length(s) = k.

We now show how we can complete the proof once these two sequences are
defined. First of all notice that by (iv) and (vi) if Fs ∩Ft 6= ∅ then either s ⊆ t or
t ⊆ s. (vi) implies also that

⋃

i∈N
Fsa〈i〉 is closed for every s ∈ N<N. Moreover for

every α ∈ NN we have that
⋂

n∈N
Fα↾n is a singleton whose element belongs to F :

(ii) implies that the intersection contains at most one element, by (iii) there is an
element in F ∩Fα↾n for every n, by (ii) and (iv) the sequence of these elements is
d-Cauchy, and since d is complete on F it has a limit which is in F and belongs
to

⋂

n∈N
Fα↾n. This and (i) imply that for every x ∈ X \ F there exists a longest

sequence s ∈ N<N such that x ∈ Fs.
For every s ∈ N<N let us define a continuous function gs : Fs → [−1, 1]: start

by letting gs(x) = (−1)length(s) if x ∈ {as} ∪ ∂Fs and gs(x) = (−1)length(s)+1

if x ∈
⋃

i∈N
Fsa 〈i〉; then complete the definition using Tietze extension theorem.

This can be done because the two explicit definitions are not in conflict by (iv)
and (v) and the set where gs has been defined explicitly is the union of two closed
sets by the observation made above.
Now we define the map Tr→ [−1, 1]D, T 7→ (rT

a )a∈D and show that T ∈WF if
and only if (rT

a )a∈D ∈ C̃p(X ;D). Given T ∈ Tr and a ∈ D let rT
a = gs(a), where

s ∈ N<N is the longest sequence such that s ∈ T and a ∈ Fs: by the remark made
above (and since F ⊆ X \D) this definition is meaningful. The continuity of the
map T 7→ (rT

a )a∈D is immediate.
If T ∈ WF then define fT : X → [−1, 1] by fT (x) = gs(x), where s ∈ N<N is

the longest sequence such that s ∈ T and x ∈ Fs. Since T ∈ WF the definition
is meaningful for every x and clearly fT extends (rT

a )a∈D . To check that fT is

continuous on X (and hence (rT
a )a∈D ∈ C̃p(X ;D)) fix x ∈ X and let s ∈ N<N be

the longest sequence such that s ∈ T and x ∈ Fs. If x ∈ Int(Fs) then fT = gs on

Int(Fs) \
⋃

{

Fsa〈i〉 | i ∈ N & x /∈ Fsa〈i〉

}

which is a neighborhood of x: therefore fT is continuous at x. If x /∈ Int(Fs)
then x ∈ ∂Fs. Let U be a neighborhood of x such that U ∩ Ft = ∅ for every
t 6= s with length(t) = length(s); length(s) > 0 (because ∂F〈〉 = ∅) and by

(iv) we may assume that U ⊆ Int(Fs′) where s′ = s ↾ (length(s) − 1). Then
fT = gs on U ∩Fs and fT = gs′ on U \Fs. Since the definition of gs implies that

gs = (−1)
length(s) = gs′ on ∂Fs, f

T is continuous on U .
If T /∈WF let α ∈ [T ] and let x ∈ F be the unique element of

⋂

n∈N
Fα↾n. To

show that (rT
a )a∈D /∈ C̃p(X ;D) it suffices to show that any extension of (r

T
a )a∈D

is not continuous at x. Let f be such an extension: by (v) for every n ∈ N we



168 A.Andretta, A.Marcone

have aα↾n ∈ Fα↾n \
⋃

i∈N
Fα↾na 〈i〉 and α ↾ n ∈ T , so that f(aα↾n) = rT

aα↾n
=

gα↾n(aα↾n) = (−1)
n, while limn→∞ aα↾n = x by (ii); these two facts imply that

f is not continuous at x.
To complete the proof it suffices to show that (Fs)s∈N<N and (as)s∈N<N satis-

fying (i)–(vi) do exist.
F〈〉 is defined by (i).

