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Perfect compactifications of functions

Giorgio Nordo∗, Boris A. Pasynkov†

Abstract. We prove that the maximal Hausdorff compactification χf of a T2-compactifi-
able mapping f and the maximal Tychonoff compactification βf of a Tychonoff mapping
f (see [P]) are perfect. This allows us to give a characterization of all perfect Hausdorff
(respectively, all perfect Tychonoff) compactifications of a T2-compactifiable (respec-
tively, of a Tychonoff) mapping, which is a generalization of two results of Skljarenko
[S] for the Hausdorff compactifications of Tychonoff spaces.
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1. Introduction

In 1961, E.G. Skljarenko introduced the notion of the perfect compactification
of a Tychonoff space. Given a Tychonoff space X , we say that a compactification
γX of X is perfect if clγX(bdX (U)) = bdγX (〈U〉γX ) for every open set U of X ,
where 〈U〉γX denotes the maximal extension of U relatively to γX , that is the
maximal open set of γX whose trace on X is U .
In [S], Skljarenko, using proximal techniques, gave some characterizations of

the perfect compactifications and he proved that γX is a perfect compactification
of X if and only if the canonical map ϕγ : βX → γX is monotone (i.e. every its

fibre is connected) and so — in particular — that the Stone-Čech compactification
βX is a perfect compactification of X .
Further results concerning this class of compactifications were given by Dia-

mond in [D].
Recently, the first author [N] has generalized the notion of perfectness from

a Hausdorff compactification of a Tychonoff space to a generic extension of an
arbitrary space simplifying the treatment in a more general setting and obtaining
several new characterizations.
Since it is clear now what is the compactification of a continuous mapping

and since the notion of a topological space is the simplest case of the notion of a
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through “Gruppo Topologia e Geometria” (Italy).
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continuous mapping (a space is its mapping to the one-point space), it is natural
to extend to continuous mappings some results concerning compactifications of
spaces.

The study of compactifications (= perfect extensions) of a continuous mapping
was started in 1953 by Whyburn [W].

In [P], using techniques of partial topological products, Pasynkov described a
general way to obtain all Tychonoff (i.e. completely regular, T0-) compactifications
of Tychonoff mappings between arbitrary spaces and he proved that the poset
TK(f) of all the Tychonoff compactifications of a Tychonoff mapping f : X → Y

admits the maximal compactification βf : βfX → Y which is the exact analogue

of the Stone-Čech compactification of a Tychonoff space (since if |Y | = 1, X
becomes a Tychonoff space and the domain βfX of βf coincides with βX).

The following similar result is obtained in [BN]:
If a continuous mapping f : X → Y is T2-compactifiable (i.e. f has some Hausdorff
compactification) then it has the maximal compactification χf : χfX → Y in the
poset HK(f) of all Hausdorff compactifications of f .

Let us note in this connection that — unlike the corresponding case for spaces
— there exist Hausdorff compact mappings which are not Tychonoff ([HI], [C]).
Thus, it is necessary to consider the cases of Tychonoff and T2-compactifiable
mappings separately. It would be interesting
to find wide enough conditions when every Hausdorff compactification of a Ty-

chonoff mapping is Tychonoff.

In this paper, we generalize to continuous mappings two extrinsic characteri-
zations of perfect compactifications of spaces obtained by Skljarenko in [S].

We will prove that:

(1) the maximal Hausdorff (maximal Tychonoff) compactification χf (respec-
tively βf) of a T2-compactifiable (Tychonoff) mapping f is a perfect ex-
tension of f (Theorems 3.1, 3.9);

(2) a Hausdorff (Tychonoff) compactification bf of a T2-compactifiable (Ty-
chonoff) mapping f is a perfect extension of f if and only if the canonical
morphism of χf (respectively βf) to bf is monotone (Theorems 3.6, 3.11).

2. Preliminaries

Throughout the paper, the word “space” will mean “topological space”.

If X is a space, τ(X) will denote the set of all the open subsets of X while
σ(X) will denote the set of all the closed subsets of X .

