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On blow-up and asymptotic behavior of solutions

to a nonlinear parabolic equation of second

order with nonlinear boundary conditions

Théodore K. Boni

Abstract. We obtain some sufficient conditions under which solutions to a nonlinear
parabolic equation of second order with nonlinear boundary conditions tend to zero or
blow up in a finite time. We also give the asymptotic behavior of solutions which tend
to zero as t→ ∞. Finally, we obtain the asymptotic behavior near the blow-up time of
certain blow-up solutions and describe their blow-up set.

Keywords: blow-up, global existence, asymptotic behavior, maximum principle

Classification: 35K55, 35K60, 35B40

1. Introduction

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. Consider the

following boundary value problem:

∂ϕ(u)

∂t
= Lu− a(x, t)f(u) in Ω× (0, T ),(1.1)

∂u

∂N
= b(x, t)g(u) on ∂Ω× (0, T ),(1.2)

u(x, 0) = uo(x) in Ω,(1.3)

where

Lu =

n
∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n
∑

i=1

ai(x, t)
∂u

∂xi
+ c(x, t)u + d(x, t),

∂u

∂N
=

n
∑

i,j=1

cos(ν, xi)aij(x, t)
∂u

∂xj
,

ν is the exterior normal unit vector on ∂Ω. The coefficients aij(x, t), ai(x, t),
c(x, t) and d(x, t) are defined in Ω × (0, T ). Moreover, aij satisfy the following
inequality

n
∑

i,j=1

aij(x, t)ξiξj ≥ α|ξ|2
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for ξ ∈ R
n with positive constant α, a(x, t) is a nonnegative function in Ω×(0, T ),

b(x, t) is a nonnegative function on ∂Ω× (0, T ). Here uo(x) ∈ C1(Ω) is a positive

function in Ω which satisfies the compatibility condition ∂uo

∂N
= b(x, 0)g(uo) on ∂Ω.

For positive values of s, ϕ(s), f(s), g(s) are positive and increasing functions. We
want to determine when the solutions of the problem (1.1)–(1.3) are global, i.e.
defined for every t ∈ (0,∞).

Definition 1.1. We say that a solution u of the problem (1.1)–(1.3) blows up in
a finite time if there exists a finite time To such that

lim
t→To

‖u(x, t)‖L∞(Ω) =∞.

The time To is the blow-up time of the solution u. A point x ∈ Ω is a blow-up
point of the solution u if there exists a sequence (xn, tn) such that xn → x, tn ↑ To
and limn→∞ u(xn, tn) =∞. The set

EB = {x ∈ Ω such that x is a blow-up point of the solution u}

is the blow-up set of the solution u.

The problem of blow-up of solutions to parabolic equations of second order
with nonlinear boundary conditions has been the subject of investigation of many
authors (see, for instance [1], [2], [3], [6] and others). In [3], Egorov and Kondratiev
have considered the problem (1.1)–(1.3). They have given some conditions under
which the solutions of (1.1)–(1.3) exist globally, tend to zero as t → ∞ or blow
up in a finite time. In [1], we have described the asymptotic behavior of some
solutions of (1.1)–(1.3) which tend to zero as t→ ∞ in the case where ϕ(u) = u,
f(u) = g(u), a(x, t) = a(x) and b(x, t) = b(x). An interesting question of the
problem (1.1)–(1.3) is the localization of the blow-up set. This problem has been
studied in [2] by Fila, Chipot and Quittner in the case where Ω ⊂ R

1, ϕ(u) = u,
L = ∆, a(x, t) = a = const, b(x, t) = 1. In [1], we have generalized some results
of [2] concerning the localization of blow-up set in Ω ⊂ R

n with n ≥ 1.
In this paper, we generalize the results of [1] considering the problem of the

form (1.1)–(1.3). We also describe the asymptotic behavior of some solutions of
(1.1)–(1.3) which tend to zero as t→ ∞ in the case where ϕ(u) 6= u, f(u) 6= g(u)
and precise some results of Egorov and Kondratiev ([3]) in the case of blow-up
solutions.
The paper is written in the following manner. In Section 2, some conditions

of blow-up are given. In Section 3, we obtain some conditions under which the
solutions of the problem (1.1)–(1.3) tend to zero as t → ∞. In Section 4, we
give the asymptotic behavior of the solutions which tend to zero as t → ∞. In
Section 5, we obtain the asymptotic behavior near the blow-up time of certain
blow-up solutions and finally in Section 6, we describe their blow-up set.
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2. Blow-up solutions

In this section, we suppose that

Lu =
n

∑

i,j=1

∂

∂xi

(

aij(x, t)
∂u

∂xj

)

.

We give some conditions under which the solutions of the problem (1.1)–(1.3)
blow up in a finite time for any positive initial data.
The following lemma will be useful in the proofs of some theorems below.

Comparison lemma 2.1. Let u, v ∈ C1(Ω× [0, T ])∩C2(Ω× (0, T )) satisfy the
following inequalities:

∂ϕ(u)

∂t
− Lu+ a(x, t)f(u) >

∂ϕ(v)

∂t
− Lv + a(x, t)f(v) in Ω× (0, T ),

∂u

∂N
− b(x, t)g(u) >

∂v

∂N
− b(x, t)g(v) on ∂Ω× (0, T ),

u(x, 0) > v(x, 0) in Ω.

Then we have
u(x, t) > v(x, t) in Ω× (0, T ).

