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On the continuity of the pressure for

monotonic mod one transformations

Peter Raith

Abstract. If f : [0, 1]→ R is strictly increasing and continuous define Tfx = f(x) (mod 1).

A transformation T̃ : [0, 1] → [0, 1] is called ε-close to Tf , if T̃ x = f̃(x) (mod 1) for a

strictly increasing and continuous function f̃ : [0, 1] → R with ‖f̃ − f‖∞ < ε. It is
proved that the topological pressure p(Tf , g) is lower semi-continuous, and an upper

bound for the jumps up is given. Furthermore the continuity of the maximal measure is
shown, if a certain condition is satisfied. Then it is proved that the topological pressure
is upper semi-continuous for every continuous function g : [0, 1] → R, if and only if 0
is not periodic or 1 is not periodic. Finally it is shown that the topological entropy is
continuous, if htop(Tf ) > 0.

Keywords: mod one transformation, topological pressure, topological entropy, maximal
measure, perturbation

Classification: 37E05, 37E99, 37B40, 37D35, 54H20

Introduction

Consider a strictly increasing and continuous function f : [0, 1]→ R, and define
Tfx := f(x) (mod 1). Then the map Tf : [0, 1] → [0, 1] is piecewise monotonic.

A monotonic mod one transformation T̃ : [0, 1] → [0, 1] is called ε-close to Tf ,

if there exists a strictly increasing and continuous function f̃ : [0, 1] → R, such

that T̃ x = f̃(x) (mod 1) and ‖f̃ − f‖∞ < ε. We investigate the influence of
small perturbations of Tf on the topological pressure p(Tf , g) and the topological
entropy htop(Tf ).
Perturbations of piecewise monotonic maps have been considered in many pa-

pers, e.g. in [1], [4], [5], [7], [9], [10], [11] and [13]. The topology considered in

these papers is the R0-topology. A piecewise monotonic map T̃ is said to be
close to T in the R0-topology, if T̃ and T have the same number of intervals of
monotonicity and the graph of T̃ is contained in a small neighbourhood of the
graph of T considered as subsets of R

2 (a more detailed description is given in

Section 1). In particular, if T̃ is close to T in the R0-topology, then T̃ cannot

have more intervals of monotonicity than T . On the other hand, if ‖f̃ − f‖∞ is

small, then T
f̃
x := f̃(x) (mod 1) can have up to two intervals of monotonicity

more than Tf (see e.g. the example given in (3.1) of this paper). Hence the results
of the papers mentioned above are not applicable in our situation. A certain kind
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of perturbations allowing the number of intervals of monotonicity to increase is
considered e.g. in [8], but also these results are not applicable in our situation.
Next we describe results known for the R0-topology. For a general piecewise

monotonic map T : [0, 1] → [0, 1] the lower semi-continuity of the topological
pressure is treated in Theorem 1 of [7]. Upper bounds for the jumps up of the
topological pressure are given in Theorem 2 of [7]. For the special case of the
topological entropy this result has been earlier obtained in Theorem 2 of [5].
The continuity of the maximal measure is investigated in Theorem 3 of [10] and
Theorem 1 of [12]. In [13] conditions are given, which are equivalent to the upper
semi-continuity of the pressure for all continuous functions g : [0, 1]→ R. For the
special case of a monotonic mod one transformation Tf it is proved in Theorem 1
of [9] that the topological entropy is continuous at Tf , if htop(Tf ) > 0.
We will see that similar results hold also in our situation. The example given

in (3.1) shows that we have to modify these results. In order to obtain continuity
results for the pressure we prove Lemma 4, which is as important in our proofs
as Lemma 6 of [7] is in the proofs of [7] and [10]. Using Lemma 4 we obtain in
Theorem 1 a result on the lower semi-continuity of the topological pressure and
on upper bounds of the jumps up for the topological pressure. The continuity of
the maximal measure is treated in Theorem 2. In Theorem 3 we prove that the
upper semi-continuity of the topological pressure for every continuous function g :
[0, 1]→ R is equivalent to limx→0+ Tf

n
x 6= 0 for all n ∈ N or limx→1− Tf

n
x 6= 1

for all n ∈ N. Finally in Theorem 4 conditions equivalent to the continuity of the
topological entropy are given. This result implies Corollary 4.1, which states that
the topological entropy is continuous at Tf , if htop(Tf ) > 0.
Finally the author likes to thank the referee for reading the manuscript very

careful, and for suggestions improving the readability of this paper.

1. Monotonic mod one transformations

Assume that X is a finite union of closed intervals. We call Z a finite partition
ofX , if Z consists of finitely many pairwise disjoint open intervals with

⋃

Z∈Z Z =
X . A map T : X → R is called piecewise monotone, if there exists a finite
partition Z ofX , such that T |Z is strictly monotone and continuous for all Z ∈ Z.
If f : [0, 1] → R is a strictly increasing and continuous function, then define
Tf : [0, 1] → [0, 1] in the following way. For x ∈ [0, 1) set Tfx := f(x) − [f(x)],
where [y] denotes the largest integer smaller than or equal to y. Furthermore
set Tf1 := limx→1− Tfx. Let Zf be the set of all maximal open subintervals

of [0, 1] \ f−1(Z). Obviously Tf : [0, 1] → [0, 1] is a piecewise monotonic map
with respect to the finite partition Zf of [0, 1]. We call T a monotonic mod
one transformation, if there exists a strictly increasing and continuous function
f : [0, 1] → R with T = Tf . If x ∈ [0, 1) and n ∈ N0, then let Tf

n
x be the n-th

iterate of Tf evaluated at x. Note that Tf
n
0 := limx→0+ Tf

n
x. For n ∈ N0 we

define Tf
n
1 := limx→1− Tf

n
x. Observe that it may happen that Tf

(

Tf
n−1
1
)

6=
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Tf
n
1.

In [9] monotonic mod one transformations are investigated under small pertur-
bations with respect to the R0-topology. The R0-topology considered in [7], [9],
[10] and [13] is equivalent to the following topology on piecewise monotonic maps.

Assume that X and X̃ are finite unions of closed intervals. Let T : X → R be
piecewise monotonic with respect to Z and T̃ : X̃ → R be piecewise monotonic
with respect to Z̃. Suppose that Z = {Z1, Z2, . . . , ZK} with Z1 < Z2 < · · · < ZK ,

and Z̃ = {Z̃1, Z̃2, . . . , Z̃K̃
} with Z̃1 < Z̃2 < · · · < Z̃

K̃
. Then we say that

(T̃ , Z̃) is ε-close to (T,Z) in the R0-topology, if card Z̃ = cardZ and for ev-

ery j ∈ {1, 2, . . . ,K} the graph of T̃ |
Z̃j
is contained in an ε-neighbourhood of the

graph of T |Zj
considered as a subset of R

2. In particular this definition implies

that T and T̃ have the same number of intervals of monotonicity.
Let f : [0, 1] → R be a strictly increasing and continuous function. We are

interested in the dynamics of T
f̃
, if f̃ : [0, 1] → R is a strictly increasing and

continuous function, and ‖f̃ − f‖∞ is sufficiently small. Unfortunately this does
not imply that T

f̃
is close to Tf in the R

0-topology. For example, suppose that

f(0) = 0 and f̃(x) = f(x) − ε. Then ‖f̃ − f‖∞ = ε. The interval
(

0, f−1(ε)
)

is an interval of monotonicity for the map T
f̃
. Hence T

f̃
has more intervals of

monotonicity than Tf , and therefore Tf̃
is not close to Tf in the R

0-topology.