As usual, for any pair of spaces X and Y , C(X,Y ) denotes the set of all
continuous mappings from X to Y and C∗(X) is the set of all continuous real
bounded functions on X .

Undefined notions are used as in [E].
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Definitions ([N], [S]). Let Y be an extension of a space X , U ∈ τ(X) and
x ∈ Y \X .
We say that the pair (x, U) is perfect if x ∈ clY (bdX(U)) provided x ∈

bdY (〈U〉Y ), where 〈U〉Y =
⋃
{V ∈ τ(Y ) : V ∩X = U} is the maximal extension

of U in Y , i.e. the maximum open set of Y whose trace on X is U .
We say that Y is a perfect extension of X relatively to x if for everyW ∈ τ(X)

the pair (x,W ) is perfect.
We say that Y is a perfect extension of X if it is a perfect extension of X

relatively to every point of its remainder Y \X .

Definition ([N], [S]). Let Y be an extension of X and x ∈ Y \X . We say that
Y \X cuts X at x if there exists some neighborhood O of x in Y and a pair U, V
of disjoint open sets of X such that O ∩X = U ∪ V and x ∈ clY (U) ∩ clY (V ).

The following characterization is given in [N].

Proposition 2.1. Let Y be an extension of a space X and x ∈ Y \X . Then Y is
a perfect extension of X relatively to x if and only if Y \X does not cut X at x.

Now, we define our framework.
For any fixed space Y , we consider the category TopY , where

Ob(TopY ) = {f ∈ C(X,Y ) : X ∈ Ob(Top)}

is the class of the objects and, for every pair f : X → Y , g : Z → Y of objects,

M(f, g) = {λ ∈ C(X,Z) : g ◦ λ = f}

is the class of the morphisms from f to g, whose generic representant is denoted
for short by λ : f → g.
A morphism λ : f → g from f : X → Y to g : Z → Y will be called surjective

(resp. dense) if λ(X) = Z (resp. if λ(X) is dense in Z).
If λ : f → g is a surjective morphism, we say that g is the image of f (by the

morphism λ) and we write g = λ(f).
Moreover, we say that a morphism λ : f → g from f : X → Y to g : Z → Y

is an embedding (resp. a homeomorphism) if the mapping λ : X → Z is an
embedding.
A mapping g : Z → Y is called an extension of f : X → Y if some dense

embedding λ : f → g is fixed (as usual X and f are identified with λ(X) and
g|λ(X) respectively).
A morphism λ : g → h between two extensions g : Z → Y and h : W → Y of

a mapping f : X → Y will be called canonical if λ|X = idX .

Now, let us recall some other definitions.

Definitions. A mapping f : X → Y is said to be T0 ([P]) if for any x, x
′ ∈ X

such that x 6= x′ and f(x) = f(x′) there exist either a neighborhood of x in X
which does not contain x′ or a neighborhood of x′ in X not containing x.
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A mapping f : X → Y is said to be Hausdorff (or T2) [P] if for every x, x
′ ∈ X

such that x 6= x′ and f(x) = f(x′) there are disjoint neighborhoods of x and x′

in X .
We shall say that f : X → Y is compact if it is perfect (i.e. closed and all its

fibres are compact).
A mapping f : X → Y is said to be completely regular [P] if for every F ∈ σ(X)

and x ∈ X\F there exists a neighborhood O of f(x) in Y and a continuous
mapping ϕ : f−1(O)→ [0, 1] such that ϕ(x) = 1 and ϕ(F ∩ f−1(O)) ⊆ {0}.
A completely regular, T0 mapping is called Tychonoff (or T3 1

2

) [P].

The following lemma is evident.

Lemma 2.2. Every morphism defined on a Hausdorff mapping is a Hausdorff

mapping too.

The next lemma from [P] will be useful in the following.

Lemma 2.3. Let f : X → Y be a Hausdorff mapping, y ∈ Y and let K1, K2 be

two disjoint compact subsets of X such that K1 ∪K2 ⊆ f−1({y}). Then K1 and
K2 have disjoint neighborhoods in X .

Corollary 2.4. If f : X → Y is a Hausdorff compact mapping, y ∈ Y and

K1, K2 are closed disjoint subsets of f
−1({y}) then K1 and K2 have disjoint

neighborhoods in X .