Proof: The function w(x, t) = u(x, t)− v(x, t) is continuous in Ω× [0, T ]. Then
its minimum value m is attained at a point (xo, to) ∈ Ω × [0, T ]. Suppose that
u(xo, to) ≤ v(xo, to). If to = 0, thenm > 0 which is a contradiction. If 0 < to ≤ T ,
then there exists a t1 such that 0 < t1 ≤ to with u(x, t) > v(x, t) in Ω× [0, t1[ but
u(x1, t1) = v(x1, t1) for some x1 ∈ Ω.
If x1 ∈ Ω, then we obtain

∂(ϕ(u)− ϕ(v))

∂t
(x1, t1) ≤ 0, Lw(x1, t1) ≥ 0, f(u(x1, t1)) = f(v(x1, t1)),

which implies that

∂(ϕ(u)− ϕ(v))

∂t
(x1, t1)− Lw(x1, t1) + a(x1, t1)[f(u(x1, t1))− f(v(x1, t1))] ≤ 0.

But, this contradicts the first inequality of the lemma. Finally if x1 ∈ ∂Ω, then
∂w
∂N (x1, t1) ≤ 0. It follows that

∂w

∂N
(x1, t1)− b(x1, t1)[g(u(x1, t1)) − g(v(x1, t1))] ≤ 0,

which contradicts the second inequality of the lemma. Therefore, we have m > 0.
�
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Theorem 2.2. Suppose that for positive values of s, ϕ(s) is positive, increasing,

convex and
ϕ
′

(s)
g(s)

is decreasing. Suppose also that
∫+∞ ϕ

′

(s)ds
g(s)

< +∞ and there

exist k ≥ 0, T∗ > 0 such that

f(s) ≤ kg(s) for s > 0

and

∫ T∗

0
[−k

∫

Ω
a(x, t) dx +

∫

∂Ω
b(x, t) dSx] dt >

∫

Ω

∫ +∞

uo(x)

ϕ
′

(s)ds

g(s)
dx.

Then any solution u of the problem (1.1)–(1.3) blows up in a finite time for
uo(x) > 0.

Proof: Let (0, T ) be the maximum time interval in which the solution u of (1.1)–
(1.3) exists. Our aim in this proof is to show that T is finite. Since uo(x) > 0
in Ω, from the maximum principle we have u(x, t) > 0 in Ω× (0, T ). Put

(2.1) v(x, t) = F (u(x, t)) =

∫ +∞

u

ϕ
′

(s)ds

g(s)
.

The function v is well defined because
∫+∞ ϕ

′

(s)ds
g(s)

< ∞. Moreover, for positive

values of u, the function F (u) is positive and decreasing. We have
(2.2)

∂v

∂t
−

1

ϕ
′

(u)
Lv = −

1

g(u)
((ϕ(u))t − Lu) +

1

ϕ
′

(u)

d

du
(
ϕ

′

(u)

g(u)
)

n
∑

i,j=1

aij(x, t)
∂u

∂xi

∂u

∂xj
.

Since ϕ(u) is increasing and
ϕ
′

(u)
g(u)

is decreasing, from (1.1) and (2.2) we obtain

(2.3)
∂v

∂t
−

1

ϕ
′

(u)
Lv − a(x, t)

f(u)

g(u)
≤ 0 in Ω× (0, T ).

From (1.2) and (2.1), we also have

(2.4)
∂v

∂N
= −

ϕ
′

(u)

g(u)

∂u

∂N
= −b(x, t)ϕ

′

(u) on ∂Ω× (0, T ).

Put

(2.5) w(t) =

∫

Ω
v(x, t) dx.
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From (2.3) and (2.5), we get

(2.6) w
′

(t) =

∫

Ω
vt(x, t) dx ≤

∫

Ω
[
1

ϕ
′

(u)
Lv(x, t) + a(x, t)

f(u)

g(u)
] dx.

Using Green’s formula, (2.4) and (2.6), we obtain

(2.7) w
′

(t) ≤ −

∫

∂Ω
b(x, t) dSx

−

∫

Ω

ϕ
′′

(u)ϕ
′

(u)

(ϕ
′

(u))2g(u)

n
∑

i,j=1

aij(x, t)
∂u

∂xi

∂u

∂xj
dx+

∫

Ω
a(x, t)

f(u)

g(u)
dx.

Since by hypotheses f(u) ≤ kg(u) and ϕ(u) is increasing and convex, from (2.7)
it follows that

(2.8) w
′

(t) ≤ −

∫

∂Ω
b(x, t) dSx + k

∫

Ω
a(x, t) dx.

Integrating (2.8) over (0, s), we deduce that

(2.9) w(s) ≤ w(0) +

∫ s

0
[−

∫

∂Ω
b(x, t) dSx + k

∫

Ω
a(x, t) dx] dt.

Since v(x, t) is nonnegative and defined in Ω×(0, T ), then in virtue of (2.5), w(t) is
also nonnegative and defined for every t ∈ (0, T ). This implies that T ≤ T∗ <∞.
In fact, if T∗ < T then by hypothesis, we have

w(T∗) ≤

∫ T∗

0
[−

∫

∂Ω
b(x, t) dSx + k

∫

Ω
a(x, t) dx] dt+ w(0) < 0,

which is a contradiction. Therefore u blows up in a finite time, which yields the
result. �

Corollary 2.3. Suppose that f(u) = 0,
∫+∞ ϕ

′

(z)
g(z)

dz < +∞ and for positive

values of s, ϕ(s) is positive, increasing, convex and
ϕ
′

(s)
g(s)

is decreasing. Suppose

also that there exists T∗ > 0 such that

∫ T∗

0

∫

∂Ω
b(x, t) dx dt >

∫

Ω

∫ +∞

uo(x)

ϕ
′

(s)ds

g(s)
dx.