Observe that the following fact is true, if Tf0 6= 0 and Tf1 6= 1 (as above f and

f̃ are strictly increasing and continuous functions [0, 1] → R). For every ε > 0

there exists a δ > 0, such that ‖f̃−f‖∞ < δ implies (T
f̃
,Z

f̃
) is ε-close to (Tf ,Zf )

in the R0-topology.
We can use a standard doubling points construction as in [7] (cf. also [9]) in

order to get a dynamical system (a dynamical system is a pair (X,T ), where
X is a compact metric space and T : X → X is a continuous map). In fact
we would have to do it for the exact definitions of the topological entropy, the
pressure (see [9] for details) and the maximal measure (see [10] for details). For our
purpose it is enough to replace each c ∈ f−1(Z) \ {0, 1} by c− and c+, and define

Tf
n
c− := Tf

n−1
1 and Tf

n
c+ := Tf

n−1
0 for n ∈ N. Nevertheless it is important

to notice that this doubling points construction can be done with respect to a
finite partition Y of [0,1] refining Zf . By Lemma 2 in [6] the definition of the
pressure does not depend on the partition Y. Hence the topological pressure can
be defined for a function g : [0, 1]→ R, for which there exists a finite partition Y of
[0, 1], such that for every Y ∈ Y the function g|Y can be extended to a continuous
function on the closure of Y . In particular the topological pressure can be defined
for piecewise constant functions (the definition of the notion piecewise constant
function will be given later).
Consider a continuous map T : X → X , where (X, d) is a compact metric

space. For ε > 0 and n ∈ N a set E ⊆ X is called (n, ε)-separated, if for every
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x 6= y ∈ E there exists a j ∈ {0, 1, . . . , n− 1} with d(T jx, T jy) > ε. If g : X → R

is a continuous function, then the topological pressure p(T, g) is defined by

(1.1) p(T, g) := lim
ε→0
lim sup
n→∞

1

n
log sup

E

∑

x∈E

exp

(n−1
∑

j=0

g(T jx)

)

,

where the supremum is taken over all (n, ε)-separated subsets E of X . We define
the topological entropy htop(T ) by

(1.2) htop(T ) := p(T, 0).

For some alternative definitions see e.g. [14]. A T -invariant Borel probability
measure µ is called maximal measure, if

(1.3) hµ(T ) = htop(T ),

where hµ(T ) denotes the measure-theoretic entropy of (X,T, µ) (see e.g. [14] for
the definition).
Next we describe the Markov diagram (D,→) of a piecewise monotonic map

T : X → R. This is an at most countable oriented graph describing the orbit
structure of T , which was introduced by Franz Hofbauer in [2]. Let T : X → R

be a piecewise monotonic map with respect to Z, and suppose that Y is a finite
partition of X refining Z. Suppose that D ⊆ Y0 for a Y0 ∈ Y. Then a nonempty
C is called successor of D, if there exists a Y ∈ Y with C = TD∩Y . In this case
we write D → C. Now let D be the smallest set with Y ⊆ D and so that D ∈ D
and D → C imply C ∈ D. We call (D,→) the Markov diagram of T with respect
to Y. Note that the Markov diagram does not only depend on T , but also on Y.
If we set D0 := Y and Dn := Dn−1 ∪ {D ∈ D : ∃C ∈ Dn−1 with C → D}, then
D0 ⊆ D1 ⊆ D2 ⊆ · · · and D =

⋃∞
n=0Dn.

In the proofs we will need also the notion variant (A,→) of the Markov diagram
of T with respect to Y (in particular Lemma 4 would not be true, if we used
Markov diagrams instead of variants of the Markov diagram). The definition of it
is given on pp. 107–108 of [7]. We describe its most important properties shortly.
If (A,→) is a variant of the Markov diagram of T with respect to Y, then (A,→) is
an oriented graph and there exists a function A : A → D, such that the following
properties are satisfied.
(1) The property c→ d in (A,→) implies that A(c)→ A(d) in (D,→).
(2) For every c ∈ A the map A is bijective from {d ∈ A : c→ d} to {D ∈ D :

A(c)→ D}.
(3) We can write A =

⋃∞
n=0An with A0 ⊆ A1 ⊆ A2 ⊆ · · · and A(An) = Dn

for every n ∈ N0.

Observe that A : A → D is surjective, but not necessarily injective. Furthermore,
note that (D,→) can be considered as a variant of the Markov diagram of T with
respect to Y. A subset C ⊆ A is called closed, if c ∈ C, d ∈ A and c→ d in (A,→)
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imply d ∈ C. For every c ∈ A there are at most two different successors of c,
which are not contained in

{

d ∈ A0 : inf A(d) > infX and supA(d) < supX
}

.
If n ∈ N, k ∈ {1, 2, . . . , n} and c ∈ A \ An, then there are at most two different
paths c0 → c1 → · · · → ck of length k in A \ An with c0 = c.
Let f : [0, 1]→ R be a strictly increasing and continuous function. The Markov

diagram of Tf with respect to Zf is described in Lemma 1 of [9] (see also [3]).
Suppose that Y is a finite partition of [0, 1] refining Zf . We call a function

g : [0, 1] → R piecewise constant with respect to Y, if g|Y is constant for all
Y ∈ Y. Let g : [0, 1] → R be a piecewise constant function with respect to Y,
and let (A,→) be a variant of the Markov diagram of T with respect to Y. If
c ∈ A, then let gc be the unique real number with g(x) = gc for all x ∈ A(c). For
c, d ∈ A define

(1.4) Fc,d(g) :=

{

egc if c→ d in (A,→),

0 otherwise.

Set FC(g) :=
(

Fc,d(g)
)

c,d∈C, if C ⊆ A, and set F (g) := FA(g). As in [6] and

[7] u 7→ uFC(g) is a continuous linear operator on ℓ
1(C) and v 7→ FC(g)v is a

continuous linear operator on ℓ∞(C), where both operators have the same norm
‖FC(g)‖ and the same spectral radius r

(

FC(g)
)

. Furthermore we have (cf. [7])

(1.5) ‖FC(g)
n‖ = sup

c∈C

∑

c0=c→c1→···→cn

exp

( n−1
∑

j=0

gcj

)

for every n ∈ N, where the sum is taken over all paths c0 → c1 → · · · → cn of
length n in C with c0 = c, and

(1.6) r
(

FC(g)
)

= lim
n→∞

‖FC(g)
n‖

1
n = inf

n∈N

‖FC(g)
n‖

1
n .

By Lemma 6 in [6] (cf. also (2.12) of [7]) we have

(1.7) p(Tf , g) = log r
(

F (g)
)

.