Definition. A restriction f|X′ : X ′ → Y to X ′ ⊆ X of a mapping f : X → Y is

called a closed submapping of f if X ′ is a closed subset of X .

Obviously every closed submapping of a compact mapping is compact too.

Many well-known statements which hold in the category Top have their ana-
logue (and hence a generalization) in TopY . The following properties were given
in [P].

Proposition 2.5. Let λ and µ be morphisms from a mapping f : X → Y to a

Hausdorff mapping h : Z → Y andD be a dense subset of X . Then, if λ|D = µ|D,

the morphisms λ and µ coincide.

Proposition 2.6. The composition of two compact Hausdorff mappings is com-

pact Hausdorff.

Proposition 2.7. Every image λ(k) of a compact mapping k : X → Y (under a
morphism λ) is compact.

Proposition 2.8. Every compact submapping h|X′ : X ′ → Y of a Hausdorff

mapping h : X → Y is a closed submapping of h.

Proposition 2.9. Every morphism λ : k → h from a compact mapping k : X →
Y to a Hausdorff mapping h : Z → Y is a perfect mapping.
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Definition. We say that a mapping c : Xc → Y is a compactification of a
mapping f : X → Y if it is a compact extension of f .

Definitions. Let c : Xc → Y and d : Xd → Y be compactifications of a mapping
f : X → Y . We say that:

• c is projectively larger than d (relatively to f) and we write that c ≥f d

(or c ≥ d, for short) if there exists some canonical morphism λ : c→ d;
• c is equivalent to d (relatively to f) and we write that c ≡f d (shortly,
c ≡ d) if there exists a canonical homeomorphism λ : c→ d.

In [BN], the following useful result is obtained:

Proposition 2.10. Let c : Xc → Y and d : Xd → Y be Hausdorff compact-

ifications of a mapping f : X → Y . Then c ≡f d if and only if c ≥ d and

d ≥ c.

Definition. A Hausdorff mapping f : X → Y will be called T2-compactifiable
(or Hausdorff compactifiable) if it has some Hausdorff compactification.

All Hausdorff compactifications of any T2-compactifiable mapping form a set
up to their equivalence (see [BN]).

Definition. If f : X → Y is a T2-compactifiable mapping, HK(f) will denote
the set of all Hausdorff compactifications of f (up to the equivalence ≡f ).

So, by 2.10, it follows that (HK(f),≥) is a poset and, for any pair of Hausdorff
compactifications c, d ∈ HK(f), we can write c = d instead of c ≡f d, that is, we
do not distinguish between equivalent Hausdorff compactifications.
In [BN], the following is proved:

Theorem 2.11. For any T2-compactifiable mapping f : X → Y , there is in the

poset (HK(f),≥) a maximal Hausdorff compactification χf : χfX → Y of f .

From 2.5 it follows — in particular — that for any Hausdorff compactification
bf : Xb → Y of a T2-compactifiable mapping f : X → Y there exists a unique
canonical morphism λb : χf → bf .
The following useful property can be found in [P].

Proposition 2.12. Let bf : Xb → Y and bg : Zb → Y be Hausdorff com-

pactifications of f : X → Y and g : Z → Y respectively, λ : f → g be a

perfect morphism and λ̃ : bf → bg be a morphism such that λ̃|X = λ. Then

λ̃(Xb\X) ⊆ Zb\Z.

In [P], Pasynkov proved that any Tychonoff mapping f : X → Y has a Ty-
chonoff (and hence Hausdorff) compactification.

Definition. For any Tychonoff mapping f : X → Y , we will denote by TK(f)
the set of all Tychonoff compactifications of f (up to the equivalence ≡f ).

In [P], it is shown that, for any Tychonoff mapping f : X → Y , there exists in
(TK(f),≥) a maximal Tychonoff compactification βf : βfX → Y of f .
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Definition. For any mapping g : T → Y and any U ∈ τ(Y ), let C∗(U, g) =
C∗(g−1(U)).

The following characterization of βf is given in [P].