Suppose we have defined Fs satisfying (ii) and (iii) for every s with length(s) =
k and that (vi) holds for k. By (iii) and the density of D, for every such s there
exists as ∈ D ∩ Int(Fs). F ∩ Int(Fs) is a relatively open nonempty subset of F ,
which is homeomorphic to NN: therefore F ∩ Int(Fs) contains a sequence (x

s
i )

of distinct points which has no accumulation point. For every i we can choose
inductively Fsa〈i〉 to be a closed neighborhood of x

s
i such that Fsa〈i〉 ⊆ Int(Fs),

diam(Fsa 〈i〉) < 2
−k−1−i, as /∈ Fsa〈i〉, and Fsa〈i〉 ∩ Fsa 〈j〉 = ∅ for every j < i.

(iv) and (v) are satisfied by s and (ii) and (iii) by each sa 〈i〉. To check
that (vi) holds for k + 1 let x ∈ X : since (vi) holds for k there exists an open
neighborhood U of x such that which intersects at most one Fs with length(s) = k.
If U ∩ Fs 6= ∅ for some s with length(s) = k we need to show that some open
neighborhood of x intersects at most one Fsa〈i〉; if this were not the case then

x would be an accumulation point of
⋃

i∈N
Fsa 〈i〉 not belonging to

⋃

i∈N
Fsa〈i〉:

since limdiam(Fsa 〈i〉) = 0, x would be an accumulation point of
{

xs
i | i ∈ N

}

,

against the choice of
{

xs
i | i ∈ N

}

. �

The crucial idea in the preceding proof is due to the anonymous referee. In an
earlier draft we could only prove Theorem 3.3 under various specific assumptions,
e.g. when X = NN or X is an infinite-dimensional separable Banach space or, in
the case of Cp(X), when X is Borel.

The complexity of the Borel space Cp(X) for X separable metrizable and Σ11
is now completely classified and we obtain the following result, which is an im-
provement of (A) and (B):

Corollary 3.4. Let X be a Σ11 space. If X is σ-compact then Cp(X) and C∗
p(X)

are standard Borel. If X is not σ-compact then Cp(X) and C∗
p(X) are B-Π

1
1-

complete.

Proof: Fix D ⊆ X countable dense. A subset of a Polish space (in our case RD)
is standard Borel if and only if it is Borel. Hence Lemma 3.1 and Theorem 3.3 im-
ply that the statements hold with C̃p(X ;D) and C̃∗

p (X ;D) in place of Cp(X) and

C∗
p (X). The space C̃p(X ;D) is homeomorphic to Cp(X ;D) and, by Lemma 2.2,
the latter is Borel isomorphic to Cp(X); the same applies to the bounded versions
of these spaces and the proof is complete. �

4. Cp(X) when X is projective

We now study the Borel-Wadge degree of Cp(X) when X is projective but

not Σ11. To carry out this study we need (as usual) some additional set-theoretic
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assumption. We will assume projective determinacy (PD), but (as usual) the proof
works level by level, so that for Σ1n+1 spaces, only Σ

1
n determinacy is needed.

To compute the Wadge degree of C̃p(X ;D) we will use the following lemma:

Lemma 4.1. Let Z be a metrizable space, X ⊆ Z and D ⊆ X be countable
dense in X . Let W = Z \ D and Y = Z \ X . Then K(Y ) ≤W C̃p(X ;D), where
K(Y ) is viewed as a subset of K(W ).

Proof: Let d be a compatible metric for Z. Given K ∈ K(W ) and a ∈ D let
rK
a = 1/d(a, K) (notice that K ∩ D = ∅ and hence d(a, K) > 0). It is clear that
the map K 7→ (rK

a )a∈D from K(W ) to RD is continuous.
If K ∈ K(Y ) then K ∩ X = ∅ and the function f : X → R defined by

f(x) = 1/d(x, K) is continuous and extends (rK
a ). Thus (r

K
a ) ∈ C̃p(X ;D).