2. The graph (G′,→) associated to Tf

As in [7] we introduce an oriented graph in order to describe the jumps up of
the pressure. Let f : [0, 1] → R be a strictly increasing and continuous function.
Then set

(2.1)
G :=

{

Tf
n
c−, Tf

n
c+ : n ∈ N0, c ∈ f−1(Z) \ {0, 1}

}

∪
{

Tf
n
0, Tf

n
1 : n ∈ N0

}

.

For a, b ∈ G we introduce an arrow a → b in (G,→), if and only if Tfa = b or

there exists a c ∈ f−1(Z) \ {0, 1} with Tfa = c and b ∈ {c−, c+}.
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Now set G′ := G, and let a, b ∈ G′. We introduce an arrow a → b in (G′,→),
if and only if a → b in (G,→), or a = 0, b ∈ {0, 1} and Tf0 = 0, or a = 1,

b ∈ {0, 1} and Tf1 = 1. Note that the sets G and G′ are the same, but (G′,→)
may have more arrows than (G,→). Furthermore observe that for every a ∈ G′

there exist at most two different b ∈ G′ with a → b in (G′,→). Define P (G′) :=
(

G′ \
{

c−, c+ : c ∈ f−1(Z) \ {0, 1}
})

∪
(

f−1(Z) \ {0, 1}
)

. Roughly spoken the only

difference between G′ and P (G′) is, that for c ∈ f−1(Z) the elements c− and c+

are considered to be different in G′, but they are identified in P (G′).
Let g : [0, 1]→ R be a continuous function. For a, b ∈ G′ we define

(2.2) G′
a,b(g) :=

{

eg(a) if a→ b in (G′,→),

0 otherwise.

Set G′(g) :=
(

G′
a,b(g)

)

a,b∈G′ . As in [7] and [9] the map u 7→ uG′(g) is a continuous

linear operator on ℓ1(G′), and the map v 7→ G′(g)v is a continuous linear operator
on ℓ∞(G′). Both operators have the same norm ‖G′(g)‖ and the same spectral
radius r

(

G′(g)
)

. Furthermore we have (cf. [7] and [9])

‖G′(g)‖ = sup
a∈G′

∑

b∈G′

G′
a,b(g),(2.3)

‖G′(g)n‖ = sup
a∈G′

∑

b0=a→b1→···→bn

exp

( n−1
∑

j=0

g(bj)

)

for every n ∈ N,(2.4)

where the sum is taken over all paths b0 → b1 → · · · → bn of length n in G′ with
b0 = a, and

(2.5) r
(

G′(g)
)

= lim
n→∞

‖G′(g)n‖
1
n = inf

n∈N

‖G′(g)n‖
1
n .

The proof of the next result is completely analogous to the proof of Lemma 2
in [9].

Lemma 1. Let f : [0, 1] → R be a strictly increasing and continuous function.

Suppose that Tf
n
0 6= 0 for all n ∈ N or Tf

n
1 6= 1 for all n ∈ N. Then

log r
(

G′(g)
)

≤ lim
n→∞

1

n
sup

x∈[0,1]

n−1
∑

j=0

g
(

Tf
j
x
)

≤ p(Tf , g)

for every continuous function g : [0, 1]→ R.

Next assume that Tf
p
0 = 0 and Tf

q
1 = 1 for some p, q ∈ N. We construct a

family of strictly increasing and continuous functions fs : [0, 1]→ R. Let s ∈ (0, 1)
be arbitrary. Choose a u > 0, such that u < s, |f(y)−f(x)| < s for all x, y ∈ [0, 1]
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with |x− y| < u, and every interval of length 2u contains at most one element of
P (G′). Now choose a t > 0 with t < u and t < minx∈[0,1−u] |f(x+ u)− f(x)|.

If x ∈ [0, 1] satisfies |x − y| ≥ u for all y ∈ P (G′), then set fs(x) := f(x).
Let y ∈ P (G′) and suppose that x ∈ [0, 1] and |x − y| ≤ t. Assume at first that
y /∈ {0, 1}. Define fs(x) := f(y)+x−y. If f(y) /∈ Z, then setDs(y) := (y−t, y+t),
and if f(y) ∈ Z, then set Ds(y

−) := (y − t, y) and Ds(y
+) := (y, y + t). Now

consider the case y = 0. For x ∈ [0, t] define fs(x) := f(0) − t + 2x, and set
Ds(0) := (0, t). In the case y = 1 define fs(x) := f(1)+ t−2+2x for x ∈ [1− t, 1],
and set Ds(1) := (1− t, 1). It remains to define fs on the finitely many intervals
[a, b] of the form [y − u, y− t] or [y+ t, y+ u] for a suitable y ∈ P (G′). We define

in this case fs(x) := fs(a) +
fs(b)−fs(a)

b−a
(x− a).

Using the above construction simple calculations show the following result.

Lemma 2. Let f : [0, 1] → R be a strictly increasing and continuous function.

Suppose that there exist p, q ∈ N with Tf
p
0 = 0 and Tf

q
1 = 1. Then for every

s ∈ (0, 1) there exists a strictly increasing and continuous function fs : [0, 1]→ R,

and for each a ∈ G′ there exists an open interval Ds(a) ⊆ [0, 1], such that the
following properties hold.

(1) We have ‖fs − f‖∞ ≤ s.

(2) If a ∈ G′ and x ∈ Ds(a), then |x− a| < s.
(3) If a, b ∈ G′ and a 6= b, then Ds(a) ∩Ds(b) = ∅.

(4) For a ∈ G′ we have Tfs
Ds(a) =

⋃

bDs(b), where the union is taken over

all b ∈ G′ with a→ b in (G′,→).

We will also need the following result.

Lemma 3. Let f : [0, 1] → R be a strictly increasing and continuous function.

Suppose that there exist p, q ∈ N with Tf
p
0 = 0 and Tf

q
1 = 1. Assume that

(fs)s∈(0,1) are as in Lemma 2. Then

lim sup
‖f̃−f‖∞→0

p(T
f̃
, g) ≥ lim inf

s→0
p(Tfs

, g) ≥ log r
(

G′(g)
)

for every continuous function g : [0, 1]→ R.

Proof: Assume that ε > 0 is arbitrary. Then there exists an η > 0, such that
x, y ∈ [0, 1] and |x−y| < η imply |g(x)−g(y)| < ε

2 . Now fix an s ∈ (0, η). Choose
a finite partition Y of [0, 1] refining Zfs

, such that supY ∈Y supx,y∈Y |x − y| < η

and
{

Ds(a) : a ∈ G′
}

⊆ Y. Let Y ∈ Y. If Y = Ds(a) for an a ∈ G′, then
set xY := a. Otherwise choose an xY ∈ Y . Define ĝ(x) := g(xY ), if Y ∈ Y
and x ∈ Y . Then ĝ : [0, 1] → R is piecewise constant with respect to Y. As
g(x) ≥ ĝ(x) − ε

2 for all x ∈ [0, 1], we obtain that p(Tfs
, g) ≥ p(Tfs

, ĝ)− ε
2 .