Then any solution u of the problem (1.1)–(1.3) blows up in a finite time for
uo(x) > 0.
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Corollary 2.4. Suppose that
∫+∞ ϕ

′

(z)
g(z)

dz < +∞ and for positive values of s,

f(s) = g(s), ϕ(s) is positive, increasing, convex and
ϕ
′

(s)
g(s)

is decreasing. Suppose

also that there exists T∗ > 0 such that

∫ T∗

0
[−

∫

Ω
a(x, t) dx+

∫

∂Ω
b(x, t) dSx] dt >

∫

Ω

∫ +∞

uo(x)

ϕ
′

(s)ds

g(s)
dx.

Then any solution u of the problem (1.1)–(1.3) blows up in a finite time for
uo(x) > 0.

Corollary 2.5. Suppose that ϕ(u) = um, f(u) = up, g(u) = uq + us where
q ≥ p ≥ s ≥ m − 1 and q > m ≥ 1. Suppose also that there exists T∗ > 0 such
that

∫ T∗

0
[−

∫

Ω
a(x, t) dx+

∫

∂Ω
b(x, t) dSx] dt >

∫

Ω

∫ +∞

uo(x)

ϕ
′

(s)ds

g(s)
dx.

Then any solution u of the problem (1.1)–(1.3) blows up in a finite time for
uo(x) > 0. If a(x, t) = a(x) ≥ 0, b(x, t) = b(x) > 0, then the last hypothesis is
satisfied when

−

∫

Ω
a(x) dx +

∫

∂Ω
b(x) dSx > 0.

3. Global solutions

In this section, we give some conditions under which the solutions of the prob-
lem (1.1)–(1.3) exist globally and tend to zero as t→ ∞.

Theorem 3.1. Suppose that 0 ≤ b(x, t) ≤ bo < ∞, 0 < a(x, t) ≤ ao < ∞,

c(x, t) ≤ 0, d(x, t) ≤ 0, f
′

(0) = g
′

(0) = 0 and lims→0
g(s)
f(s)

∈ {0, β} where β is a

positive constant. Suppose also that there exist a function ψ(x) > 0 and positive
constants A, B such that

−L1ψ = −

n
∑

i,j=1

aij(x, t)
∂2ψ

∂xi∂xj
−

n
∑

i=1

ai(x, t)
∂ψ

∂xi
≥ −a(x, t) +A,

∂ψ

∂N
≥ ε
(f)
g b(x, t) +B,

where ε
(f)
g = 0 if lims→0

g(s)
f(s)

= 0 and ε
(f)
g = β if lims→0

g(s)
f(s)

= β. Finally

suppose that for positive values of s, the function
f(s)

ϕ
′ (s)
is positive, increasing,

lims→0
ϕ
′′

(s)f(s)

ϕ
′
(s)

= 0 and
∫

0
ϕ
′

(z)dz
f(z)

= ∞. Then there exists a positive function



On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation . . . 463

v(x, t) continuous in Ω × [0,∞[ and tending to zero as t → ∞ uniformly in
x ∈ Ω such that, if u is a solution of the problem (1.1)–(1.3), the inequality
u(x, 0) < v(x, to) (to ≥ 0) implies that u(x, t) < v(x, t + to) and

lim
t→∞

sup
x∈Ω

u(x, t) = 0.

Remark 3.2. We have

lim
s→0

{ε
(f)
g −

g(s)

f(s)
} = 0.

Proof of Theorem 3.1: Put v(x, t) = α(t) + ψ(x)f(α(t)) with

(3.1) ϕ
′

(α(t))α
′

(t) = −λf(α(t)), α(0) = 1,

where λ = A− δ and δ < A is a positive constant. Since
∫

0
ϕ
′

(z)dz
f(z)

= +∞, then

the function α(t) is defined for 0 ≤ t < ∞ and limt→+∞ α(t) = 0. In fact α(t)
satisfies the following relation:

(3.2)

∫ 1

α(t)

ϕ
′

(s)ds

f(s)
= λt.

Suppose that there is a finite time T such that α(T ) = 0. But this contradicts

(3.2), because
∫

0
ϕ
′

(s)ds
f(s)

= ∞. Therefore, we have limt→∞ α(t) = 0. We also

have

(ϕ(v))t − Lv + a(x, t)f(v) = ϕ
′

(α(t))α
′

(t)

+ϕ
′

(α(t))α
′

(t)f
′

(α(t))ψ(x) + ψ(x)f(α(t))ϕ
′′

(z)α
′

(t)

+ψ2(x)f(α(t))f
′

(α(t))α
′

(t)ϕ
′′

(z)

−f(α(t))L1ψ(x) − c(x, t)v − d(x, t) + a(x, t)f(α(t)) + a(x, t)ψ(x)f(α(t))f
′

(y),

∂v

∂N
− b(x, t)g(v) =

∂ψ(x)

∂N
f(α(t))− b(x, t)g(α(t)) − b(x, t)ψ(x)f(α(t))g

′

(ỹ),

with {y, ỹ, z} ∈ [α(t), α(t) + ψ(x)f(α(t))]. Since α
′

(s) = −λ
f(s)

ϕ
′(s)
is a decreasing

function, c(x, t) ≤ 0, d(x, t) ≤ 0 and ψ > 0 satisfies the following inequalities

−λ− L1ψ ≥ −a(x, t) + δ,
∂ψ

∂N
≥ ε
(f)
g b(x, t) +B,
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we obtain

(ϕ(v))t − Lv + a(x, t)f(v) ≥ δf(α(t))

−λf(α(t))f
′

(α(t))ψ(x) − λψ(x)f(α(t))|ϕ
′′

(z)|
f(z)

ϕ
′

(z)

−λψ2(x)f(α(t))f
′

(α(t))
f(z)

ϕ
′

(z)
|ϕ

′′

(z)|+ a(x, t)ψ(x)f(α(t))f
′

(y),

∂v

∂N
− b(x, t)g(v) ≥ (B + ε

(f)
g b(x, t))f(α(t)) − b(x, t)g(α(t))

− b(x, t)ψ(x)f(α(t))g
′

(ỹ).