Theorem 2.13. For any Tychonoff compactification bf : Xb → Y of a Tychonoff

mapping f : X → Y , the following conditions are equivalent:

(1) bf = βf ;
(2) for every U ∈ τ(Y ) and ϕ ∈ C∗(U, f), there exists a unique extension

ϕ̃ ∈ C∗(U, bf);
(3) for every compact Tychonoff mapping k : Z → Y and every morphism

λ : f → k there exists a morphism λ̃ : bf → k which extends λ.

Proposition 2.14. ([P]). For any Tychonoff compactification bf : Xb → Y of a

Tychonoff mapping f : X → Y there exists a unique (perfect) canonical morphism

µb : βf → bf and it results µb(βfX\X) = Xb\X .

3. Perfectness of the maximal compactifications of a mapping

In [S], Skljarenko proved that a compactification γX of a Tychonoff space X
is perfect if and only if the canonical map ϕγ : βX → γX is monotone (that is,

every its fibre is connected) and hence — in particular — that the Stone-Čech
compactification βX of X is a perfect compactification of X .
In the following we will obtain similar (and more general) results for compact-

ifications of a mapping.

Definition. Let f̃ : X̃ → Y be an extension of a mapping f : X → Y . We say

that f̃ is a perfect extension of f if its domain X̃ is a perfect extension of the
space X .

Theorem 3.1. The maximal Hausdorff compactification χf : χfX → Y of a

T2-compactifiable mapping f : X → Y is a perfect extension of f .

Proof: Suppose by contradiction that χf is not a perfect extension of f . By
2.1, there exists some x ∈ χfX\X such that χfX\X cuts X at x, i.e. there
are a neighborhood U of x in χfX and a pair U0, U1 of disjoint open subsets
of X such that x ∈ clχf X(U0) ∩ clχfX(U1) and U ∩ X = U0 ∪ U1. Note that

G = clU (U0) ∩ clU (U1) ⊆ χfX \X .
Let X ′ be the disjoint union of χfX \ U and U ′

i = clU (Ui) (for i = 0, 1). The

copy of G lying in U ′
i will be denoted by Gi and the copy of a point t ∈ G lying

in Gi will be denoted by ti (for i = 0, 1). In particular, we have xi ∈ U ′
i (for

i = 0, 1). Set λ(t) = t for t ∈ X ′ \ (G0 ∪ G1) and λ(ti) = t for ti ∈ Gi (for
i = 0, 1). Hence, λ(xi) = x (for i = 0, 1) and X ⊆ X ′, λ|X = idX .
Let θ consist of inverse images of all open sets of χfX by the mappings λ and

λi ≡ λ|U ′
i
(for i = 0, 1). Evidently, θ is a topology on X ′, U ′

i is open in X
′ (for

i = 0, 1), λ is continuous and λ : X ′ \ (G0 ∪G1)→ χfX \G is a homeomorphism.
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In particular, λ|X is the identical homeomorphism of X . Since λ
−1({t}) consists

of two points for t ∈ G, all fibres of λ are compact.
Since X ′ \ U ′

i is closed in X
′, the corestriction of λ to this set is a homeomor-

phism and λ(X ′ \ U ′
i) = (χfX \U) ∪ clU (Uj) (where j = 1 when i = 0 and j = 0

when i = 1) is closed in χfX (for i = 0, 1), λ is closed and so perfect. Evidently,

X is dense in X ′ and λ is Hausdorff.
Thus, bf = χf ◦λ is a compact Hausdorff mapping (by 2.6) and bf|X = f . So,

bf is a Hausdorff compactification of f and λ is a canonical morphism from bf to
χf , i.e. bf ≥ χf .
Moreover, λ is not 1–1 because x = λ(x0) = λ(x1). Thus bf > χf which is a

contradiction to the maximality of χf . �

To obtain an extrinsic characterization of the perfect Hausdorff compactifica-
tion, we need two lemmas.

Lemma 3.2. Let Y1 and Y2 be extensions of a space X , x ∈ Y1\X and f :
Y2 → Y1 a continuous mapping closed at x such that f|X = idX and f

−1({x})
is connected. Then, if Y2 is a perfect extension of X relatively to any point of

F = f−1({x}), Y1 is a perfect extension of X relatively to x.