Denote by (D,→) the Markov diagram of Tfs
with respect to Y, and set C :=

{

Ds(a) : a ∈ G′
}

. Then (1.5), (1.6) and (1.7) imply

(2.6) p(Tfs
, g) +

ε

2
≥ p(Tfs

, ĝ) = log r
(

F (ĝ)
)

≥ log r
(

FC(ĝ)
)

.
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Using (1.4) and (2.2) we obtain by Lemma 2 that FC(ĝ) = G
′(g). Therefore (2.6)

implies p(Tfs
, g) > log r

(

G′(g)
)

− ε.
By (1) of Lemma 2 we get lim sup‖f̃−f‖∞→0 p(Tf̃

, g) ≥ lim infs→0 p(Tfs
, g).

�3. Continuity of the topological pressure

Considering the R0-topology the lower semi-continuity of the pressure is treated
in Theorem 1 of [7]. Further upper bounds for the jumps up of the pressure are
given in Theorem 2 of [7]. These upper bounds are related to the oriented graph
(G,→). A result on the continuity of the maximal measure is proved in Theorem 3
of [10] and in Theorem 1 of [12]. In this section we will show that similar results
hold for monotonic mod one transformations, where we consider T

f̃
to be close

to Tf , if ‖f̃ − f‖∞ is small. The conditions on (G,→) have to be replaced by
conditions on (G′,→).

We assume throughout this paper that the functions f̃ : [0, 1]→ R are strictly
increasing and continuous.
At first we prove a result analogous to Lemma 6 in [7]. Consider a strictly in-

creasing and continuous function f : [0, 1]→ R. Denote by N1 the largest integer
smaller than or equal to f(0), and denote by N2 the smallest integer larger than

or equal to f(1). For f̃ define X
f̃
:= f̃−1[N1, N2]. If Xf̃

6= ∅, then X
f̃
⊆ [0, 1] is a

closed interval. LetW(f̃) be the collection of the nonempty sets among
(

0, infX
f̃

)

and
(

supX
f̃
, 1

)

. Suppose that Y = {Y1, Y2, . . . , YN} is a finite partition of [0, 1]

refining Zf with Y1 < Y2 < · · · < YN , and Ỹ = {Ỹ1, Ỹ2, . . . , ỸN} ∪ W(f̃) is a

finite partition of [0, 1] refining Z
f̃
with Ỹ1 < Ỹ2 < · · · < ỸN . Set Ỹ|X

f̃
:=

{Ỹ1, Ỹ2, . . . , ỸN} and Z
f̃
|X

f̃
:= Z

f̃
\ W(f̃). Now let (Ã,→) be a variant of the

Markov diagram of T
f̃
with respect to Ỹ . Define Ã0|X

f̃
:=

{

c̃ ∈ Ã0 : Ã(c̃) ∈

Ỹ|X
f̃

}

, Ãn|X
f̃
:= Ãn−1|X

f̃
∪

{

d̃ ∈ Ã : ∃ c̃ ∈ Ãn−1|X
f̃
with c̃→ d̃ and Ã(d̃) ⊆ X

f̃

}

for n ∈ N, and Ã|X
f̃
:=

⋃∞
n=0 Ãn|X

f̃
. Then (Ã|X

f̃
,→) is a variant of the Markov

diagram of T
f̃
|X

f̃
with respect to Ỹ|X

f̃
. If c̃ ∈ Ãn \ Ãn|X

f̃
, then there exists

a k ≤ n and there exists a path c̃0 → c̃1 → · · · → c̃k in (Ã,→) with c̃0 ∈ Ã0,

Ã(c̃0) ∈ W(f̃) and Ã(c̃) ⊆ Ã(c̃k). Observe that for every variant (C̃,→) of the
Markov diagram of T

f̃
|X

f̃
with respect to Ỹ|X

f̃
there exists a variant (Ã,→) of

the Markov diagram of T
f̃
with respect to Ỹ, such that Ã|X

f̃
= C̃.

Given ε > 0 two intervals B and C are called to be ε-close in the Hausdorff
metric, if | inf B − inf C| < ε and | supB − supC| < ε. Let Y and Ỹ be as above.
We call Ỹ to be ε-close to Y, if Ỹj is ε-close to Yj in the Hausdorff metric for all
j ∈ {1, 2, . . . , N}.

Lemma 4. Let f : [0, 1] → R be a strictly increasing and continuous function,

and suppose that Y is a finite partition of [0, 1] refining Zf . Then for every r ∈ N
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and for every η > 0 there exists a δ > 0, such that the following property holds.
Suppose that f̃ : [0, 1] → R is a strictly increasing and continuous function with

‖f̃ − f‖∞ < δ, and assume that Ỹ is a finite partition of [0, 1] refining Z
f̃
, which

is δ-close to Y. Then there exists a variant (A,→) of the Markov diagram of Tf

with respect to Y and a variant (Ã,→) of the Markov diagram of T
f̃
with respect

to Ỹ with the following properties.

(1) We can write Ãr as a disjoint union B0 ∪ B1 ∪ B2, such that B1 ∪ B2 and

B2 are closed. If c̃ ∈ Ã0 \ B0, then c̃ ∈ B2 and Ã(c̃) ∈ W(f̃).
(2) Every c̃ ∈ Ãr has at most two successors in B1 ∪ B2.
(3) There exists a bijective function ϕ : Ar → B0, and there exists a function

ψ : B2 → G′.

(4) For c, d ∈ Ar the property c → d in (A,→) is equivalent to ϕ(c) → ϕ(d)

in (Ã,→). If c̃, d̃ ∈ B2 and c̃→ d̃ in (Ã,→), then ψ(c̃)→ ψ(d̃) in (G′,→).
(5) Let c ∈ A0. Then there is a j ∈ {1, 2, . . . , N} with A(c) = Yj . Further-

more we have ϕ(c) ∈ Ã0 and Ã
(

ϕ(c)
)

= Ỹj .

(6) If c ∈ Ar , then Ã
(

ϕ(c)
)

and A(c) are η-close in the Hausdorff metric. The

properties c ∈ Ar, d ∈ A0 and A(c) ⊆ A(d) imply Ã
(

ϕ(c)
)

⊆ Ã
(

ϕ(d)
)

.

We have
∣

∣x− ψ(c̃)
∣

∣ < η for all x ∈ Ã(c̃), if c̃ ∈ B2.
(7) Fix an s ∈ N with s ≤ r. Let Ps be the set of all paths c̃0 → c̃1 → · · · → c̃s
in (Ã,→) with c̃0 ∈ Ã0, and set Ns :=

{

(d0, d1, . . . , ds) : dj ∈ Ar ∪ G′ for

j ∈ {0, 1, . . . , s}
}

. Then there exists a function χs : Ps → Ns satisfying

the properties (8), (9) and (10) below.
(8) Suppose c̃0 → c̃1 → · · · → c̃s ∈ Ps,

χs(c̃0 → c̃1 → · · · → c̃s) = (d0, d1, . . . , ds),

and let j ∈ {0, 1, . . . , s}. We have c̃j ∈ B2, if and only if dj ∈ G′.