Since f
′

(0) = g
′

(0) = 0, lims→0
ϕ
′′

(s)f(s)

ϕ
′ (s)

= 0, by Remark 3.2 there exists t1 ≥ 0

such that

(ϕ(v))t − Lv + a(x, t)f(v) > 0 in Ω× (t1,∞),(3.3)

∂v

∂N
− b(x, t)g(v) > 0 on ∂Ω× (t1,∞).(3.4)

Then if u(x, 0) < v(x, t1), by Comparison lemma 2.1, we deduce that

lim
t→∞

sup
x∈Ω

u(x, t) = 0

because limt→∞ v(x, t) = 0 uniformly in x ∈ Ω. �

Corollary 3.3. Suppose that Lu =
∑n
i,j=1

∂
∂xi
(aij(x)

∂u
∂xj
) + c(x, t)u + d(x, t),

f
′

(0) = g
′

(0) = 0, lims→0
g(s)
f(s)

∈ {0, β} where β is a positive constant. Sup-

pose also that for positive values of s, the function
f(s)

ϕ
′(s)
is positive, increasing,

lims→0
ϕ
′′

(s)f(s)

ϕ
′ (s)

= 0 and
∫

0
ϕ
′

(z)dz
f(z)

= ∞. Finally suppose that 0 ≤ b(x, t) ≤

bo(x), 0 < ao(x) ≤ a(x, t), c(x, t) ≤ 0, d(x, t) ≤ 0, −ε
(f)
g

∫

∂Ω bo(x) ds+
∫

Ω ao(x) dx

> 0, where ε
(f)
g = 0 if lims→0

g(s)
f(s)

= 0 and ε
(f)
g = β if lims→0

g(s)
f(s)

= β. Then

there exists a positive function v(x, t) continuous in Ω× [0,∞[ and tending to zero
as t → ∞ uniformly in x ∈ Ω such that, if u is a solution of the problem (1.1)–
(1.3), the inequality u(x, 0) < v(x, to) (to ≥ 0) implies that u(x, t) < v(x, t + to)
and

lim
t→∞

sup
x∈Ω

u(x, t) = 0.

Proof: Let ψ be a positive solution of the following problem:

−λ− L1ψ = δ − ao(x),
∂ψ

∂N
= ε
(f)
g bo(x) + δ,
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where L1ψ =
∑n
i,j=1

∂
∂xi
(aij(x)

∂ψ
∂xj
). Taking

λ ≤
1

2(|Ω|+ |∂Ω|)
[−ε
(f)
g

∫

∂Ω
bo(x) ds+

∫

Ω
ao(x) dx]

and putting

δ =
1

|Ω|+ |∂Ω|
[−ε
(f)
g

∫

∂Ω
bo(x) ds+

∫

Ω
ao(x) dx] − λ,

we see that the function ψ exists and δ > 0. Take A = λ+ δ, B = δ. Then all the
hypotheses of Theorem 3.1 are satisfied, which yields the result. �

Corollary 3.4. Suppose that Lu =
∑n
i,j=1

∂
∂xi
(aij(x)

∂u
∂xj
) + c(x, t)u + d(x, t),

0 ≤ b(x, t) ≤ bo(x), 0 < ao(x) ≤ a(x, t), c(x, t) ≤ 0, d(x, t) ≤ 0. Suppose also

that ϕ(u) = um, f(u) = up, g(u) = uq, −ε
(p)
q

∫

∂Ω bo(x) ds+
∫

Ω ao(x) dx > 0 with

q ≥ p > 1, p ≥ m > 0 where ε
(p)
q = 0 if q > p and ε

(p)
q = 1 if q = p. Then if u is

a solution of the problem (1.1)–(1.3), there exists a positive constant b such that
the solution u tends to zero as t→ ∞ uniformly in x ∈ Ω for uo(x) ≤ b.

4. Asymptotic behavior of solutions which tend to zero

In Section 3, we have shown that under some conditions, the solutions of the
problem (1.1)–(1.3) tend to zero as t → ∞ uniformly in x ∈ Ω. In this section,
we describe the asymptotic behavior of these solutions in the case where a(x, t) =
a(x), b(x, t) = b(x) and

Lu =

n
∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

.

Consider the following boundary value problem:

∂ϕ(u)

∂t
− Lu+ a(x)f(u) = 0 in Ω× (0,∞),(4.1)

∂u

∂N
− b(x)g(u) = 0 on ∂Ω× (0,∞),(4.2)

u(x, 0) = uo(x) > 0 in Ω.(4.3)

We are dealing with the asymptotic behavior as t → ∞ of the solutions for the
problem (4.1)–(4.3).

Theorem 4.1. Suppose that f
′

(0) = g
′

(0) = 0, lims→0
g(s)
f(s)

∈ {0, β} where

β is a positive constant and for positive values of s, the function
f(s)

ϕ
′ (s)
is pos-

itive, increasing, lims→0
ϕ
′′

(s)f(s)

ϕ
′
(s)

= 0 and
∫

0
ϕ
′

(z)dz
f(z)

= ∞. Suppose also that
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−ε
(f)
g

∫

∂Ω b(x) ds +
∫

Ω a(x) dx > 0, where ε
(f)
g = 0 if lims→0

g(s)
f(s)

= 0 and

ε
(f)
g = β if lims→0

g(s)
f(s)

= β. Then there exists a constant b > 0 such that,

if u is a solution of the problem (4.1)–(4.3), we have

(i)
lim
t→∞

u(x, t) = 0

uniformly in x ∈ Ω for uo(x) ≤ b.