If K /∈ K(Y ) then there exists x ∈ X ∩K. Notice that x /∈ D and let (an) ⊆ D
be a sequence converging to x. Clearly lim rK

an
= +∞ and hence every f : X → R

such that f(a) = rK
a for every a ∈ D, is not continuous at x. Hence (rK

a ) /∈
C̃p(X ;D). �

Lemma 4.1 shows that the Wadge degree of C̃p(X ;D) is at least as high as
the Wadge degree of K(Y ): the latter has been studied by Kechris, Louveau and
Woodin ([10, Lemma 1]), who obtained (their proof goes through even if the
ambient space is neither compact nor zero-dimensional):

Lemma 4.2. Let Z be a Polish space and Y ⊆ Z, so that K(Y ) ⊆ K(Z).

1. If Y is Σ02-hard then K(Y ) is Π
1
1-hard.

2. If Y is Σ1n-hard then K(Y ) is Π
1
n+1-hard.

Under PD Lemma 4.2.2 (together with the observation that if X is Π1n then
K(X) is also Π1n) yields a complete classification of the Wadge degree of K(X)
for X projective and not Π11. (This classification is not explicitly stated in [10],
but see [3, p. 8].) In a similar vein we prove the following theorem that, coupled
with Corollary 3.4, completely classifies the Borel-Wadge degree of Cp(X) for X
a projective space.

Theorem 4.3. Assume PD. Let X be a projective space which is not σ-compact
and D ⊆ X be countable dense. If n ≥ 1 is least such that X isΣ1n then C̃p(X ;D)

and Cp(X) are B-Π
1
n-complete.

Proof: If X is Σ11 the results have already been proved in Theorem 3.3, so
we may assume that n > 1. The second statement follows from the first by
Lemma 2.2, so it suffices to prove that C̃p(X ;D) is true Π

1
n.

Let Z be a completion of X : X is Σ1n but not Σ
1
n−1 as a subset of Z. The

first fact implies, by Lemma 2.3, that C̃p(X ;D) ⊆ RD is Π1n. Let W = Z \ D

which is a Polish space. The set X ∩ W is Σ1n and not Σ
1
n−1 in W and hence

Y =W \ X is not Π1n−1 in W . Under PD this implies that Y is Σ1n−1-hard and
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hence by Lemma 4.2.2, K(Y ) ⊆ K(W ) is Π1n-hard. By Lemma 4.1 C̃p(X ;D) is

Π1n-hard, which implies that it is not Σ
1
n. �

In the proof of Theorem 4.3 we used Lemma 4.1 and hence unbounded func-
tions, and one can ask the following question:

Problem 4.4. Assume the hypothesis of Theorem 4.3. Is C∗
p (X)B-Π

1
n-complete?

5. A result on the Effros Borel structure

In this section we prove a result which is unrelated to the other results of the
paper, but was used in one of the proofs alluded to after the proof of Theorem 3.3.
Since it is interesting in its own right we include it here. It improves a theorem
of Christensen ([2, Theorem 3.8]) by showing that the subset of the hyperspace
of the closed sets defined below (Theorem 5.1) is B-Π11-complete (Christensen

showed that it is true Π11). A specific case of our result (when X is a separable
Hilbert space and P its open unit ball) was proved by Kechris ([8, Theorem 27.6])
by a construction which is much more direct that the one we need to prove the
theorem in full generality.
Given a topological space X denote by F(X) the hyperspace of the closed

subsets of X equipped with the Effros Borel structure (see e.g. [8, Section 12.C]).

Theorem 5.1. Let X be a Polish space and P ⊆ X be Π11. If P \ P is not σ-

compact then
{

F ∈ F(P ) | F ⊆ P
}

is B-Π11-complete as a subset of the standard

Borel space F(P ) (and a fortiori as a subset of the standard Borel space F(X)).