Moreover, c̃j ∈ B2 implies ψ(c̃j) = dj . If c̃j ∈ B0, then c̃j = ϕ(dj). In the

case c̃j ∈ B0∪B1 we have that for every x ∈ Ã(c̃j) there exists a y ∈ A(dj)
with |x − y| < η. Furthermore c̃j ∈ B0 ∪ B1 and j ≥ 1 imply dj−1 → dj

in (A,→).
(9) For a fixed c̃ ∈ Ã0 and for a fixed (d0, d1, . . . , ds) ∈ Ns there are at most

2s + 1 different c̃0 → c̃1 → · · · → c̃s ∈ Ps with c̃0 = c̃ and χs(c̃0 →
c̃1 → · · · → c̃s) = (d0, d1, . . . , ds). If s < r and (d0, d1, . . . , ds) ∈ Ns,

then there exist at most 4 different ds+1 ∈ G′ with (d0, d1, . . . , ds, ds+1) ∈
χs+1(Ps+1).

(10) Fix a d̃0 → d̃1 → · · · → d̃s ∈ Ps, let k ≤ s, and assume that d̃k ∈ B1. In

the case d̃s ∈ B2 we have c̃s ∈ B2 for every c̃0 → c̃1 → · · · → c̃s ∈ Ps with

c̃j = d̃j for j ∈ {0, 1, . . . , k}. If d̃s ∈ B1, then c̃0 → c̃1 → · · · → c̃s ∈ Ps

with c̃j = d̃j for j ∈ {0, 1, . . . , k} implies χs(c̃0 → c̃1 → · · · → c̃s) =

χs(d̃0 → d̃1 → · · · → d̃s).
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Proof: Set Gr :=
{

Tf
n
c−, Tf

n
c+ : n ∈ {0, 1, . . . , r + 1}, c ∈ f−1(Z) \ {0, 1}

}

∪
{

Tf
n
0, Tf

n
1 : n ∈ {0, 1, . . . , r + 1}

}

, and define P (Gr) :=
(

Gr \
{

c−, c+ : c ∈

f−1(Z)\{0, 1}
})

∪
(

f−1(Z)\{0, 1}
)

. Denote by (D,→) the Markov diagram of Tf

with respect to Y. Now define E :=
{

inf C, supC : C ∈ Dr+1
}

. Then P (Gr) ⊆ E.
We may assume that η is so small that |a − b| > 2η, whenever a 6= b ∈ E. Set
α0 := η, and for j ∈ {1, 2, . . . , r + 1} let αj > 0 be so that αj <

αj−1

4 and

|x − y| < αj implies |f(x)− f(y)| <
αj−1

4 . By the proof of Lemma 6 in [7] there
exists a δ0 > 0 with δ0 ≤ αr+1, such that the conclusions of Lemma 6 in [7] and the

properties (a)–(o) in the proof of Lemma 6 in [7] hold, whenever (T̃ , Z̃) is δ0-close
to (Tf ,Zf ) in the R

0-topology. Then β := infx∈[0,1−δ0] |f(x + δ0) − f(x)| > 0.

Now define δ := min{δ0, β}.

Assume that ‖f̃ − f‖∞ < δ, and suppose that Ỹ is a finite partition of [0, 1]
refining Z

f̃
, which is δ-close to Y. Then X

f̃
⊆ [0, 1] is a closed interval with

infX
f̃
< δ0 and supXf̃

> 1 − δ0. Furthermore infXf̃
6= 0 implies Tf0 = 0, and

supX
f̃
6= 1 implies Tf1 = 1. Moreover we have that (Tf̃

|X
f̃
,Z

f̃
|X

f̃
) is δ0-close

to (Tf ,Zf ) in the R
0-topology. Therefore Lemma 6 in [7] gives the existence of

a variant (A,→) of the Markov diagram of Tf with respect to Y and a variant

(Ã,→) of the Markov diagram of T
f̃
with respect to Ỹ, such that (A,→) and

(Ã|X
f̃
,→) satisfy the conclusions of Lemma 6 in [7] and the properties (a)–(o) in

the proof of Lemma 6 in [7]. Hence (5) holds. Denote the sets occurring in (1) of

Lemma 6 in [7] by B0, B1 and B2
′ . Now set B2 := B2

′ ∪
(

Ãr \ Ãr|X
f̃

)

.

Consider a c̃ ∈ Ãr \ Ãr|X
f̃
. Then there exists a k ≤ r and there exists a path

c̃0 → c̃1 → · · · → c̃k in (Ã,→) with c̃0 ∈ Ã0, Ã(c̃0) ∈ W(f̃) and Ã(c̃) ⊆ Ã(c̃k).

Hence there is a unique y ∈ P (Gr) with |x − y| < αr+1−k < η for all x ∈ Ã(c̃).

Then |T
f̃
x − Tfy| < αr−k ≤ η for all x ∈ T

f̃
Ã(c̃), which completes the proof

of (1). If y /∈ f−1(Z) \ {0, 1}, then define ψ(c̃) := y. Otherwise we have either

f̃(x) < f(y) for all x ∈ Ã(c̃) or f̃(x) > f(y) for all x ∈ Ã(c̃). In the first case
we define ψ(c̃) := y−, and in the second case set ψ(c̃) := y+. This implies (3)

and (6). Now simple calculations yield that c̃→ d̃ in (Ã,→) implies ψ(c̃)→ ψ(d̃)

in (G′,→), whenever c̃, d̃ ∈ B2. Therefore we have proved (4).

For every c̃ ∈ Ã at most two successors of c̃ are not contained in C :=
{

d̃ ∈

Ã0 : Ã(d̃) = Ỹj for a j ∈ {1, 2, . . . , N}
}

. By (1) we have C ⊆ B0, completing the
proof of (2).

Next assume that c̃0 → c̃1 → · · · → c̃s ∈ Ps. If c̃j ∈ Ã|X
f̃
for all j ∈

{0, 1, . . . , s}, then χs(c̃0 → c̃1 → · · · → c̃s) is defined in the proof of Lemma 6

in [7]. Otherwise let j be the minimal number in {0, 1, . . . , s} with c̃j /∈ Ã|X
f̃
.

By (1) we have c̃j , c̃j+1, . . . , c̃s ∈ B2. In the case j > 1 define χs(c̃0 → c̃1 → · · · →

c̃s) :=
(

d0, d1, . . . , dj−1, ψ(c̃j), ψ(c̃j+1), . . . , ψ(c̃s)
)

, where (d0, d1, . . . , dj−1) =
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χj−1(c̃0 → c̃1 → · · · → c̃j−1), for j = 1 define χs(c̃0 → c̃1 → · · · → c̃s) :=
(

d0, ψ(c̃1), ψ(c̃2), . . . , ψ(c̃s)
)

, where d0 ∈ A0 satisfies ϕ(d0) = c̃0, and for j = 0

define χs(c̃0 → c̃1 → · · · → c̃s) :=
(

ψ(c̃0), ψ(c̃1), . . . , ψ(c̃s)
)

. Now easy calcula-
tions give (8).