(ii) Moreover, if there exists a positive constant c1 such that

lim
s→∞

sf(H(s))

ϕ
′

(H(s))H(s)
≤ c1,

we also have
u(x, t) = α(t)(1 + o(1)) as t → ∞,

where H(s) is the inverse function of G(s) =
∫ 1
s
ϕ
′

(σ)dσ
f(σ)

and

ϕ
′

(α(t))α
′

(t) = −cabf(α(t)), α(0) = 1,

with cab =
1
|Ω|
[
∫

Ω a(x) dx − ε
(f)
g

∫

∂Ω b(x) ds].

The proof of Theorem 4.1(i) is a direct consequence of Corollary 3.3, but that
of Theorem 4.1(ii) is based on the following lemmas:

Lemma 4.2. For any ε > 0 small enough, there exist τ > 0 and t1 > 0 such that

u(x, t+ τ) ≤ αε1(t+ t1) + ψ1(x)f(α
ε
1(t+ t1)),

where αε1(t) satisfies the following equation:

ϕ
′

(αε1(t))(α
ε
1)

′

(t) = −(cab −
ε

2
)f(αε1(t)), αε1(0) = 1,

and ψ1(x) is a certain function.

Proof: Put v1(x, t) = αε1(t) + ψ1(x)f(α
ε
1(t)), where ψ1 will be indicated later.

We have

(ϕ(v1))t − Lv1 + a(x)f(v1) = ϕ
′

(αε1(t))(α
ε
1)

′

(t)

+ϕ
′

(αε1(t))(α
ε
1)

′

(t)f
′

(αε1(t))ψ1(x) + ψ1(x)f(α
ε
1(t))ϕ

′′

(z1)(α
ε
1)

′

(t)

+ψ21(x)f(α
ε
1(t))f

′

(αε1(t))(α
ε
1)

′

(t)ϕ
′′

(z1)

−f(αε1(t))Lψ1(x) + a(x)f(α
ε
1(t)) + a(x)ψ1(x)f(α

ε
1(t))f

′

(y1),

∂v1

∂N
− b(x)g(v1) =

∂ψ1(x)

∂N
f(αε1(t))− b(x)g(αε1(t)) − b(x)ψ1(x)f(α

ε
1(t))g

′

(ỹ1),
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with {y1, ỹ1, z1} ∈ [αε1(t), α
ε
1(t) +ψ1(x)f(α

ε
1(t))]. Let ψ1 be a positive solution of

the following problem:

−(cab −
ε

2
)− Lψ1 = δ − a(x),

∂ψ1

∂N
= ε
(f)
g b(x) + δ.

ψ1 exists if and only if

δ =
1

|Ω|+ |∂Ω|
[−ε
(f)
g

∫

∂Ω
b(x) ds+

∫

Ω
a(x) dx] −

|Ω|

|Ω|+ |∂Ω|
(cab −

ε

2
).

If ε = 0 then δ = 0. Put

δ(r) =
1

|Ω|+ |∂Ω|
[−ε
(f)
g

∫

∂Ω
b(x) ds+

∫

Ω
a(x) dx] −

|Ω|

|Ω|+ |∂Ω|
(cab − r).

We have δ
′

(0) > 0. Then for any ε > 0 small enough, it follows that δ( ε2 ) > 0.
Consequently, we obtain

(ϕ(v1))t − Lv1 + a(x)f(v1) ≥ δf(αε1(t))

−(cab −
ε

2
)f(αε1(t))f

′

(αε1(t))ψ1(x)− (cab −
ε

2
)ψ1(x)f(α

ε
1(t))|ϕ

′′

(z1)|
f(z1)

ϕ
′

(z1)

−(cab −
ε

2
)ψ21(x)f(α

ε
1(t))f

′

(αε1(t))
f(z1)

ϕ
′

(z1)
|ϕ

′′

(z1)|+ a(x)ψ1(x)f(α
ε
1(t))f

′

(y1),

∂v1

∂N
−b(x)g(v1) = (δ+ε

(f)
g b(x))f(αε1(t))−b(x)g(α

ε
1(t))−b(x)ψ1(x)f(α

ε
1(t))g

′

(ỹ1).

Since f
′

(0) = g
′

(0) = 0, lims→0
ϕ
′′

(s)f(s)

ϕ
′ (s)

= 0, by Remark 3.2 there exists t1 ≥ 0

such that

(ϕ(v1))t − Lv1 + a(x)f(v1) > 0 in Ω× (t1,∞),

∂v1

∂N
− b(x)g(v1) > 0 on ∂Ω× (t1,∞).

Since limt→∞ u(x, t) = 0 uniformly in x ∈ Ω, then there exists τ > 0 such that

u(x, τ) < v1(x, t1) in Ω.

By Comparison lemma 2.1, it follows that

u(x, t+ τ) ≤ v1(x, t+ t1) = α
ε
1(t+ t1) + ψ1(x)f(α

ε
1(t+ t1)),

which yields the result. �
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Lemma 4.3. For any ε > 0 small enough, there exists t2 > 0 such that:

u(x, t+ τ) ≥ αε2(t+ t2) + ψ2(x)f(α
ε
2(t+ t2)),

where αε2(t) satisfies the following equation:

ϕ
′

(αε2(t))(α
ε
2)

′

(t) = −(cab +
ε

2
)f(αε2(t)), αε2(0) = 1,

and ψ2(x) is a certain function.

Proof: Put v2(x, t) = αε2(t) + ψ2(x)f(α
ε
2(t)), where ψ2 will be indicated later.