Proof: First, we observe that f−1({x}) 6= ∅ as otherwise by the closedness of f
at x, there exists some neighborhood N of x such that f−1(N) ⊆ ∅.
Now, suppose — by contradiction — that Y1 is not a perfect extension of X

relatively to x. By 2.1, Y1\X cuts cut X at x, i.e. there exist a neighborhood
O of x in Y1 and disjoint open sets U, V of X such that O ∩ X = U ∪ V and
x ∈ clY1(U) ∩ clY1(V ).
We claim that F ∩ clY2(U) ∩ clY2(V ) = ∅. In fact, if there exists some t ∈

F ∩ clY2(U) ∩ clY2(V ), by continuity of f , W = f
−1(O) is a neighborhood of t in

Y2 and, from f|X = idX and O∩X = U ∪V , it follows that W ∩X = U ∪V . But

this means that Y2\X cuts X at t ∈ F and by 2.1, Y2 is not a perfect extension
of X relatively to t ∈ F , which is a contradiction.
Moreover, x ∈ O implies F ⊆W ⊆ clY2(W ) = clY2(W∩X) = clY2(U)∪clY2(V ).

So, (clY2(U)∩F )∪(clY2(V )∩F ) = F and, as F is connected, one of these two closed
sets must be empty. Suppose that clY2(U) ∩ F = ∅. Since f : Y2 → Y1 is closed

at x, there is some neighborhood N of x in Y1 such that f
−1(N) ⊆ Y2\clY2(U).

So, clY2(U) ∩ f−1(N) = ∅ and U ∩ N = U ∩ X ∩ N = U ∩ f−1(X ∩ N) ⊆

clY2(U) ∩ f
−1(N) = ∅ imply U ∩N = ∅. This contradicts x ∈ clY1(U).

Thus, it is proved that Y1 is a perfect extension of X relatively to x. �

We recall that a mapping is called monotone if every its fibre is connected.

Corollary 3.3. Let Y1 and Y2 be extensions of a space X and f : Y2 → Y1 be a

continuous, closed and monotone mapping such that f|X = idX . Then, if Y2 is a

perfect extension of X , Y1 is a perfect extension of X too.
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Definition. Let S be a subspace of a space T . We say that S is normally situated
(strongly normal in the terminology of [A]) in T if every pair of disjoint closed
sets of S can be separated by a pair of disjoint open sets of T .

Remark. It follows from Corollary 2.4 that every fibre of a compact Hausdorff
mapping is normally situated in its domain.

Lemma 3.4. Let Y1 and Y2 be extensions of X , x ∈ Y1\X and f : Y2 → Y1 be

a continuous mapping closed at x, such that F = f−1({x}) is normally situated
in Y2 and f|X = idX . If Y1 is a perfect extension of X relatively to x then F is

connected.

Proof: Suppose, by contradiction, that F is not connected, i.e. that there are
disjoint non-empty closed sets C1, C2 of F such that C1 ∪ C2 = F .
Since F is normally situated in Y2, there are disjoint open sets U1, U2 of Y2

such that Ci ⊆ Ui (for i = 1, 2). So F ⊆ U1 ∪ U2 and, by the closedness of f ,
there exists an open neighborhood O of x in Y1 such that f

−1(O) ⊆ U1 ∪ U2.
We may suppose that f−1(O) = U1 ∪ U2.
Since X is dense in Y2, Vi = Ui ∩X for i = 1, 2 are non-empty disjoint open

sets of X and O ∩X = f−1(O) ∩X = V1 ∪ V2.
On the other hand, x ∈ clY1(V1) ∩ clY1(V2) because (for i = 1, 2) Ui ⊆

clY2(Ui) = clY2(Ui ∩X) = clY2(Vi) and x ∈ f(Ui) ⊆ f(clY2(Vi)) ⊆ clY1(f(Vi)) =
clY1(Vi).
Thus Y1\X cuts X at x. This contradicts that Y1 is a perfect extension of X

relatively to x. Hence, F is connected. �

Corollary 3.5. Let Y1 and Y2 be extensions of X and f : Y2 → Y1 be a con-

tinuous closed mapping such that f|X = idX , f
−1(X) = X and every its fibre is

normally situated in Y2. Then, if Y1 is a perfect extension of X , the mapping f

is monotone.