Suppose that d̃0 → d̃1 → · · · → d̃s ∈ Ps, k ≤ s and d̃k ∈ B1 ∪ B2. Then
sup

x,y∈Ã(d̃k)
|x − y| < αr+1−k. Denote by P the set of all c̃0 → c̃1 → · · · →

c̃s ∈ Ps with c̃j = d̃j for all j ∈ {0, 1, . . . , k} and χs(c̃0 → c̃1 → · · · → c̃s) =

χs(d̃0 → d̃1 → · · · → d̃s). Using induction we get that cardP ≤ s − k + 1, and

c̃0 → c̃1 → · · · → c̃s ∈ P , x ∈ Ã(c̃s) and y ∈ Ã(d̃s) imply |x − y| < αr+1−s.

If d̃s ∈ B2, then let l ≥ k be minimal with d̃l ∈ B2. Assume that d̃l /∈ Ã|X
f̃
.

Then there exists a y ∈ P (Gr) with |x − y| < αr+1−l for all x ∈ Ã(c̃l), where

c̃0 → c̃1 → · · · → c̃s ∈ Ps satisfies c̃j = d̃j for all j ∈ {0, 1, . . . , k}. Hence using
also (1) and the proof of Lemma 6 in [7] we get (10). Observing that every a ∈ G′

has at most two successors in G′ we obtain (9). This completes also the proof
of (7). �

Now we prove the result on the behaviour of the pressure under small pertur-
bations.

Theorem 1. Let f : [0, 1]→ R be a strictly increasing and continuous function.

(1) If g : [0, 1]→ R is a continuous function, then

lim sup
‖f̃−f‖∞→0

p(T
f̃
, g) ≤ max

{

p(Tf , g), log r
(

G′(g)
)}

.

(2) Suppose that g : [0, 1] → R is a continuous function with p(Tf , g) >

limn→∞
1
n supx∈[0,1]

∑n−1
j=0 g(Tf

j
x). Then

lim inf
‖f̃−f‖∞→0

p(T
f̃
, g) ≥ p(Tf , g) and

lim sup
‖f̃−f‖∞→0

p(T
f̃
, g) = max

{

p(Tf , g), log r
(

G′(g)
)}

.

Proof: Using Lemma 4 a proof completely analogous to the proof of Theorem 2
in [7] shows (1).
Assume that g : [0, 1]→ R is a continuous function with

p(Tf , g) > lim
n→∞

1

n
sup

x∈[0,1]

n−1
∑

j=0

g(Tf
j
x).

Using Lemma 4 again, a proof completely analogous to the proof of Theorem 1
in [7] gives lim inf

‖f̃−f‖∞→0
p(T

f̃
, g) ≥ p(Tf , g). If log r

(

G′(g)
)

≤ p(Tf , g), then
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(1) implies lim‖f̃−f‖∞→0 p(Tf̃
, g) = p(Tf , g). Otherwise log r

(

G′(g)
)

> p(Tf , g),

and (1) and Lemma 3 imply lim sup‖f̃−f‖∞→0 p(Tf̃
, g) = log r

(

G′(g)
)

. �

The following example shows that the pressure (and the topological entropy)
is not upper semi-continuous in general (examples for this fact are also given in
Section 4 of [9]). Moreover it illustrates the difference between Theorem 2 in [7]

and Theorem 1. For s ∈ [0, 12 ] define

(3.1) fs(x) :=











2x− s if x ∈ [0, s],

x if x ∈ [s, 1− s],

2x− 1 + s if x ∈ [1 − s, 1].

If s < δ, then ‖fs − f0‖∞ < δ. Obviously htop(Tf0) = 0, G = {0, 1} and the
only arrows in (G,→) are 0→ 0 and 1→ 1. Hence given ε > 0 Theorem 2 in [7]
(or Theorem 2 in [5]) implies that |htop(T̃ ) − htop(Tf0)| < ε, whenever (T̃ , Z̃) is

sufficiently close to (Tf0 ,Zf0) in the R
0-topology. For s > 0 we get Tfs

x = x for
all x ∈ [s, 1 − s], Tfs

[0, s] = [0, s] ∪ [1 − s, 1] and Tfs
[1 − s, 1] = [0, s] ∪ [1 − s, 1].

Therefore (1.7) gives htop(Tfs
) = log 2.

Remark. At this point we like to mention that we can obtain results analogous
to Theorem 2, Theorem 4 and Corollary 4.1 in [11]. The proofs are completely
analogous to the proofs in [11]. As the statements of these results are technical,
and as these results are not needed in this paper, we omit them.

Next we prove a result on the continuity of the maximal measure. This result
is analogous to Theorem 1 in [12].

Theorem 2. Let f : [0, 1]→ R be a strictly increasing and continuous function.

Suppose that log r
(

G′(0)
)

< htop(Tf ) and that µ is the unique maximal measure
of Tf . Then for every neighbourhood U of µ in the weak star-topology there

exists a δ > 0, such that f̃ : [0, 1] → R is a strictly increasing and continuous

function with ‖f̃ − f‖∞ < δ implies that T
f̃
has a unique maximal measure µ̃,

and µ̃ ∈ U .

Proof: Choose a β ∈ R with

(3.2) log r
(

G′(0)
)

< log β < htop(Tf ).

Now let ̺ ∈ R with

(3.3) r
(

G′(0)
)

< ̺ < β.

By (2.5) there exists a B ≥ 1 such that

(3.4) ‖G′(0)n‖ ≤ B̺n for all n ∈ N0.
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Next we choose an s ∈ N with

(3.5) ̺ s
√

65Bs(s+ 1) < β.

Assume that Y is a finite partition of [0, 1] refining Zf , that f̃ : [0, 1] → R

is strictly increasing and continuous, and that Ỹ is a finite partition of [0, 1]
refining Z

f̃
. Suppose that (A,→) is a variant of the Markov diagram of Tf with

respect to Y and (Ã,→) is a variant of the Markov diagram of T
f̃
with respect

to Ỹ, such that the conclusions of Lemma 4 hold with r replaced by 2s and η
replaced by 1 (the existence of these variants is an assumption). For C ⊆ Ã, c̃ ∈ C
and n ∈ N let PC(c̃, n) be the set of all paths c̃0 → c̃1 → · · · → c̃n of length n in
C with c̃0 = c̃.
Fix a c̃ ∈ Ãs ∩ (B1 ∪ B2), where B1 and B2 are the sets described in the

conclusions of Lemma 4. Let q ∈ N with 1 ≤ q ≤ s. As c̃ ∈ Ãs, there is an
l ∈ {0, 1, . . . , s} and there is a path d̃0 → d̃1 → · · · → d̃l in (Ã,→) with d̃0 ∈ Ã0
and d̃l = c̃. Set N (c̃) :=

{

χl+q(c̃0 → c̃1 → · · · → c̃l+q) : c̃0 → c̃1 → · · · → c̃l+q ∈

Pl+q, c̃j = d̃j for j ∈ {0, 1, . . . , l}
}

. By (9) of Lemma 4 we get

cardPÃ(c̃, q) ≤ (2(l + q) + 1) cardN (c̃) ≤ 4(s+ 1) cardN (c̃).