We have

(ϕ(v2))t − Lv2 + a(x)f(v2) = ϕ
′

(αε2(t))(α
ε
2)

′

(t)

+ϕ
′

(αε2(t))(α
ε
2)

′

(t)f
′

(αε2(t))ψ2(x) + ψ2(x)f(α
ε
2(t))ϕ

′′

(z2)(α
ε
2)

′

(t)

+ψ22(x)f(α
ε
2(t))f

′

(αε2(t))(α
ε
2)

′

(t)ϕ
′′

(z2)

−f(αε2(t))Lψ2(x) + a(x)f(α
ε
2(t)) + a(x)ψ2(x)f(α

ε
2(t))f

′

(y2),

∂v2

∂N
− b(x)g(v2) =

∂ψ2(x)

∂N
f(αε2(t))− b(x)g(αε2(t)) − b(x)ψ2(x)f(α

ε
2(t))g

′

(ỹ2),

with {y2, ỹ2, z2} ∈ [αε2(t), α
ε
2(t) +ψ2(x)f(α

ε
2(t))]. Let ψ2 be a positive solution of

the following problem:

−(cab +
ε

2
)− Lψ2 = µ− a(x),

∂ψ2

∂N
= ε
(f)
g b(x) + µ.

ψ2 exists if and only if

µ =
1

|Ω|+ |∂Ω|
[−ε
(f)
g

∫

∂Ω
b(x) ds+

∫

Ω
a(x) dx] −

|Ω|

|Ω|+ |∂Ω|
(cab +

ε

2
).

Put

µ(r) =
1

|Ω|+ |∂Ω|
[−ε
(f)
g

∫

∂Ω
b(x) ds+

∫

Ω
a(x) dx] −

|Ω|

|Ω|+ |∂Ω|
(cab + r).

Since µ( ε2 ) = δ(− ε
2 ) and δ

′

(0) > 0, then for any ε > 0 small enough, it follows
that µ( ε2 ) < 0. Therefore, we obtain

(ϕ(v2))t − Lv2 + a(x)f(v2) ≤ µf(αε2(t))

−(cab +
ε

2
)f(αε2(t))f

′

(αε2(t))ψ1(x) + (cab +
ε

2
)ψ2(x)f(α

ε
2(t))|ϕ

′′

(z2)|
f(z2)

ϕ
′

(z2)
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+(cab +
ε

2
)ψ22(x)f(α

ε
2(t))f

′

(αε2(t))
f(z2)

ϕ
′

(z2)
|ϕ

′′

(z2)|+ a(x)ψ2(x)f(α
ε
2(t))f

′

(y2),

∂v2

∂N
−b(x)g(v2) ≤ (µ+ε

(f)
g b(x))f(αε2(t))−b(x)g(α

ε
2(t))−b(x)ψ2(x)f(α

ε
2(t))g

′

(ỹ2).

Since f
′

(0) = g
′

(0) = 0, lims→0
ϕ
′′

(s)f(s)

ϕ
′ (s)

= 0, by Remark 3.2 there exists t∗ ≥ 0

such that

(ϕ(v2))t − Lv2 + a(x)f(v2) < 0 in Ω× (t∗,∞),

∂v2

∂N
− b(x)g(v2) < 0 on ∂Ω× (t∗,∞).

Since limt→∞ v2(x, t) = 0 uniformly in x ∈ Ω, there exists t2 > t∗ such that

u(x, τ) > v2(x, t2) in Ω.

By Comparison lemma 2.1, we deduce that

u(x, t+ τ) ≥ v2(x, t+ t2) = α
ε
2(t+ t2) + ψ2(x)f(α

ε
2(t+ t2)),

which gives the result. �

Proof of Theorem 4.1(ii): For any γ > 0, we have

(4.4) lim
t→∞

α(γ + t)

α(t)
= 1.

In fact, since α(t) is decreasing and convex, it follows that

α(t)− γcab
f(α(t))

ϕ
′

(α(t))
≤ α(t+ γ) ≤ α(t).

Moreover, since limt→∞
f(α(t))

ϕ
′(α(t))α(t)

= 0, we deduce that limt→∞
α(γ+t)
α(t)

= 1. On

the other hand, if ε > 0 is small enough, we obtain

(4.5) 1−
c1ε

2cab
≤ lim inf

t→∞

αε2(t)

α(t)
≤ lim sup

t→∞

αε2(t)

α(t)
≤ 1.

In fact

1 ≥
αε2(t)

α(t)
=
H(cabt+

ε
2 t)

H(cabt)
≥
H(cabt)−

ε
2 t

f(H(cabt))

ϕ
′ (H(cabt))

H(cabt)
.

Since lims→∞
sf(H(s))

ϕ
′ (H(s))H(s)

≤ c1, we obtain the result. We also have

(4.6) 1 ≤ lim inf
t→∞

αε1(t)

α(t)
≤ lim sup

t→∞

αε1(t)

α(t)
≤ 1 +

2c1ε

cab
.
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In fact

1 ≤ lim inf
t→∞

αε1(t)

α(t)
≤ lim sup

t→∞

αε1(t)

α(t)
≤

1

1− c1ε
2(cab−

ε
2
)

≤ 1 +
2c1ε

cab
.

Then from (4.4)–(4.6), Lemmas 4.2 and 4.3, we deduce that for any ε > 0 small
enough

1− k1ε ≤ lim inf
t→∞

u(x, t)

α(t)
≤ lim sup

t→∞

u(x, t)

α(t)
≤ 1 + k2ε

where k1 and k2 are two positive constants. Consequently,

u(x, t) = α(t)(1 + o(1)) as t → ∞,

which gives the result. �

Remark 4.4. Let ϕ(u) = um, f(u) = up, g(u) = uq with p ≥ m > 0, q ≥ p > 1.