Theorem 3.6. Let bf : Xb → Y be a Hausdorff compactification of a mapping

f : X → Y and let χf : χfX → Y be the maximal Hausdorff compactification

of f . Then bf is a perfect extension of f if and only if the canonical morphism

λb : χf → bf is monotone.

Proof: Suppose that bf is a perfect compactification of f , i.e. that Xb is a
perfect extension of X . From 2.9, λb is perfect and, since χf is Hausdorff, by 2.2,
λb is Hausdorff, too. Hence (see Remark before Lemma 3.4), every fibre of λb is
normally situated in χfX . By Corollary 3.5, λb is monotone.

Conversely, suppose that λb : χfX → Xb is monotone. Since χf is a perfect

extension of f , i.e. χfX if a perfect extension ofX , 3.3 implies that X
b is a perfect

extension of X . Hence bf is a perfect extension of f . �

If X is a Tychonoff space and |Y | = 1, every compactification γX of X cor-
responds to the (Tychonoff) compactifications γf : γX → Y of f , the domain



Perfect compactifications of functions 627

χfX of the maximal Hausdorff compactification of f coincides with the Stone-

Čech compactification βX of X , the canonical morphism λ : χf → γf becomes
the usual canonical map ϕγ : βX → γX and so the previous theorem gives as
corollary the following proposition for spaces proved in [S].

Theorem 3.7. A compactification γX of a Tychonoff space X is a perfect ex-

tension of X if and only if the canonical mapping ϕγ : βX → γX is monotone.

Remark. Let us observe that weaker versions of Theorems 3.1 and 3.6 were
proved by Mazroa [M] by means of the notion of proximity for mappings (see
[No]) only for the particular case of (Tychonoff) compactifications of a surjective
(Tychonoff) mapping between T3-spaces.

Theorem 3.8. Let f : X → Y be a Tychonoff mapping, βf : βfX → Y be its

maximal Tychonoff compactification and χf : χfX → Y be its maximal Hausdorff

compactification. Then the canonical morphism λ : χf → βf is monotone.

Proof: Since χf is compact and βf is Hausdorff, by 2.9, λ is perfect. From 2.12
it follows that λ(χfX\X) ⊆ βfX\X and as λ is canonical, λ−1(X) = X and
λ(χfX\X) = βfX\X .
Now, suppose — by contradiction — that λ : χfX → βfX is not monotone,

i.e. that there is some x ∈ βfX\X such that λ−1({x}) is not connected. So, there

are non-empty disjoint closed sets B,C of λ−1({x}) such that B∪C = λ−1({x}).
Since λ−1({x}) is normally situated in χfX (see Remark before Lemma 3.4),
there are disjoint open sets U, V of χfX such that B ⊆ U and C ⊆ V . So, U ∪ V

is an open neighborhood of λ−1({x}) and as λ : χfX → βfX is closed, there

exists an open neighborhood W of x in βfX such that λ
−1(W ) ⊆ U ∪ V .

Since βfX\W is a closed subset of βfX which does not contain the point x
and βf : βfX → Y is a Tychonoff mapping, there exist an open neighborhood

H of βf(x) in Y and a continuous mapping ϕ : (βf)−1(H) → [0, 1] such that
(βf)−1(H) ∩ (βfX\W ) = (βf)−1(H)\W ⊆ ϕ−1({0}) and ϕ(x) = 1.

Hence, Wβ = W ∩ (βf)−1(H) is an open neighborhood of x in βfX and

Wχ = λ
−1(Wβ) is an open set of χfX . Obviously, Wβ ⊆W and Wχ ⊆ U ∪ V .

Let us note that Wχ ∩X = λ−1(Wβ) ∩ λ
−1(X) = λ−1(Wβ ∩X) =Wβ ∩X .