Using (1) and (10) of Lemma 4 we obtain that either there is a minimal p ∈

{0, 1, . . . , q} with c̃l+p ∈ B2 for every c̃0 → c̃1 → · · · → c̃l+q ∈ Pl+q with c̃j = d̃j

for j ∈ {0, 1, . . . , l}, or c̃l+q ∈ B1 for every c̃0 → c̃1 → · · · → c̃l+q ∈ Pl+q with

c̃j = d̃j for j ∈ {0, 1, . . . , l}. In the first case, (2.4) and (4), (9) and (10) of
Lemma 4 yield

cardN (c̃) ≤ 4‖G′(0)q−p‖.

This implies cardN (c̃) ≤ 4B̺q−p ≤ 4B̺q by (3.4). Otherwise (10) of Lemma 4
gives cardN (c̃) = 1 ≤ 4B̺q. Hence we obtain

(3.6) cardPÃ(c̃, q) ≤ 16B(s+ 1)̺
q.

Next let C ⊆ (Ã \ Ãs) ∪ B1 ∪ B2. Fix a c̃ ∈ C, and let p ∈ N with 1 ≤ p ≤ s.

At first assume that c̃ /∈ Ãs. We have that there are at most two different paths
c̃0 → c̃1 → · · · → c̃p in Ã \ Ãs with c̃0 = c̃. Fix a path d̃0 → d̃1 → · · · → d̃p

in Ã \ Ãs with d̃0 = c̃, and fix an l ∈ {0, 1, . . . , p − 1}. Then (2) of Lemma 4

implies that there are at most two different d̃ ∈ Ãs ∩ (B1 ∪ B2) with d̃l → d̃.

Therefore (3.6) gives that there are at most 32B(s + 1)̺p−l−1 ≤ 32B(s + 1)̺p

different paths c̃0 → c̃1 → · · · → c̃p in C with c̃j = d̃j for j ∈ {0, 1, . . . , l} and

c̃l+1 ∈ Ãs. Hence there are at most 64Bp(s + 1)̺
p ≤ 64Bs(s + 1)̺p different

paths c̃0 → c̃1 → · · · → c̃p in C with c̃0 = c̃ and c̃j ∈ Ãs for a j ∈ {1, 2, . . . , p}.
This implies

(3.7) cardPC(c̃, p) ≤ 65Bs(s+ 1)̺
p.
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Now (3.6) gives that (3.7) holds also in the case c̃ ∈ Ãs.
Using (1.5) and (3.7) we obtain ‖FC(0)

p‖ ≤ 65Bs(s + 1)̺p. For k ∈ N0 and

p ∈ {1, 2, . . . , s} we get by induction that ‖FC(0)
ks+p‖ ≤

(

65Bs(s+1)
)k+1

̺ks+p.

Hence ‖FC(0)
n‖ ≤

(

65Bs(s+ 1)
)

n
s
+1
̺n for every n ∈ N0. Therefore, by (3.5)

(3.8) ‖FC(0)
n‖ ≤ βsβn

for every n ∈ N0.
Now the proof of Theorem 2 is completely analogous to the proof of Theorem 3

in [10]. We have only to replace s(s + 1) with βs, B1 with B1 ∪ B2, (4.8) of [10]
with (3.8), and Lemma 6 in [7] with Lemma 4. �

4. Stability conditions for the topological pressure

In this section we prove that the upper semi-continuity of the pressure for every
continuous function g is equivalent to 0 is not periodic or 1 is not periodic. This
result is analogous to Theorem 8 in [13]. We will need the following result, which
is proved in [13] (Corollary 1.1 in [13]).

Lemma 5. Let f : [0, 1] → R be a strictly increasing and continuous function.

Assume that r > 0 is a real number, and suppose that P ⊆ [0, 1] is finite. Then
for every ε > 0 there exists a continuous function g : [0, 1]→ R with 0 ≤ g(x) ≤ r
for all x ∈ [0, 1], g(x) = r is equivalent to x ∈ P , and

htop(Tf ) ≤ p(Tf , g) < max
{

r, htop(Tf )
}

+ ε.

Now we are able to prove the main result of this section.

Theorem 3. Let f : [0, 1]→ R be a strictly increasing and continuous function.

Then the following properties are equivalent.

(1) For every continuous function g : [0, 1]→ R we have

lim sup
‖f̃−f‖∞→0

p(T
f̃
, g) ≤ p(Tf , g).

(2) For every continuous function g : [0, 1]→ R satisfying

lim inf
‖f̃−f‖∞→0

p(T
f̃
, g) ≥ p(Tf , g)

we have

lim
‖f̃−f‖∞→0

p(T
f̃
, g) = p(Tf , g).

(3) We have log r
(

G′(0)
)

= 0.

(4) We have that Tf
n
0 6= 0 for all n ∈ N or Tf

n
1 6= 1 for all n ∈ N.
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Proof: It is obvious that (1) implies (2). In order to show that (3) implies (4)

assume that (3) holds, and that there are p, q ∈ N with Tf
p
0 = 0 and Tf

q
1 = 1.

Then G′ is finite by the definition of G′. Furthermore there is a j ∈ N0, such that

Tf
j
0 has exactly two successors in (G′,→). Hence the Perron-Frobenius Theorem

gives r
(

G′(0)
)

> 1, which contradicts (3).

Next suppose that (4) holds. Then Lemma 1 yields log r
(

G′(0)
)

≤ 0, which
shows (3). Let g : [0, 1] → R be a continuous function. By Lemma 1 we obtain
log r

(

G′(g)
)

≤ p(Tf , g). Therefore (1) of Theorem 1 gives (1).
Hence it remains to show that (2) implies (4). Assume that (2) holds. Suppose

that there are p, q ∈ N with Tf
p
0 = 0 and Tf

q
1 = 1. As (3) implies (4) we get

log r
(

G′(0)
)

> 0. Furthermore G′ is finite. If htop(Tf ) = 0, then Theorem 1 and

Lemma 3 give lim sup
‖f̃−f‖∞→0

p(T
f̃
, 0) = log r

(

G′(0)
)

, and this contradicts (2),

as p(T
f̃
, 0) = htop(Tf̃

) ≥ 0 is trivial. Therefore suppose htop(Tf ) > 0. Choose an

r with 0 < r < htop(Tf ) and

r + log r
(

G′(0)
)

> htop(Tf ).

By Lemma 5 there exists a continuous function g : [0, 1] → R with g(x) ≤ r for
all x ∈ [0, 1], g(x) = r for all x ∈ P (G′) and

(4.1) htop(Tf ) ≤ p(Tf , g) < r + log r
(

G′(0)
)

.

Using (2.2) and (2.5) we get log r
(

G′(g)
)

= r + log r
(

G′(0)
)

. Since

lim
n→∞

1

n
sup

x∈[0,1]

n−1
∑

j=0

g(Tf
j
x) ≤ r < p(Tf , g)

(2) of Theorem 1 gives lim inf
‖f̃−f‖∞→0

p(T
f̃
, g) ≥ p(Tf , g) and

lim sup
‖f̃−f‖∞→0

p(T
f̃
, g) = r + log r

(

G′(0)
)

.