Suppose also that
∫

Ω a(x) dx − ε
(p)
q

∫

∂Ω b(x) ds > 0 where ε
(p)
q = 0 if q > p and

ε
(p)
q = 1 if q = p. Then there exists a positive constant b such that, if u is a

solution of the problem (4.1)–(4.3), u tends to zero as t → ∞ uniformly in x ∈ Ω
for uo(x) ≤ b. Moreover,

lim
t→∞

u(x, t)

t
− 1

p−m

=

(

p−m

m|Ω|
[

∫

Ω
a(x) dx − ε

(p)
q

∫

∂Ω
b(x) ds]

)
1

m−p

.

5. Asymptotic behavior near the blow-up time

In this section, we give another condition under which the solutions of the
problem (1.1)–(1.3) blow up in a finite time in the case where

Lu =

n
∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n
∑

i=1

ai(x)
∂u

∂xi
.

We also give the asymptotic behavior near the blow-up time of these solutions.

Theorem 5.1. Suppose that at(x, t) ≤ 0, bt(x, t) ≥ 0. Suppose also that there

exists a function F (s) such that
∫ ∞ ds

F (s)
<∞ and for positive values of s, F (s)

is positive, increasing, convex satisfying

−f
′

(s)F (s) + F
′

(s)f(s) ≥ 0 for s > 0,

−F
′

(s)g(s) + F (s)g
′

(s) ≥ 0 for s > 0.

Finally, suppose that Luo(x) + a(x, 0)f(uo(x)) > 0 and for positive values of s,
ϕ(s) is concave. Then any solution u of the problem (1.1)–(1.3) blows up in a
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finite time T and there exists a positive constant δ such that the following estimate
holds

sup
x∈Ω

u(x, t) ≤ H(δ(T − t)),

where H(s) is the inverse function of G(s) =
∫ ∞
s

dσ
F (σ)
.

Proof: Let (0, T ) be the maximum time interval in which the solution u of the
problem (1.1)–(1.3) exists. Our aim is to show that T is finite and the above
estimate holds. Since uo(x) > 0 in Ω, from the maximum principle, we have
u(x, t) ≥ 0 in Ω×(0, T ). Let w = ut. Since w(x, 0) = Luo(x)−a(x, 0)f(uo(x)) > 0,
at(x, t) ≤ 0, bt(x, t) ≥ 0, we obtain

(ϕ
′

(u)w)t − Lw ≥ −a(x, t)f
′

(u)w in Ω× (0, T ),(5.1)

∂w

∂N
≥ b(x, t)g

′

(u)w on ∂Ω× (0, T ),(5.2)

w(x, 0) > 0 in Ω.(5.3)

From the maximum principle, there exists a constant c > 0 such that

(5.4) ut(x, t) ≥ c in Ω× (εo, T )

for εo > 0. Consider the following function:

(5.5) J(x, t) = ut − δF (u),

where δ > 0 small enough will be indicated later. We have

(5.6)

(ϕ
′

(u)J)t − LJ

= ((ϕ(u))t − Lu)t − δF
′

(u)((ϕ(u))t − Lu)

+δF
′′

(u)

n
∑

i,j=1

aij(x)uxiuxj − δϕ
′′

(u)F (u)ut

= −a(x, t)f
′

(u)J − at(x, t)f(u) + δa(x, t)[F
′

(u)f(u)− F (u)f
′

(u)]

+δF
′′

(u)
n

∑

i,j=1

aij(x)uxiuxj − δϕ
′′

(u)F (u)ut,

∂J

∂N
= bt(x, t)g(u) + b(x, t)g

′

(u)J + δb(x, t)[g
′

(u)F (u)− F
′

(u)g(u)].

Since at ≤ 0, bt ≥ 0, ut ≥ 0 and for positive values of u, F
′′

(u), −ϕ
′′

(u),

−f
′

(u)F (u)+F
′

(u)f(u) and g
′

(u)F (u)−F
′

(u)g(u) are nonnegative by hypothe-
ses, we obtain

(ϕ
′

(u)J)t − LJ + a(x, t)f
′

(u)J ≥ 0 in Ω× (0, T ),(5.7)

∂J

∂N
≥ b(x, t)g

′

(u)J on ∂Ω× (0, T ).(5.8)
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From (5.4) and (5.5), take δ so small that

(5.9) J(x, εo) > 0 in Ω.

Therefore, from the maximum principle, we deduce that

(5.10) ut ≥ δF (u) in Ω× (εo, T ),

that is

(5.11) −(G(u))t =
ut

F (u)
≥ δ.

Integrating (5.11) over (εo, T ) we have

(5.12) G(u(x, εo)) ≥ G(u(x, εo)) −G(u(x, T )) ≥ δ(T − εo).

Therefore T is finite and u blows up in a finite time. Integrating again (5.11) over
(t, T ), we see that

(5.13) G(u(x, t)) ≥ G(u(x, t)) −G(u(x, T )) ≥ δ(T − t).

Since the inverse function H of G is decreasing, from (5.13) we obtain

u(x, t) ≤ H [δ(T − t)],

which yields the result. �

Corollary 5.2. Suppose that at ≤ 0, bt ≥ 0, ϕ(u) = um, f(u) = up, g(u) = uq,
Luo − a(x, 0)upo > 0 where q > 1 ≥ m > 0, q ≥ p > 0. Then any solution u of
the problem (1.1)–(1.3) blows up in a finite time T and there exists a positive
constant c2 such that

sup
x∈Ω

u(x, t) ≤
c2

(T − t)
1

q−m

.