Now, W1 = U ∩Wχ and W2 = V ∩Wχ are non-empty disjoint open sets of
χfX such that Wχ =W1 ∪W2.
Let Oi = Wi ∩ X (for i = 1, 2). Since X is dense in χfX , O1 and O2 are

non-empty disjoint open sets of X such that O1 ∪ O2 = Wχ ∩ X = Wβ ∩ X ,
B ⊆ clχfX (O1) and C ⊆ clχfX (O2).

Moreover, since βf ◦ λ = χf and χf|X = f , we have O1 ∪ O2 = Wχ ∩ X =

λ−1(Wβ) ∩X ⊆ λ−1((βf)−1(H)) ∩X = (χf)−1(H) ∩X = f−1(H).

Since both B and C are contained in the fibre λ−1({x}), we obtain x ∈
λ(B) ∩ λ(C) ⊆ λ(clχf X (O1)) ∩ λ(clχf X (O2)) ⊆ clβfX(λ(O1)) ∩ clβf X(λ(O2)) =

clβfX (O1) ∩ clβfX (O2).
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There exists an open neighborhoodO of x in (βf)−1(H) such that ϕ(O) ⊆]12 , 1].

Define the mapping ψ : f−1(H)→ [−1, 1] by setting:

ψ(t) =

{
ϕ(t) if t ∈ f−1(H)\O2

−ϕ(t) if t ∈ clf−1(H)(O2).

It is continuous by the Pasting Theorem for closed sets because clf−1(H)(O2) ∩

(f−1(H)\O2) = bdf−1(H)(O2) andO1∩bdf−1(H)(O2) = ∅, O2∩bdf−1(H)(O2) = ∅

imply (O1 ∪O2) ∩ bdf−1(H)(O2) = ∅ and, hence,

bdf−1(H)(O2) ⊆ f−1(H)\(O1 ∪O2)

= f−1(H)\(Wβ ∩X)

⊆ (βf)−1(H)\Wβ

= (βf)−1(H)\W

⊆ ϕ−1({0}).

Then, by 2.13, there is a continuous extension ψ̃ : (βf)−1(H)→ [−1, 1] of ψ to

(βf)−1(H). Obviously, it results ψ̃(O1 ∩O) ⊆]
1
2 , 1] and ψ̃(O2 ∩O) ⊆ [−1,−

1
2 [ .

On the other hand, since x ∈ clβfX(O1)∩clβfX (O2), O1∪O2 ⊆ (βf)
−1(H) and

x ∈ (βf)−1(H), it follows that x ∈ cl(βf)−1(H)(O1)∩ cl(βf)−1(H)(O2) and as O is

a neighborhood of x in (βf)−1(H), x ∈ cl(βf)−1(H)(O1∩O)∩cl(βf)−1(H)(O2∩O).

So, by continuity of ψ̃, we have ψ̃(x) ∈ ψ̃(cl(βf)−1(H)(O1∩O))∩ψ̃(cl(βf)−1(H)(O2∩

O)) ⊆ cl[−1,1](ψ̃(O1 ∩O)) ∩ cl[−1,1](ψ̃(O2 ∩O)) = ∅.
A contradiction which proves that the canonical morphism λ : χf → βf is

monotone. �

Theorems 3.6 and 3.8 allow us to obtain immediately the following:

Theorem 3.9. The maximal Tychonoff compactification βf : βfX → Y of a

Tychonoff mapping f : X → Y is a perfect extension of f .

Remark. If X is a Tychonoff space and |Y | = 1 then, for the maximal Tychonoff
compactification βf : βfX → Y and for the maximal Hausdorff compactification

χf : χfX → Y , βfX and χfX coincide with the Stone-Čech compactification
βX of X and so Theorems 3.1 and 3.9 give us as simple corollary the following
proposition for spaces proved in [S].

Theorem 3.10. The Stone-Čech compactification of a Tychonoff space X is a

perfect extension of X .

Theorems 3.6, 3.9 and Corollary 3.3 imply

Theorem 3.11. A Tychonoff compactification bf of a Tychonoff mapping f is

perfect if and only if the canonical morphism µb : βf → bf is monotone.
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