Proof: The fact that
{

F ∈ F(P ) | F ⊆ P
}

is Π11 is straightforward. To prove

that it is B-Π11-hard we define a Lusin scheme in X .

Clearly P \ P is Σ11 not σ-compact and, by imitating the proof of the version
of Hurewicz theorem in [8, Corollary 21.19], we obtain that there exists N ⊆
P \ P which is relatively closed in P \ P and homeomorphic to NN. Let us write
N =

{

xα | α ∈ NN
}

(where α 7→ xα is the homeomorphism) and let, for every

s ∈ N<N, Ns = { xα | s ⊂ α }: Ns is clopen in N .
Let d be a complete compatible metric for X : we will compute the diameter

of subsets of X according to d. Fix also a bijection # : N<N → N.
We will define a sequence

{

Us | s ∈ N<N
}

of open subsets of X with the fol-
lowing properties:

(i) Ns ⊆ Us;

(ii) Us ⊆
{

x ∈ X | d(x, N) < 2−#(s)
}

;

(iii) diam(Us) ≤ 2 · diam(Ns);
(iv) Ut ⊆ Us ⇐⇒ s ⊆ t;
(v) Usa〈i〉 ∩ Usa〈j〉 = ∅ if i 6= j;

(vi) Usa〈i〉 ∩ Nsa〈j〉 = ∅ if i 6= j.

To start the construction it suffices to define U〈〉 satisfying (i)–(iii). Now sup-
pose we have defined Us and Usa〈j〉 for every j < i and we want to define Usa〈i〉.
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Since Nsa〈i〉 is clopen within N there exists an open (within X) set Vsa〈i〉 such

that Vsa〈i〉 ∩ N = Nsa〈i〉. By shrinking Vsa〈i〉 we may assume that Vsa〈i〉 ⊆

Us ∩
{

x ∈ X | d(x, N) < 2−#(s
a〈i〉)

}

and diam(Vsa 〈i〉) ≤ 2 · diam(Nsa〈i〉). Let

Wsa〈i〉 = Vsa〈i〉 \
⋃

j<i Usa〈j〉. Since (vi) is satisfied for all j < i, so that

Usa〈j〉 ∩ Nsa〈i〉 = ∅, we have Wsa 〈i〉 ∩ N = Nsa〈i〉. Now let

Usa〈i〉 =
{

x ∈ Wsa〈i〉 | d(x, Nsa 〈i〉) < d(x, X \ Wsa〈i〉)
}

,

which insures that (i) and (vi) are satisfied by Usa〈i〉 and completes the construc-
tion.
For every s ∈ N<N pick xs ∈ P ∩ Us. Given T ∈ Tr let FT = {xs | s ∈ T }.

The map Tr→ F(P ), T 7→ FT , is Borel and we claim that T /∈WF if and only if
FT * P , so that WF ≤B

{

F ∈ F(P ) | F ⊆ P
}

.
If T /∈WF let α ∈ [T ]. Since limk→∞ diam(Nα↾k) = 0 we have limk→∞ xα↾k =

xα. Thus xα ∈ FT ∩ (P \ P ) and FT * P .

Now suppose FT * P and let x ∈ FT∩(P \P ). There exists a sequence (sk) ⊆ T
such that limk→∞ xsk

= x. By condition (ii) of the construction d(x, N) = 0 and,

since N is closed in P \ P , x ∈ N . Hence x = xα for some α ∈ NN. If α /∈ [T ]
choose n such that α ↾ n /∈ T . Since Us ∩ Uα↾n 6= ∅ only for finitely many s ∈ T ,
if k is large enough we have xsk

/∈ Uα↾n: this contradicts limk→∞ xsk
= xα.

Therefore α ∈ [T ] and T /∈WF. �
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