Remark 5.3. The argument in the proof of Theorem 5.1 is a classical one. It was
introduced in [4] and later used and modified by many authors. Unfortunately,
this method does not yield optimal results if blow-up occurs on the boundary.
More precisely, it is known that Corollary 5.2 is not sharp if m = 1. In this case,
the blow-up rate is

(T − t)
− 1
2(q−1) ,

see [6].
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6. Blow-up set

In this section, we describe the blow-up set of some blow-up solutions for the
problem (1.1)–(1.3). More precisely, we show that under some conditions, certain
solutions of the problem (1.1)–(1.3) blow up in a finite time and their blow-up set
is on the boundary ∂Ω of the domain Ω.

Theorem 6.1. Suppose that the hypotheses of Theorem 5.1 are satisfied. Sup-
pose also that there are positive constants Co, co such that

ϕ
′

(s) ≥ co for s > 0 and sF
′

(H(s)) ≤ Co for s > 0.

Then any solution u of the problem (1.1)–(1.3) blows up in a finite time T and
EB ⊂ ∂Ω, where EB is the blow-up set of the solution u.

Remark 6.2. If F (s) = sq with q > 1, then we may take Co =
q
q−1 .

Proof: By Theorem 5.1, we know that u blows up in a finite time T . Thus
our aim in this proof is to show that EB ⊂ ∂Ω. Let d(x) = dist (x, ∂Ω) and
v(x) = d2(x) for x ∈ Nε(∂Ω) where

Nε(∂Ω) = {x ∈ Ω such that d(x) < ε}.

Since ∂Ω is of class C2, then the function v(x) ∈ C2(Nε(∂Ω)) if ε is sufficiently
small. On ∂Ω, we have

Lv −
Co

v

n
∑

i,j=1

aij(x)vxivxj

= 2

n
∑

i,j=1

aij(x)dxidxj + 2d

n
∑

i,j=1

dxixj + 2d

n
∑

i=1

ai(x)dxi − 4Co

n
∑

i,j=1

aij(x)dxidxj

≥ 2λ1 − 2

n
∑

i=1

|aii(x)| − 2d

n
∑

i=1

|ai(x)| − 4Coλ2 − 4λ2

≥ 2λ1 − 2C1 − 2d
′

C2 − 4Coλ2 − 4λ2

where d
′

= sup
x∈Ω,y∈Ω ‖x − y‖. Therefore, there exists a positive constant C1

such that

(6.1) Lv −
Co

v

n
∑

i,j=1

aij(x)vxivxj ≥ −C1 on ∂Ω.

Since v ∈ C2(Nε(∂Ω)) for ε sufficiently small, let εo be so small that

(6.2) Lv −
Co

v

n
∑

i,j=1

aij(x)vxivxj ≥ −2C1 in Nεo(∂Ω).
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We extend v to a function of class C2(Ω) such that v ≥ C∗
o > 0 in Ω−Nεo(∂Ω).

Therefore, we deduce that

(6.3) Lv −
Co

v

n
∑

i,j=1

aij(x)vxivxj ≥ −C∗ in Ω

for some C∗ > 0. Multiplying (6.3) by ǫ small enough, we may assume without loss

of generality that C∗ < 1. Put w∗(x, t) = C1H(τ) where τ = δ(v(x)+
C∗

co
(T − t))

and C1 > 1 is a constant which will be indicated later. We get

(6.4) (ϕ(w∗))t − Lw∗ ≥ −δC1H
′

(τ)[C∗ + Lv + δ
H

′′

(τ)

H
′

(τ)

n
∑

i,j=1

aij(x)vxivxj ].

Since H(s) is the inverse function of G(s), we have H
′

(s) = −F (H(s)) and

H
′′

(s) = −H
′

(s)F
′

(H(s)). Consequently,

(6.5) (ϕ(w∗))t − Lw∗ ≥ δC1F (H(s))[C
∗ + Lv − δF

′

(H(τ))

n
∑

i,j=1

aij(x)vxivxj ].

Since sF
′

(H(s)) ≤ Co for s > 0, using the fact that F
′

(H(s)) is a decreasing

function (F
′

is increasing and H is decreasing), we have

(6.6) (ϕ(w∗))t − Lw∗ ≥ δC1F (H(τ))[C
∗ + Lv −

Co

v

n
∑

i,j=1

aij(x)vxivxj ].

Therefore from (6.3), we deduce that

(6.7) (ϕ(w∗))t − Lw∗ + a(x, t)f(w∗) ≥ 0 in Ω× (εo, T ).

On ∂Ω, we have w∗(x, t) = C1H(δC
∗(T − t)) > H(δ(T − t)) because C1 > 1 and

C∗ < 1. Then by Theorem 5.1, we obtain

(6.8) w∗(x, t) > u(x, t) on ∂Ω× (εo, T ).

Choose C1 large enough that

(6.9) w∗(x, εo) = C1H(δ(v(x) + C
∗(T − εo))) > u(x, εo).

Consequently, from the maximum principle we deduce that

u(x, t) < w∗(x, t) in Ω× (εo, T ).

Then if Ω
′

⊂⊂ Ω we have

u(x, t) ≤ C1H(δ(v(x) + C
∗(T − t))) ≤ C1H(δv(x)).

It follows that

sup
x∈Ω′

,t∈[εo,T )

u(x, t) ≤ sup
x∈Ω′

C1H(δv(x)) <∞,

which yields the result. �
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Corollary 6.2. Suppose that at ≤ 0, bt ≥ 0, ϕ(u) = au + bum, f(u) = up,
g(u) = uq, Luo − a(x, 0)u

p
o > 0 where a > 0, b ≥ 0, q > 1 ≥ m > 0, q ≥ p > 0.

Then any solution u of the problem (1.1)–(1.3) blows up in a finite time and
EB ⊂ ∂Ω where EB is the blow-up set of the solution u.
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