By (4.1) this contradicts (2). �

For x ∈ [0, 1] define

(4.2) p(x) := min
{

n ∈ N : Tf
n
x = x

}

,

where we set p(x) := ∞, if Tf
n
x 6= x for all n ∈ N. In the situation

considered in this paper there is a continuous function g : [0, 1] → R with
lim sup

‖f̃−f‖∞→0
p(T

f̃
, g) > p(Tf , g), if and only if p(0) < ∞ and p(1) < ∞.

By Theorem 8 in [13] there exists a continuous g : [0, 1]→ R, such that the pres-
sure is not upper semi-continuous with respect to the R0-topology, if and only if
2 ≤ p(0) < ∞ and 2 ≤ p(1) < ∞. Setting f := f0 for the function f0 defined in
(3.1) we obtain an explicit example, where the pressure is upper semi-continuous
with respect to the R0-topology for all continuous g : [0, 1] → R, but there is a
continuous g : [0, 1]→ R with lim sup

‖f̃−f‖∞→0
p(T

f̃
, g) > p(Tf , g).
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5. Continuity of the topological entropy

Finally we investigate the continuity of the entropy. We prove that the en-
tropy is continuous, if htop(Tf ) > 0. This result is analogous to Theorem 1 and
Theorem 2 in [9]. Recall the definition of p(x) given in (4.2).

Theorem 4. Let f : [0, 1]→ R be a strictly increasing and continuous function.

Then the following properties are equivalent.

(1) We have lim sup‖f̃−f‖∞→0 htop(Tf̃
) > htop(Tf ).

(2) There exist p, q ∈ N with Tf
p
0 = 0 and Tf

q
1 = 1, and we have

htop(Tf ) = 0.

(3) We have p(0) = p(1) < ∞, htop(Tf ) = 0, card
(

f−1(Z)
)

≤ 2, and there
exists a subset C of the Markov diagram (D,→) of Tf with respect to Zf ,

such that for every C ∈ C there exists exactly one D ∈ D with C → D,
and C → D implies D ∈ C.

Proof: Obviously (3) implies (2). Now assume that (2) holds. Then G′ is finite

and there is a j ∈ N0, such that Tf
j
0 has exactly two successors in (G′,→). By the

Perron-Frobenius Theorem we obtain r
(

G′(0)
)

> 1. Now Lemma 3 implies (1).
It remains to show that (1) implies (3).
Assume that (1) holds. Let (D,→) be the Markov diagram of Tf with respect

to Zf . Suppose that card
(

f−1(Z)
)

> 2. Then there are c1, c2, c3 ∈ [0, 1] with
c1 < c2 < c3, f(c1) ∈ Z, f(c2) = f(c1) + 1 and f(c3) = f(c1) + 2. Set E1 :=
(c1, c2), E2 := (c2, c3) and C := {E1, E2}. Then C ⊆ D and Ej → Ek in (D,→)

for all j, k ∈ {1, 2}. Hence (1.4) gives r
(

FC(0)
)

= 2. By (1.5) and (1.6) we get

r
(

F (0)
)

≥ r
(

FC(0)
)

= 2. Now (1.7) implies

(5.1) htop(Tf ) ≥ log 2.

As every a ∈ G′ has at most two successors in (G′,→), (2.2), (2.3) and (2.5) give

(5.2) r
(

G′(0)
)

≤ 2.

Using (5.1) and (5.2) we get by (1) of Theorem 1 that lim sup
‖f̃−f‖∞→0

htop(Tf̃
)

≤ htop(Tf ), which contradicts (1). Therefore we have shown that card
(

f−1(Z)
)

≤
2.
By Theorem 3 we get p(0) <∞ and p(1) <∞. If p(0) ≥ 2 and p(1) ≥ 2, then

‖f̃−f‖∞ → 0 implies (T
f̃
,Z

f̃
)→ (Tf ,Zf ) in the R

0-topology. Hence Theorem 2

in [9] shows that htop(Tf ) = 0, and that there exists a C ⊆ D, such that for every
C ∈ C there exists exactly one D ∈ D with C → D, and C → D implies D ∈ C.
Now Lemma 3 in [9] gives p(0) = p(1), which completes the proof of (3) in this
case.
Suppose that p(0) = 1 (an analogous proof works in the case p(1) = 1). At first

we consider the case p(0) = p(1) = 1. As card
(

f−1(Z)
)

≤ 2 we get D =
{

(0, 1)
}
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with (0, 1) → (0, 1). Therefore (1.4) and (1.7) give htop(Tf ) = 0, and (3) is
satisfied in this case.
Now suppose that q := p(1) > 1. Then card

(

f−1(Z)
)

= 2. Let c ∈ (0, 1)
be the unique element with f(c) ∈ Z. For j ∈ {0, 1, . . . , q − 1} let Dj ∈ D be

so that D0 ∈ Zf , Dj−1 → Dj for j ∈ {1, 2, . . . , q − 1} and Tf
j
1 ∈ Dj . Since

Tf0 = 0 we have infD ∈ {0, c} for every D ∈ D. Furthermore Tf
q−1
1 = c.

Hence Dq−1 = (0, c), and we get Dq−1 → D0 = (c, 1) and Dq−1 → (0, c). Next
we define a map ϕ : G′ → D. Set ϕ(0) := ϕ(c−) := ϕ(c+) := (0, c) = Dq−1.

If a ∈ G′ \ {0, c−, c+}, then there exists a j ∈ {0, 1, . . . , q − 2} with a = Tf
j
1,

and we define ϕ(a) := Dj . For a, b ∈ G′ we have that a → b in (G′,→) implies
ϕ(a) → ϕ(b) in (D,→). Fix an a ∈ G′. Let b0 → b1 → · · · → bn be a path
of length n in (G′,→) with b0 = a, and let bn+1 ∈ G′ with bn → bn+1. Define
ϕn(b0 → b1 → · · · → bn) := ϕ(b0) → ϕ(b1) → · · · → ϕ(bn+1). Observe that ϕn

is an injective map from the set of all paths b0 → b1 → · · · → bn of length n in
(G′,→) with b0 = a to the set of all paths C0 → C1 → · · · → Cn+1 of length n+1
in (D,→) with C0 = ϕ(a). Therefore (1.5) and (2.4) give ‖G

′(0)n‖ ≤ ‖F (0)n+1‖
for all n ∈ N. Hence by (1.6), (1.7) and (2.5) we obtain log r

(

G′(0)
)

≤ htop(Tf ).
Now (1) of Theorem 1 contradicts (1). �

The example described in (3.1) shows that the entropy need not be continuous
in our situation, if it is continuous in the R0-topology. From Theorem 1 and
Theorem 4 it is easy to deduce the following result.

Corollary 4.1. Let f : [0, 1] → R be a strictly increasing and continuous func-

tion. If htop(Tf ) > 0, then lim‖f̃−f‖∞→0 htop(Tf̃
) = htop(Tf ).

By Theorem 1 in [9] and Corollary 4.1 we obtain that htop(Tf ) > 0 implies
the continuity of the topological entropy both in our situation and with respect
to the R0-topology.
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